1
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ma T, Peng L, Ran Q, Zeng Y, Liang F. Toward the Development of Simplified Lateral Flow Assays Using Hydrogels as the Universal Control Line. ACS APPLIED BIO MATERIALS 2023; 6:5685-5694. [PMID: 38035477 DOI: 10.1021/acsabm.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Lateral flow assays (LFA) have been widely utilized as point-of-care testing devices in diverse fields. However, it is imperative to preprint costly bioreceptors onto the lateral flow nitrocellulose membrane at the control line. The complex manufacturing process and relatively limited detection capabilities of LFA have impeded their utilization in more challenging fields. Here, we propose a novel and simple strategy to simplify the manufacture of LFA while simultaneously improving the sensitivity by modifying the hydrogel line (HL). In our study, it was observed that the sensitivity of commercial LFA strips could be enhanced by 2-5-fold by incorporating an extra HL. Particularly, a universal control line was developed to accommodate multiple LFA detection modes by substituting the conventional antibody control line with a hydrogel control line (HCL). As a proof of concept, the HCL performance could be associated with the slowdown and interception effect toward fluid, which are dependent on the permeation and hydrophilicity of the hydrogel with varying concentrations in the nitrocellulose membrane. This new design builds the foundation to enhance the sensitivity and develop the simplified LFA sensing platform without additional complicated processes.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Linlin Peng
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qinying Ran
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yan Zeng
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
3
|
Zhao E, Liu H, Jia Y, Xiao T, Li J, Zhou G, Wang J, Zhou X, Liang XJ, Zhang J, Li Z. Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomater 2022; 140:302-313. [PMID: 34954107 DOI: 10.1016/j.actbio.2021.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Treating wounds with multidrug-resistant bacterial infections remains a huge and arduous challenge. In this work, we prepared a "live-drug"-encapsulated hydrogel dressing for the treatment of multidrug-resistant bacterial infections and full-thickness skin incision repair. Our live dressing was comprised of photosynthetic bacteria (PSB) and extracellular matrix (ECM) gel with photothermal, antibacterial and antioxidant properties, as well as good cytocompatibility and blood compatibility. More interestingly, live PSB could be regarded as not only photothermal agents but also as anti-inflammatory agents to promote wound healing owing to their antioxidant metabolites. In vitro and in vivo studies showed that the PSB hydrogel not only had a high killing rate against methicillin-resistant Staphylococcus aureus (MRSA) but it also accelerated collagen deposition and granulation tissue formation by promoting cell proliferation and migration, which significantly promoted skin tissue regeneration and wound healing. We believe that the large-scale production of PSB Gel-based therapeutic dressings has the advantages of easy use and promising clinical applications. STATEMENT OF SIGNIFICANCE: Rapid wound healing and the treatment of bacterial infections have always been the two biggest challenges in the field of wound care. We prepared a "live drug" dressing by encapsulating photosynthetic bacteria into an extracellular matrix hydrogel to sterilize the wound and promote wound healing. First, photosynthetic bacteria are not only a photothermal agent for photothermal wound sterilization, but also possess the anti-inflammatory capacity to enhance wound healing due to their antioxidant metabolites. Second, the extracellular matrix hydrogel is rich in a variety of growth factors and nutrients to promote cell migration and accelerate wound healing. Third, photosynthetic bacteria are not only green and non-toxic, but also can be obtained on a large scale, which facilitates manufacturing and clinical transformation.
Collapse
Affiliation(s)
- Erman Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| | - Yaru Jia
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - June Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xiaohan Zhou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China.
| |
Collapse
|
4
|
Xu J, Zhang C, Cheng C, Yang J, Li C, Liu X, Sang Y. A Tasquinomod-loaded dopamine-modified pH sensitive hydrogel is effective at inhibiting the proliferation of KRAS mutant lung cancer cells. J Appl Biomater Funct Mater 2022; 20:22808000211073729. [PMID: 35088614 DOI: 10.1177/22808000211073729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogels can maintain a high local drug concentration during treatments and may be useful to local targeting diseased areas. We propose a pH sensitive hydrogel consisting of poly-vinylpyrrolidone (PVP) and chitosan as a new treatment method for KRAS mutant lung cancer. Addition of dopamine improved the drug loading and release effects of this hydrogel. We demonstrate that Tasquinimod-loading of this dopamine-modified pH sensitive hydrogel is more effective than Tasquinimod alone for inhibiting the proliferation of KRAS mutant lung cancer cells. Combination of conventional drugs with hydrogels may thus provide a new treatment modality for lung cancer.
Collapse
Affiliation(s)
- Jun Xu
- The First Hospital of Nanchang, Nanchang, Jiangxi, P.R. China
| | - Chuxi Zhang
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chun Cheng
- The First Hospital of Nanchang, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, Nanchang, Jiangxi, P.R. China
| | - Jun Yang
- The First Hospital of Nanchang, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, Nanchang, Jiangxi, P.R. China
| | - Chenxi Li
- The First Hospital of Nanchang, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, Nanchang, Jiangxi, P.R. China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi Sang
- The First Hospital of Nanchang, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
5
|
A γ-PGA/KGM-based injectable hydrogel as immunoactive and antibacterial wound dressing for skin wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112374. [PMID: 34579893 DOI: 10.1016/j.msec.2021.112374] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Injectable hydrogels, of which the cover area and volume can be flexibly adjusted according to the shape and depth of the wound, are considered to be an ideal material for wound dressing. Konjac glucomannan (KGM) is a natural polysaccharide with immunomodulatory capability, while γ-polyglutamic acid (γ-PGA) is a single chain polyamino acid with moisturizing, water-retention and antibacterial properties. This work intended to combine the advantages of the two materials to prepare an injectable hydrogel (P-OK) by mixing the adipic acid dihydrazide (ADH) modified γ-PGA with oxidized KGM. The chemical structures, the physical and chemical properties, and the biological properties of the P-OK hydrogel were evaluated. The optimal conditions to form the P-OK hydrogel were fixed, and the cytotoxicity, qPCR, antibacterial and animal experiments were performed. Results showed that the P-OK hydrogel had a fast gelation time, good water-retention rate, little cytotoxicity, good immunomodulating and antibacterial capabilities, and could shorten the healing period in the rat full-thickness defect model, which makes it a potential candidate for wound repair dressing.
Collapse
|
6
|
Ultrashort Peptide Hydrogels Display Antimicrobial Activity and Enhance Angiogenic Growth Factor Release by Dental Pulp Stem/Stromal Cells. MATERIALS 2021; 14:ma14092237. [PMID: 33925337 PMCID: PMC8123614 DOI: 10.3390/ma14092237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Recent studies on peptide hydrogels have shown that ultrashort peptides (<8 amino acids) can self-assemble into hydrogels. Ultrashort peptides can be designed to incorporate antimicrobial motifs, such as positively charged lysine residues, so that the peptides have inherent antimicrobial characteristics. Antimicrobial hydrogels represent a step change in tissue engineering and merit further investigation, particularly in applications where microbial infection could compromise healing. Herein, we studied the biocompatibility of dental pulp stem/stromal cells (DPSCs) with an ultrashort peptide hydrogel, (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFεKεK-OH), where the epsilon (ε) amino group forms part of the peptide bond rather than the standard amino grouping. We tested the antimicrobial properties of NapFFεKεK-OH in both solution and hydrogel form against Staphylococcus aureus, Enterococcus faecalis and Fusobacterium nucleatum and investigated the DPSC secretome in hydrogel culture. Our results showed NapFFεKεK-OH hydrogels were biocompatible with DPSCs. Peptides in solution form were efficacious against biofilms of S. aureus and E. faecalis, whereas hydrogels demonstrated antimicrobial activity against E. faecalis and F. nucleatum. Using an angiogenic array we showed that DPSCs encapsulated within NapFFεKεK-OH hydrogels produced an angiogenic secretome. These results suggest that NapFFεKεK-OH hydrogels have potential to serve as novel hydrogels in tissue engineering for cell-based pulp regeneration.
Collapse
|