1
|
Wang D, Yan Z, Ren L, Jiang Y, Zhou K, Li X, Cui F, Li T, Li J. Carbon dots as new antioxidants: Synthesis, activity, mechanism and application in the food industry. Food Chem 2025; 475:143377. [PMID: 39956072 DOI: 10.1016/j.foodchem.2025.143377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Antioxidants not only prevent food spoilage, but also maintain the nutritional value of food, thereby exerting a crucial protective effect on food industry. Nanomaterials have recently been used as antioxidants because of their remarkable potential to scavenge free radicals. Of them, owing to their relatively high biocompatibility and unique physicochemical properties, carbon dots (CDs) have garnered considerable attention. This paper reviews research progress on CDs as new antioxidants. We here first discuss the methods for synthesizing various antioxidant CDs, followed by the antioxidant activities of different CDs and factors influencing these activities. Then, the possible action mechanisms of antioxidant CDs are discussed. The review particularly focuses on the application of antioxidant CDs, especially in the food industry, including antioxidant coatings, antioxidant packaging materials, and nano-level food additives. Finally, the challenges and prospects for CDs as new antioxidant are described.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Zihao Yan
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Yang Jiang
- School of Public Health, Dali University, Dali, Yunnan 671000, China
| | - Kai Zhou
- School of Pharmacy and Life Science, Jiujiang Key Laboratory of Conservation and Development of Major Cyprinidae Fish, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| |
Collapse
|
2
|
Priyadarshi R, Riahi Z, Khan A, Rhim JW. The Use of Carbon Dots for Food Packaging and Preservation: Toxic or Beneficial? Compr Rev Food Sci Food Saf 2025; 24:e70180. [PMID: 40271816 DOI: 10.1111/1541-4337.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/06/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Carbon dots (CDs), which are emerging as versatile nanomaterials, have gained interest in food packaging and preservation due to their sustainable origin and multifunctional characteristics, such as antimicrobial, antioxidant, and UV-protective properties. CDs can be synthesized from biomass and have been proposed as functional additives to packaging material to improve the safety and shelf life of the packaged food. Despite these benefits, concerns are raised about their potential toxicity when leached into foods, especially since they belong to the nanomaterial category. Interestingly, foodborne CDs, which are naturally formed in heat-processed foods and have been consumed by humans for centuries, add a new complexity to the debate. Although there is no definitive evidence linking these endogenous CDs to adverse health effects, some studies suggest their potential to interfere with metabolism in animal models. In addition, the presence of hazardous substances in thermally processed foods, such as polycyclic aromatic hydrocarbons (PAHs), may further complicate safety assessment. This review addresses the paradox of CD from food and packaging sources, highlighting its dual role as both a potentially toxic agent and a beneficial functional material. More extensive research is essential to fully understand the long-term effects of CD on human health and to determine whether its use in food packaging is truly safe or beneficial.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- Humanities Convergence Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Zohreh Riahi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Ajahar Khan
- Humanities Convergence Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
3
|
Deng WW, Zang CR, Li QC, Sun B, Mei XP, Bai L, Shang XM, Deng Y, Xiao YQ, Ghiladi RA, Lorimer GH, Zhang XJ, Wang J. Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance. ACS Biomater Sci Eng 2023; 9:1307-1319. [PMID: 36744996 DOI: 10.1021/acsbiomaterials.2c01537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomass carbon dots (CDs) derived from natural plants possess the advantages of low cost, photostability, and excellent biocompatibility, with potential applications in chemical sensing, bioimaging, and nanomedicine. However, the development of biomass CDs with excellent antioxidant activity and good biocompatibility is still a challenge. Herein, we propose a hypothesis for enhancing the antioxidant capacity of biomass CDs based on precursor optimization, extraction solvent, and other conditions with broccoli as the biomass. Compared to broccoli water extracts, broccoli powders, and broccoli organic solvent extracts, CDs derived from broccoli water extracts (BWE-CDs) have outstanding antioxidant properties due to the abundant C═C, carbonyl, and amino groups on their surface. After optimization of the preparation condition, the obtained BWE-CDs exhibit excellent free-radical scavenging activity with an EC50 of 68.2 μg/mL for DPPH• and 22.4 μg/mL for ABTS•+. Cytotoxicity and zebrafish embryotoxicity results indicated that BWE-CDs have lower cytotoxicity and better biocompatibility than that of CDs derived from organic solvents. In addition, BWE-CDs effectively scavenged reactive oxygen species (ROS) in A549 cells, 293T cells, and zebrafish, as well as eliminating inflammation in LPS-stimulated zebrafish. Mechanistic studies showed that the anti-inflammatory effect of BWE-CDs was dependent on the direct reaction of CDs with free radicals, the regulation of NO levels, and the upregulation of the expression of SOD and GPX-4. This work indicates that the antioxidant activity of CDs could be enhanced by using solvent extracts of biomass as precursors, and the obtained BWE-CDs exhibit characteristics of greenness, low toxicity, and excellent antioxidant and anti-inflammatory activities, which suggests the potential promising application of BWE-CDs as an antioxidant nanomedicine for inflammatory therapy.
Collapse
Affiliation(s)
- Wen-Wen Deng
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Chuan-Ru Zang
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Qiu-Chen Li
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Bo Sun
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Xue-Ping Mei
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Lu Bai
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Xin-Miao Shang
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Ying Deng
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Ya-Qian Xiao
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangzhou, China
| | - Jun Wang
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| |
Collapse
|
4
|
Yu L, Li X, He M, Wang Q, Chen C, Li F, Li B, Li L. Antioxidant Carboxymethyl Chitosan Carbon Dots with Calcium Doping Achieve Ultra-Low Calcium Concentration for Iron-Induced Osteoporosis Treatment by Effectively Enhancing Calcium Bioavailability in Zebrafish. Antioxidants (Basel) 2023; 12:antiox12030583. [PMID: 36978831 PMCID: PMC10045075 DOI: 10.3390/antiox12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Iron overloads osteoporosis mainly occurs to postmenopausal women and people requiring repeated blood transfusions. Iron overload increases the activity of osteoclasts and decreases the activity of osteoblasts, leading to the occurrence of osteoporosis. Conventional treatment options include calcium supplements and iron chelators. However, simple calcium supplementation is not effective, and it does not have a good therapeutic effect. Oxidative stress is one of the triggers for osteoporosis. Therefore, the study focuses on the antioxidant aspect of osteoporosis treatment. The present work revealed that antioxidant carboxymethyl chitosan-based carbon dots (AOCDs) can effectively treat iron overload osteoporosis. More interestingly, the functional modification of AOCDs by doping calcium gluconate (AOCDs:Ca) is superior to the use of any single component. AOCDs:Ca have the dual function of antioxidant and calcium supplement. AOCDs:Ca effectively improve the bioavailability of calcium and achieve ultra-low concentration calcium supplement for the treatment of iron-induced osteoporosis in zebrafish.
Collapse
Affiliation(s)
- Lidong Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
- School of Physics, Harbin Institute of Technology, Harbin 150080, China
| | - Xueting Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mingyue He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Qingchen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ce Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fangshun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Li Li
- School of Physics, Harbin Institute of Technology, Harbin 150080, China
- Correspondence:
| |
Collapse
|
5
|
Wang P, Wang GY, Ji SZ, Ma JM, Tang T. [Research advances on the application of carbon dots in wound treatment]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:697-700. [PMID: 35899338 DOI: 10.3760/cma.j.cn501120-20210709-00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic and infectious wound healing has always been an issue of concern in clinical and scientific research, in which bacterial infection and oxidative damage are the key factors hindering wound healing. Carbon dots, as a new material, has attracted much attention because of its unique physical and chemical properties and good biological safety. In recent years, the researches on the antibacterial property, antioxidant, and photoluminescence properties of carbon dots are more and more extensive and carbon dots have great potential in the treatment of chronic and infectious wounds. This paper reviews the research progress of carbon dots in three aspects: antibacterial, anti-oxidation and monitoring of wound infection are reviewed, and further discusses its specific mechanism, potential research direction, and application prospect.
Collapse
Affiliation(s)
- P Wang
- Department of Burns and Plastic Surgery, Linfen Central Hospital, Linfen 041000, China
| | - G Y Wang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai 200433, China
| | - S Z Ji
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai 200433, China
| | - J M Ma
- Department of Burns and Plastic Surgery, Linfen Central Hospital, Linfen 041000, China
| | - T Tang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai 200433, China
| |
Collapse
|
6
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
7
|
Zhao L, Zhang M, Mujumdar AS, Wang H. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Crit Rev Food Sci Nutr 2022; 63:6738-6756. [PMID: 35174744 DOI: 10.1080/10408398.2022.2039896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have two unique advantages: one is ease of synthesis at low price, the other is desirable physical and chemical properties, such as ultra-small size, abundant surface functional groups, nontoxic/low-toxicity, good biocompatibility, excellent antibacterial and antioxidant activities etc. These advantages provide opportunities for the development of new food packaging enhancers and food preservatives. This paper systematically reviews the studies of CDs used to strengthen the physical properties of food packaging, including strengthen mechanical strength, ultraviolet (UV) barrier properties and water barrier properties. It also reviews the researches of CDs used to fabricate active packaging with antioxidant and/or antibacterial properties and intelligent packaging with the capacity of sensing the freshness of food. In addition, it analyzes the antioxidant and antibacterial properties of CDs as preservatives, and discusses the effect of CDs applied as coating agents and nano-level food additives for extension the shelf life of food samples. It also provides a brief review on the security and the release behavior of CDs.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
An Y, Lin X, Guo Z, Yin Q, Li Y, Zheng Y, Shi Z, Zhang W, Liu C. Red Emission Carbon Dots Prepared by 1,4-Diaminonaphthalene for Light-Emitting Diode Application and Metal Ion Detection. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4716. [PMID: 34443238 PMCID: PMC8398855 DOI: 10.3390/ma14164716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Carbon dots (CDs), as the most important type of carbon materials, have been widely used in many fields because of their unique fluorescence characteristics and excellent properties of biocompatibility. In previous studies, the fluorescence of CDs was mainly concentrated in the blue and green, whereas the red fluorescence was relatively less. Herein, we prepared efficient red-emitting CDs from 1,4-diaminonaphthalene using solvothermal methods. We discussed the effects of different solvothermal solvents on CDs. The results show that CDs prepared with octane and acetone as reaction media have the best fluorescence properties. The CDs dispersed in different organic solvents exhibited tunable emission across a wide spectrum from 427 nm to 679 nm. We further demonstrated the application of red light-emitting diode (LED) optoelectronics and fluorescence detection of Fe3+ in aqueous solution.
Collapse
Affiliation(s)
- Yulong An
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Xu Lin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Zewen Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Qitao Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Yan Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Yunwu Zheng
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| | - Zhengjun Shi
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| | - Wuxian Zhang
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| |
Collapse
|
9
|
Khan S, Dunphy A, Anike MS, Belperain S, Patel K, Chiu NHL, Jia Z. Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications. Int J Mol Sci 2021; 22:6786. [PMID: 34202631 PMCID: PMC8269108 DOI: 10.3390/ijms22136786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon nanodots (CNDs) are an emerging class of nanomaterials and have generated much interest in the field of biomedicine by way of unique properties, such as superior biocompatibility, stability, excellent photoluminescence, simple green synthesis, and easy surface modification. CNDs have been featured in a host of applications, including bioimaging, biosensing, and therapy. In this review, we summarize the latest research progress of CNDs and discuss key advances in our comprehension of CNDs and their potential as biomedical tools. We highlighted the recent developments in the understanding of the functional tailoring of CNDs by modifying dopants and surface molecules, which have yielded a deeper understanding of their antioxidant behavior and mechanisms of action. The increasing amount of in vitro research regarding CNDs has also spawned interest in in vivo practices. Chief among them, we discuss the emergence of research analyzing CNDs as useful therapeutic agents in various disease states. Each subject is debated with reflection on future studies that may further our grasp of CNDs.
Collapse
Affiliation(s)
- Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Andrew Dunphy
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Mmesoma S. Anike
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Sarah Belperain
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Kamal Patel
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Norman H. L. Chiu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| |
Collapse
|
10
|
Murru C, Badía-Laíño R, Díaz-García ME. Synthesis and Characterization of Green Carbon Dots for Scavenging Radical Oxygen Species in Aqueous and Oil Samples. Antioxidants (Basel) 2020; 9:antiox9111147. [PMID: 33228081 PMCID: PMC7699408 DOI: 10.3390/antiox9111147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Carbon dots (CDs) due to their unique optical features, chemical stability and low environmental hazard are applied in different fields such as metal ion sensing, photo-catalysis, bio-imaging and tribology, among others. The aims of the present research were to obtain CDs from vegetable wastes (tea and grapes) as carbon sources and to explore their potential properties as radical scavengers. CDs from glutathione/citric acid (GCDs) were synthetized for comparison purposes. The CDs were investigated for their chemical structure, morphology, optical and electronical properties. The antioxidant activity has been explored by DPPH and Folin-Ciocelteau assays in aqueous media. Due to their solubility in oil, the CDs prepared from tea wastes and GCDs were assayed as antioxidants in a mineral oil lubricant by potentiometric determination of the peroxide value. CDs from tea wastes and GCDs exhibited good antioxidant properties both in aqueous and oil media. Possible mechanisms, such as C-addition to double bonds, H-abstraction and SOMO-CDs conduction band interaction, were proposed for the CDs radical scavenging activity. CDs from natural sources open new application pathways as antioxidant green additives.
Collapse
|