1
|
Rodríguez Montaño R, Alarcón-Sánchez MA, Martínez Nieto M, Varela Hernández JJ, Lomelí Martínez SM. Application of nanotechnology to dentistry: Impact of graphene nanocomposites on clinical air quality. World J Clin Cases 2025; 13:100839. [PMID: 40094115 PMCID: PMC11670009 DOI: 10.12998/wjcc.v13.i8.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/04/2024] Open
Abstract
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks, have prompted investigations on advanced disinfection technologies. This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices, especially with respect to the use of graphene nanocomposites. The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene (e.g., high conductivity, mechanical strength, and antimicrobial activity). These properties have produced promising results in various fields, but the application of graphene in dentistry remains unexplored. The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics. The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts, when compared with traditional methods. Despite these positive results, challenges such as material saturation, frequency of filter replacement, and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice. Therefore, there is need for further research on material structure optimization, long-term safety evaluations, and broader clinical applications, in order to maximize their positive impact on public health.
Collapse
Affiliation(s)
- Ruth Rodríguez Montaño
- Department of Health and Illness as an Individual and Collective Process, University Center of Tlajomulco, University of Guadalajara, Tlajomulco de Zuñiga 45641, Jalisco, Mexico
- Institute of Research in Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mario A Alarcón-Sánchez
- Department of Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Guerrero 39090, Mexico
- Instituto Odontológico del Pacífico Sur, Chilpancingo de los Bravo 39022, Mexico
| | | | - Juan J Varela Hernández
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlan 47810, Jalisco, Mexico
| | - Sarah M Lomelí Martínez
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlan 47810, Jalisco, Mexico
- Master of Public Health, Department of Well-being and Sustainable Development, Centro Universitario del Norte, Universidad de Guadalajara, Ocotlan 46200, Jalisco, Mexico
| |
Collapse
|
2
|
Wei L, Chen P, Shi L, Li G, Feng X, Zhao Y, Wang J, Chen ZS, Hu Z, Cui M, Zhou B. Composite Graphene for the Dimension- and Pore-Size-Mediated Stem Cell Differentiation to Bone Regenerative Medicine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7307-7323. [PMID: 39843162 DOI: 10.1021/acsami.4c17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts. GO-Por-CMP@CaP could act as a high-efficiency living composite material without a "dead space", effectively regulating the cellular response. The 3D topological structure generated via the two-step modification on two-dimensional graphene could effectively mimic the natural 3D microenvironment of cells, enhancing the stem cell attachment, which is not only conducive for the proliferation of stem cells but also beneficial for the osteogenic differentiation. Meanwhile, the wide existence of interconnected macropores was favorable for bone ingrowth, capillary formation, as well as the nutrients transportation. Furthermore, the concurrent existence of micro- and mesopores significantly promoted the extracellular matrix (ECM) adsorption, which ensured cellular attachment, leading to multiscale osteointegration. Both in vitro and in vivo assay demonstrated the above three factors collaborated mutually with nanosized calcium phosphate (CaP, with chemical similarities to the inorganic components of bone), which provided abundant adhesive sites to adequately induce osteogenic differentiation in the absence of any soluble growth factors. Proteomic analysis experiments confirmed that GO-Por-CMP@CaP promoted the differentiation of hucMSCs cells into osteoblasts by affecting the PI3K-Akt signaling pathway through the up-regulation of SPP1 protein. Our study offers a pure material-based stem cell differentiation regulating behavior via engineering the dimension and porosity of material, which provides insights into the design and development of substitutes to bone repair materials.
Collapse
Affiliation(s)
- Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Lin Shi
- Weifang People's Hospital, Shandong Second Medical University, Weifang 261035, Shandong PR China
| | - Gentao Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Xiaozhe Feng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Yao Zhao
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261035, Shandong PR China
| | - Jiangyun Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Zhe-Sheng Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Zhenbo Hu
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261035, Shandong PR China
| | - Min Cui
- Department of Pain Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| |
Collapse
|
3
|
Kim TH, Oh GW, Heo SY, Heo SJ, Kim YM, Lee DS, Kang HW, Kim HW, Lee B, Choi IW, Park WS, Jung WK. 3D-printed polycaprolactone/collagen/alginate scaffold incorporating phlorotannin for bone tissue regeneration: Assessment of sub-chronic toxicity. Int J Biol Macromol 2024; 282:137480. [PMID: 39522906 DOI: 10.1016/j.ijbiomac.2024.137480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The development of effective scaffolds for bone regeneration is crucial given the increasing demand for innovative solutions to address bone defects and enhance healing process. In this study, a polycaprolactone/fish collagen/alginate (P/FC/A) 3D scaffold incorporating phlorotannin was developed to promote bone tissue regeneration. While the efficacy of the P/FC/A scaffold has been demonstrated through in vitro and in vivo experiments, its sub-chronic toxicity in animal models remains understudied, raising concerns regarding its safety in clinical application. Therefore, this study assessed the sub-chronic toxicity of the P/FC/A scaffold over 12 week using a New Zealand White rabbit model. Our results indicate no significant adverse effects in the group exposed to the P/FC/A scaffold compared with the negative control group implanted with a high-density polyethylene scaffold. These findings underscore the non-toxicity and safety profile of the P/FC/A scaffold, further supporting its potential suitability for clinical use in bone regeneration.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Bongii Lee
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Rocha DN, López DGM, Ferreira JRM, Silva MHP, Filgueiras IAAAP, Alves BF, Almeida BM, Kotaka J, Buss LF, Magnabosco JL, Teixeira ML, Mariano ÉD, Cationi MH, Bosco I, Nascimento M, Canal R, Neves JG, Aloise AC, Martínez EF, Holliday LS, Pelegrine AA. Bone regeneration by a bone substitute biomaterial containing hydroxyapatite, chitosan, xanthan and graphene oxide supplemented with conditioned medium from mesenchymal stem cells. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2024; 37:151-161. [PMID: 39484748 PMCID: PMC11590008 DOI: 10.54589/aol.37/2/151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 11/03/2024]
Abstract
This study analyzed a recently developed bone substitute biomaterial made of chitosan-xanthanhydroxyapatite-graphene oxide (CXHAG). The CXHAG particles underwent in vitro structural and morphological characterization, and in vivo testing with or without osteogenic conditioned medium from mesenchymal stem cells. Aim: The aim of this study was to determine whether the CXHAG novel biomaterial, supplemented with conditioned medium from mesenchymal stem cells, could be useful for bone regeneration. Materials and Method: For the in vitro study, cells were incubated with 20mg of CXHAG granules for 24 hours and a MTT assay was performed to tests for cytotoxicity. For the in vivo study, critical size calvarial bone defects were created in twenty-five rats. One animal had the defect unfilled (Control Group-CG) and was euthanized after 42 days. Twelve rats received the CXHAG particles (Group 1-G1) and the other twelve received the CXHAG particles supplemented with the conditioned medium (Group 2-G2). All G1/G2 grafts were covered with a CXHAG membrane. G1/G2 animals were euthanized after 14 days (T1) or 42 days (T2). The specimens were processed and histologically evaluated. Results: SEM analysis of the CXHAG particles showed granules of 300-400μm, with a rough irregular surface. They were not cytotoxic to dental pulp stem cells in vitro. The CG specimen showed loose immature connective tissue and no bone formation at the center of the defect. G1 and G2 presented remnant biomaterial particles at both time points, but only G2 had bone formation at the enter of the defect. Conclusions: The conditioned medium had a positive effect on bone regeneration in rat calvarial critical size defects when associated with the novel bone substitute biomaterial.
Collapse
Affiliation(s)
- Daniel N Rocha
- Department of Bioengineering, R-Crio Criogenia S.A., Campiñas, BrazilCampiñasBrazil
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - David GM López
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - José RM Ferreira
- Department of Bioengineering, R-Crio Criogenia S.A., Campiñas, BrazilCampiñasBrazil
| | - Marcelo HP Silva
- Department of Materials Engineering-SE/8, Military Institute of Engineering, Rio de Janeiro, BrazilRio de JaneiroBrazil
| | - Isabela AAAP Filgueiras
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Bruno F Alves
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Bruno M Almeida
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Jatiana Kotaka
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Leonardo F Buss
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - José L Magnabosco
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Marcelo L Teixeira
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Éric D Mariano
- Department of Bioengineering, R-Crio Criogenia S.A., Campiñas, BrazilCampiñasBrazil
| | - Mariáh H Cationi
- Department of Bioengineering, R-Crio Criogenia S.A., Campiñas, BrazilCampiñasBrazil
| | - Isadora Bosco
- Department of Bioengineering, R-Crio Criogenia S.A., Campiñas, BrazilCampiñasBrazil
| | - Marvin Nascimento
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | | | - José G Neves
- Department of Restorative Dentistry, Dental Materials Area, State University of Campinas, Piracicaba, BrazilPiracicabaBrazil
| | - Antonio C Aloise
- Division of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Elizabeth F Martínez
- Division of Oral Pathology and Cell Biology, Faculdade Sao Leopoldo Mandic, Campinas, BrazilCampinasBrazil
| | - Lexie S Holliday
- Department of Orthodontics, University of Florida, Gainesville, USAGainesvilleUSA
| | - André A Pelegrine
- Department of Orthodontics, University of Florida, Gainesville, USAGainesvilleUSA
| |
Collapse
|
5
|
Attik N, Richert R, Garoushi S. Biomechanics, Bioactive and Biomimetic philosophy in restorative dentistry ̶ Quo vadis? J Dent 2024; 148:105036. [PMID: 38702037 DOI: 10.1016/j.jdent.2024.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION In recent years, restorative dentistry has embraced various techniques, including direct, semi-direct, and indirect restorations, to address the replacement of lost tooth tissue. The focus has been on integrating the principles of Biomechanics, Bioactivity, and Biomimicry (3-Bio) as key drivers behind these innovations. METHODS The aim of this article is to provide a concise overview of three important aspects of restorative dental materials: biomechanics, bioactivity and biomimetics. Further, the aim is to provide readers with relevant information on the 3-Bio concept, offering insights in to the innovative approaches shaping modern restorative dentistry. RESULTS Developing restorative materials with interactive properties aligned with the 3-Bio concept poses a significant challenge. Currently, dentistry lacks a comprehensive system in this regard. The development of dental materials based on the 3-Bio concept could potentially elicit positive mechanical and biological responses in targeted tooth tissues. CONCLUSION Assessing several parameters through a battery of in vitro and in silico assays could help in tailoring the different aspects of the 3-Bio concept, spanning from bioactivity to biomimetics via biomechanics. This approach could allow the prediction and translation of the clinical performance of the assessed restorative materials. CLINICAL SIGNIFICANCE The findings of this opinion article highlight that the development of restorative materials aligned with the 3-Bio concept could enhance the management of dental defects and extend the longevity of bonded restorations, thereby improving patient care through tissue preservation. More collective efforts between clinicians, researchers, and even industrial partners are required to fully understand the correlation between bioactive behavior, biomechanical limitations, and biomimetics to provide suitable restorative materials for specific clinical applications.
Collapse
Affiliation(s)
- Nina Attik
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France; Laboratoire des Multimatériaux et Interfaces, Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Villeurbanne F-69622, France.
| | - Raphael Richert
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France; Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621 Villeurbanne, France; Service d'Odontologie, Hospices Civils de Lyon, Lyon 69007, France
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Ardelean AI, Mârza SM, Marica R, Dragomir MF, Rusu-Moldovan AO, Moldovan M, Pașca PM, Oana L. Evaluation of Biocomposite Cements for Bone Defect Repair in Rat Models. Life (Basel) 2024; 14:1097. [PMID: 39337881 PMCID: PMC11432940 DOI: 10.3390/life14091097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Repairing or reconstructing significant bone defects is typically challenging. In the present study, two composite cements were used as scaffolds in a sub-critical femoral defect in rats. A control group and two experimental batches were used to compare the outcomes. This research aimed to investigate the osteogenic potential and toxicological tolerance of the bioproducts through histopathology and computed tomography imaging analysis at 14, 28, 56, and 90 days post-implantation. The biomaterials used in the investigation consisted of a 65% bioactive salinized inorganic filler and a 25% weight organic matrix. The organic part of the biomaterial was composed of Bis-GMA (bisphenol A-glycidyl methacrylate), UDMA (urethane dimethacrylate), HEMA (2-Hydroxyethyl methacrylate), and TEGDMA (triethylene glycol dimethacrylate), while the inorganic filler was composed of silica, barium glass, hydroxyapatite, and fluor aluminosilicate glass. The first findings of this research are encouraging, revealing that there is a slight difference between the groups treated with biomaterials, but it might be an effective approach for managing bone abnormalities. Material C1 exhibited a faster bone defect healing time compared to material C2, where bone fractures occurred in some individuals. It is unclear if the fractures were caused by the presence of the biomaterial C2 or whether additional variables were to blame. By the end of the research, the mice appeared to tolerate the biomaterials without exhibiting any inflammatory or rejection responses.
Collapse
Affiliation(s)
- Alina Ioana Ardelean
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Sorin Marian Mârza
- Department of Veterinary Imagistics, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Raluca Marica
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Mădălina Florina Dragomir
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Alina Oana Rusu-Moldovan
- Department of Surgery III, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Mărioara Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Paula Maria Pașca
- Clinics Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 700489 Iasi, Romania
| | - Liviu Oana
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Roma M, Hegde S. Implications of graphene-based materials in dentistry: present and future. Front Chem 2024; 11:1308948. [PMID: 38495056 PMCID: PMC10941955 DOI: 10.3389/fchem.2023.1308948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/26/2023] [Indexed: 03/19/2024] Open
Abstract
Since the advent of nanoscience, nanobiomaterials have been applied in the dental industry. Graphene and its derivatives have attracted the most interest of all of them due to their exceptional look, biocompatibility, multiplication differential, and antibacterial capabilities. We outlined the most recent developments about their applications to dentistry in our review. There is discussion of the synthesis processes, architectures, and characteristics of materials based on graphene. The implications of graphene and its counterparts are then meticulously gathered and described. Finally, in an effort to inspire more excellent research, this paper explores the obstacles and potential of graphene-based nanomaterials for dental aspects.
Collapse
Affiliation(s)
- M. Roma
- Manipal College of Dental Sciences, Mangalore, Mangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shreya Hegde
- Manipal College of Dental Sciences, Mangalore, Mangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Kim TH, Heo SY, Oh GW, Park WS, Jung WK. Biocompatibility and sub-chronic toxicity studies of phlorotannin/polycaprolactone coated trachea tube for advancing medical device applications. Sci Rep 2024; 14:3945. [PMID: 38365854 PMCID: PMC10873353 DOI: 10.1038/s41598-024-54684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
The phlorotannin-polycaprolactone-coated endotracheal tube (PP tube) has been developed with the aim of preventing tracheal stenosis that can result from endotracheal intubation, a factor that can lead to a serious airway obstruction. Its preventive efficacy has been assessed through both in vitro and in vivo investigations. However, there is a lack of studies concerning its biocompatibility and sub-chronic toxicity in animal models, a crucial factor to ensure the safety of its usage as a functional endotracheal tube. Thus, this study aimed to evaluate the biocompatibility and sub-chronic (13 weeks) toxicity of the PP tube through L929 cell line and diverse in vivo models. The cytotoxicity testing was performed using the extracts of PP tube on L929 cells for 72 h. Furthermore, other tests conducted on animal models, including ICR mice (acute systemic toxicity), New Zealand white rabbit (intradermal reactivity and pyrogen tests), guinea pig (maximization sensitization), and Sprague Dawley rats (sub-chronic toxicity). In both biocompatibility and sub-chronic toxicity analyses, no significant adverse effects are observed in the groups exposed to the PP tube, when compared to control group. Altogether, the findings suggested that the PP tube exhibits relative non-toxic and safety, supporting its suitability for clinical usage. However, extended periods of intubation may produce mild irritant responses, highlighting the clinical caution of limiting intubation duration to less than 13 weeks.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Mulla SA, Kondkari SA, Patil A, Jain A, Mali S, Jaiswal HC, Jakhar A, Ansari ZM, Agarwal S, Yadav P. A Look Into the Cytotoxicity of Composite Fillings: Friend or Foe? Cureus 2023; 15:e46327. [PMID: 37916229 PMCID: PMC10617805 DOI: 10.7759/cureus.46327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
Dental resin composites are widely used restorative materials in dentistry for the treatment of carious and non-carious lesions as well as pit and fissure sealants, cavity liners, and endodontic sealers. They consist of two parts: an organic resin matrix and an inorganic/organic filler. The organic resin matrix phase is made up of multifunctional monomers and light-sensitive initiators, while the inorganic/organic filler phase is made up of micro/nano-sized fillers that primarily serve as reinforcement. Despite being a very promising dental material, its monomeric component has some drawbacks. It is well known for leaching out during incomplete polymerization, which can result in cytotoxicity. Bis-GMA (bisphenol A-glycidyl methacrylate) is the most cytotoxic of all monomeric components that exhibit synthetic estrogenic effects. The purpose of this article is to assess the cytotoxic effects of dental composite, understand the possible mechanism behind them, and explore ways to screen for and reduce this harmful effect, as well as shed light on its future prospects.
Collapse
Affiliation(s)
- Sayem A Mulla
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Saba A Kondkari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Amit Patil
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Ashish Jain
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sheetal Mali
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Himmat C Jaiswal
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Ashima Jakhar
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Zoha M Ansari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sumeet Agarwal
- Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Pooja Yadav
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
10
|
Moldovan M, Dudea D, Cuc S, Sarosi C, Prodan D, Petean I, Furtos G, Ionescu A, Ilie N. Chemical and Structural Assessment of New Dental Composites with Graphene Exposed to Staining Agents. J Funct Biomater 2023; 14:jfb14030163. [PMID: 36976087 PMCID: PMC10058725 DOI: 10.3390/jfb14030163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli.
Collapse
Affiliation(s)
- Marioara Moldovan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Codruta Sarosi
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Street, 400084 Cluj-Napoca, Romania
| | - Gabriel Furtos
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Andrei Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
11
|
Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. Int J Biomater 2023; 2023:8803283. [PMID: 36819211 PMCID: PMC9929215 DOI: 10.1155/2023/8803283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Graphene-based materials have been shown to have advantageous properties in biomedical and dental applications due to their high mechanical, physiochemical, antibacterial, and stem cell differentiating properties. Although graphene-based materials have displayed appropriate biocompatible properties when used in implant materials for orthopedic applications, little research has been performed to specifically test the biocompatibility of graphene for dental applications. The oral environment, compared to the body, varies greatly and must be considered when evaluating biocompatibility requirements for dental applications. This review will discuss in vitro and in vivo studies that assess graphene's cytotoxicity, antibacterial properties, and cell differentiation ability to evaluate the overall biocompatibility of graphene-based materials for dental applications. Particle shape, size, and concentration were found to be major factors that affected overall biocompatibility of graphene.
Collapse
|
12
|
Louault K, Porras T, Lee MH, Muthugounder S, Kennedy RJ, Blavier L, Sarte E, Fernandez GE, Yang F, Pawel BR, Shimada H, Asgharzadeh S, DeClerck YA. Fibroblasts and macrophages cooperate to create a pro-tumorigenic and immune resistant environment via activation of TGF-β/IL-6 pathway in neuroblastoma. Oncoimmunology 2022; 11:2146860. [PMID: 36479153 PMCID: PMC9721439 DOI: 10.1080/2162402x.2022.2146860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF) and their precursor mesenchymal stromal cells (MSC) are often detected together in tumors, but how they cooperate is not well understood. Here, we show that TAM and CAF are the most abundant nonmalignant cells and are present together in untreated human neuroblastoma (NB) tumors that are also poorly infiltrated with T and natural killer (NK) cells. We then show that MSC and CAF-MSC harvested from NB tumors protected human monocytes (MN) from spontaneous apoptosis in an interleukin (IL)-6 dependent mechanism. The interactions of MN and MSC with NB cells resulted in a significant induction or increase in the expression of several pro-tumorigenic cytokines/chemokines (TGF-β1, MCP-1, IL-6, IL-8, and IL-4) but not of anti-tumorigenic cytokines (TNF-α, IL-12) by MN or MSC, while also inducing cytokine expression in quiescent NB cells. We then identified a TGF-β1/IL-6 pathway where TGF-β1 stimulated the expression of IL-6 in NB cells and MSC, promoting TAM survival. Evidence for the contribution of TAM and MSC to the activation of this pathway was then provided in xenotransplanted NB tumors and patients with primary tumors by demonstrating a direct correlation between the presence of CAF and p-SMAD2 and p-STAT3. The data highlight a new mechanism of interaction between TAM and CAF supporting their pro-tumorigenic function in cancer.
Collapse
Affiliation(s)
- Kevin Louault
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Tania Porras
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Meng-Hua Lee
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Sakunthala Muthugounder
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Rebekah J. Kennedy
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Laurence Blavier
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Emily Sarte
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - G. Esteban Fernandez
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Fusheng Yang
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Bruce R. Pawel
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, Stanford University, Stanford, CA, USA
| | - Shahab Asgharzadeh
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA,Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Yves A. DeClerck
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA,Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA,CONTACT Yves A. DeClerck ; Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA90027, USA
| |
Collapse
|
13
|
Velo MMDAC, Filho FGN, de Lima Nascimento TR, Obeid AT, Castellano LC, Costa RM, Brondino NCM, Fonseca MG, Silikas N, Mondelli RFL. Enhancing the mechanical properties and providing bioactive potential for graphene oxide/montmorillonite hybrid dental resin composites. Sci Rep 2022; 12:10259. [PMID: 35715426 PMCID: PMC9205868 DOI: 10.1038/s41598-022-13766-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
This in vitro study synthetized hybrid composite nanoparticles of graphene oxide (GO) and montmorillonite MMt (GO-MMt) by ultrasound treatments. Samples were characterized by X-ray diffraction, FT-Raman, FTIR, TEM and SEM. The effect of their incorporation (0.3% and 0.5%) on the mechanical properties in a resin-based composite (RBC) and their bioactivity potential were evaluated. The specimens were characterized by evaluating their 3-point flexural strength (n = 6), modulus of elasticity (n = 6), degree of conversion (n = 6), microhardness (n = 6), contact angle (n = 3) and SEM analysis (n = 3). In vitro test in SBF were conducted in the RBCs modified by the hybrid. Overall, the synthetized hybrid composite demonstrated that GO was intercalated with MMt, showing a more stable compound. ANOVA and Tukey test showed that RBC + 0.3% GO-MMt demonstrated superior values of flexural strength, followed by RBC + 0.5% GO-MMt (p < 0.05) and both materials showed higher values of microhardness. All groups presented a contact angle below 90°, characterizing hydrophilic materials. RBCs modified by the hybrid showed Ca and P deposition after 14 days in SBF. In conclusion, RBCs composed by the hybrid showed promising results in terms of mechanical properties and bioactive potential, extending the application of GO in dental materials.
Collapse
Affiliation(s)
- Marilia Mattar de Amôedo Campos Velo
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| | - Francisco Gilmário Nunes Filho
- Department of Chemistry, Research and Extension Center for Fuels and Materials Laboratory (NPELACOM), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Tatiana Rita de Lima Nascimento
- Department of Chemistry, Research and Extension Center for Fuels and Materials Laboratory (NPELACOM), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Alyssa Teixeira Obeid
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Lúcio Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), UFPB Technical School of Health, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Reginaldo Mendonça Costa
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | | | - Maria Gardennia Fonseca
- Department of Chemistry, Research and Extension Center for Fuels and Materials Laboratory (NPELACOM), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Nikolaos Silikas
- Dentistry, School of Medical Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Rafael Francisco Lia Mondelli
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| |
Collapse
|
14
|
Liu C, Tan D, Chen X, Liao J, Wu L. Research on Graphene and Its Derivatives in Oral Disease Treatment. Int J Mol Sci 2022; 23:ijms23094737. [PMID: 35563128 PMCID: PMC9104291 DOI: 10.3390/ijms23094737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Oral diseases present a global public health problem that imposes heavy financial burdens on individuals and health-care systems. Most oral health conditions can be treated in their early stage. Even if the early symptoms of oral diseases do not seem to cause significant discomfort, prompt treatment is essential for preventing their progression. Biomaterials with superior properties enable dental therapies with applications in restoration, therapeutic drug/protein delivery, and tissue regeneration. Graphene nanomaterials have many unique mechanical and physiochemical properties and can respond to the complex oral microenvironment, which includes oral microbiota colonization and high masticatory force. Research on graphene nanomaterials in dentistry, especially in caries, periodontitis therapy, and implant coatings, is progressing rapidly. Here, we review the development of graphene and its derivatives for dental disease therapy.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Dan Tan
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Xiaoli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (L.W.)
| | - Leng Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
- Correspondence: (J.L.); (L.W.)
| |
Collapse
|
15
|
Pan X, Cheng D, Ruan C, Hong Y, Lin C. Development of Graphene-Based Materials in Bone Tissue Engineaering. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100107. [PMID: 35140982 PMCID: PMC8812920 DOI: 10.1002/gch2.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Bone regeneration-related graphene-based materials (bGBMs) are increasingly attracting attention in tissue engineering due to their special physical and chemical properties. The purpose of this review is to quantitatively analyze mass academic literature in the field of bGBMs through scientometrics software CiteSpace, to demonstrate the rules and trends of bGBMs, thus to analyze and summarize the mechanisms behind the rules, and to provide clues for future research. First, the research status, hotspots, and frontiers of bGBMs are analyzed in an intuitively and vividly visualized way. Next, the extracted important subjects such as fabrication techniques, cytotoxicity, biodegradability, and osteoinductivity of bGBMs are presented, and the different mechanisms, in turn, are also discussed. Finally, photothermal therapy, which is considered an emerging area of application of bGBMs, is also presented. Based on this approach, this work finds that different studies report differing opinions on the biological properties of bGBMS due to the lack of consistency of GBMs preparation. Therefore, it is necessary to establish more standards in fabrication, characterization, and testing for bGBMs to further promote scientific progress and clinical translation.
Collapse
Affiliation(s)
- Xiaoling Pan
- College of StomatologyXinjiang Medical UniversityUrumqiXinjiang830011P. R. China
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Delin Cheng
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yonglong Hong
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Cheng Lin
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| |
Collapse
|
16
|
Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M, Ghanavati S, Ahmad A, De Stephanis AA, Taghavinezhaddilami F, Leonova A, Mohammadinejad R, Shabani M, Mazzolai B, Mattoli V, Tay FR, Makvandi P. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater 2021; 122:26-49. [PMID: 33359299 DOI: 10.1016/j.actbio.2020.12.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
3D and 4D printing are cutting-edge technologies for precise and expedited manufacturing of objects ranging from plastic to metal. Recent advances in 3D and 4D printing technologies in dentistry and maxillofacial surgery enable dentists to custom design and print surgical drill guides, temporary and permanent crowns and bridges, orthodontic appliances and orthotics, implants, mouthguards for drug delivery. In the present review, different 3D printing technologies available for use in dentistry are highlighted together with a critique on the materials available for printing. Recent reports of the application of these printed platformed are highlighted to enable readers appreciate the progress in 3D/4D printing in dentistry.
Collapse
|
17
|
Ilie N, Sarosi C, Rosu MC, Moldovan M. Synthesis and characterization of graphene oxide-zirconia (GO-ZrO 2) and hydroxyapatite-zirconia (HA-ZrO 2) nano-fillers for resin-based composites for load-bearing applications. J Dent 2020; 105:103557. [PMID: 33309805 DOI: 10.1016/j.jdent.2020.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES The study aims to synthesize two different types of nano-fillers based on zirconia (ZrO2), which was functionalized with graphene oxide (GO-ZrO2), and hydroxyapatite (HA-ZrO2), and to implement them in an experimental methacrylate matrix containing new dimethacrylic oligomers. METHODS Nano-particles were synthesized via a modified Hummer's method and a sol-gel route. Bisphenol A-glycidyl methacrylate oligomers (Bis-GMA336[0-1]) were synthesized from an epoxy resin that reacted with methacrylic acid in the presence of a basic catalyst. Traditional dental glass-fillers (Barium oxide/BaO and Barium fluoride/BaF2) were synthesized to create an experimental resin-based composite (RBC) used as reference. Filler morphology was evaluated via Transmission Electron Microscopy. RBCs were characterised by real-time Fourier transform infrared spectroscopy (degree of cure/DC, polymerisation kinetics), real-time spectrometry (light transmittance), 3-point bending test (flexural strength and modulus, Weibull parameters), and depth-sensing indentation test (plastic and elastic deformation parameters). RESULTS The synthesized nanohybrid fillers proved good dispersing performance. Mechanical properties and materials' reliability are within or above the mean values reported in the literature for RBCs. Addition of HA-ZrO2-fillers resulted in a decrease light transmission, DC and mechanical properties. Except for the HA-ZrO2 RBC, materials showed a high resistance to softening in solvent. CONCLUSIONS The synthesis of GO-ZrO2 and HA-ZrO2 nanohybrid particles and their implementation in experimental RBCs has proven successful. Adjustments of the light transmission through suitable co-fillers in addition to GO-ZrO2 as well as adjustments of the amount of HA-ZrO2 are necessary to enable reduced curing time (<20 s). CLINICAL SIGNIFICANCE The addition of nanofillers with tailor-made properties can help improving the performance of modern restoratives.
Collapse
Affiliation(s)
- Nicoleta Ilie
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University Munichen, Goethestr. 70, D-80336, Munich, Germany.
| | - Codruta Sarosi
- Babes-Bolyai University, Institute of Chemistry Raluca Ripan, 30 Fantanele St., RO-400294, Cluj-Napoca, Romania
| | - Marcela-Corina Rosu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj-Napoca, Romania
| | - Marioara Moldovan
- Babes-Bolyai University, Institute of Chemistry Raluca Ripan, 30 Fantanele St., RO-400294, Cluj-Napoca, Romania
| |
Collapse
|