1
|
Del Rey YC, Parize H, Assar S, Göstemeyer G, Schlafer S. Effect of mutanase and dextranase on biofilms of cariogenic bacteria: A systematic review of in vitro studies. Biofilm 2024; 7:100202. [PMID: 38846328 PMCID: PMC11154121 DOI: 10.1016/j.bioflm.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Matrix-degrading enzymes are promising non-biocidal adjuncts to dental biofilm control and caries prevention. By disrupting the biofilm matrix structure, enzymes may prevent biofilm formation or disperse established biofilms without compromising the microbial homeostasis in the mouth. This study reviewed whether treatment with mutanase and/or dextranase inhibits cariogenic biofilm growth and/or removes cariogenic biofilms in vitro. An electronic search was conducted in PubMed, EMBASE, Scopus, Web of Science, Cochrane, and LIVIVO databases. Manual searches were performed to identify additional records. Studies that quantitatively measured the effect of mutanase and/or dextranase on the inhibition/removal of in vitro cariogenic biofilms were considered eligible for inclusion. Out of 809 screened records, 34 articles investigating the effect of dextranase (n = 23), mutanase (n = 10), and/or combined enzyme treatment (n = 7) were included in the review. The overall risk of bias of the included studies was moderate. Most investigations used simple biofilm models based on one or few bacterial species and employed treatment times ≥30 min. The current evidence suggests that mutanase and dextranase, applied as single or combined treatment, are able to both inhibit and remove in vitro cariogenic biofilms. The pooled data indicate that enzymes are more effective for biofilm inhibition than removal, and an overall higher effect of mutanase compared to dextranase was observed.
Collapse
Affiliation(s)
- Yumi C. Del Rey
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Hian Parize
- Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sahar Assar
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Gerd Göstemeyer
- Department of Operative, Preventive and Pediatric Dentistry, Charité – Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197, Berlin, Germany
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| |
Collapse
|
2
|
Chen Z, Chen J, Ni D, Xu W, Zhang W, Mu W. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications. Food Chem 2024; 437:137951. [PMID: 37951078 DOI: 10.1016/j.foodchem.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Dextran, an α-glucan mainly composed of (α1 → 6) linkages, has been widely applied in the food, cosmetic, and medicine industries. Dextranase can hydrolyze dextran to synthesize oligodextrans, which show prominent properties and promising applications in the food industry. Dextranases are widely distributed in bacteria, yeasts, and fungus, and classified into glycoside hydrolase (GH) 13, 15, 31, 49, and 66 families according to their sequence similarity, structural features, and reaction types. Dextranase, as a dextran-hydrolyzing enzyme, displays great application potential in the sugar-making, oral health care, medicine, and biotechnology industries. Here we mainly focused on presenting the enzymatic properties, structural features, and versatile (potential) applications of dextranase. To date, seven crystal structures of dextranases from GH 13, 15, 31, 49, and 66 families have been successfully solved. However, their molecular mechanisms for hydrolyzing dextran, especially on the size determinants of the hydrolysates, remain largely unknown. Additionally, the classification, microbial distribution, and immobilization technology of dextranase were also discussed in detail. This review discussed dextranase from different aspects with the ambition to present how they constitute the groundwork for promising future developments.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Afraei F, Daneshjou S, Dabirmanesh B. Synthesis and evaluation of nanosystem containing chondroitinase ABCI based on hydroxyapatite. AMB Express 2024; 14:23. [PMID: 38353777 PMCID: PMC10866842 DOI: 10.1186/s13568-024-01677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The bacterial enzyme chondroitinase ABCI (chABCI), which has been isolated from Proteus Vulgaris, is crucial in the treatment of spinal cord injuries. However, due to its short lifespan, the maintenance and clinical application of this enzyme are very constrained. In this study, the immobilization of this enzyme on hydroxyapatite has been carried out and assessed with the aim of enhancing the characteristics and efficiency of chABCI. Hydroxyapatite particles (HAPs) are a potential candidate for drug-delivery carriers because of their excellent biocompatibility, shape controllability, and high adsorption. The use of the nanometer scale allows efficient access to the enzyme's substrate. It demonstrates important biological application capabilities in this way. Field emission gun-scanning electron microscopy (FEG-SEM), X-ray diffraction (XRD), infrared spectroscopy (FT-IR), in vitro release study, and cytotoxicity test were used to characterize the drug nanosystem's properties. According to the findings, electrostatic bindings was formed between charged groups of the enzyme and hydroxyapatite nanoparticles. The results also demonstrated that immobilized chABCI on hydroxyapatite has beneficial properties, such as more manageable drug release, minimal toxicity and side effects, and a high potential to enhance the efficacy of drug delivery and decrease the need for repeated injections.
Collapse
Affiliation(s)
- Fatemeh Afraei
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sara Daneshjou
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Zhang Y, Zhang D, Li M, Qin Q, Jin Y, Fang Y, Sun G. Molecular docking and dynamics of a dextranase derived from Penicillium cyclopium CICC-4022. Int J Biol Macromol 2023; 253:126493. [PMID: 37648125 DOI: 10.1016/j.ijbiomac.2023.126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
This study aimed to investigate the recognition mechanism of dextranase (PC-Edex) produced by Penicillium cyclopium CICC-4022 on dextran. Whole genome information of P. cyclopium CICC-4022 was obtained through genome sequencing technology. The coding information of PC-Edex was determined based on the annotation of the protein-coding genes using protein databases. The three-dimensional structure of PC-Edex was obtained via homology modelling. The active site and binding free energy between PC-Edex and dextran were calculated by molecular docking and molecular dynamics techniques. The results showed that the total sequence length and GC content of P. cyclopium CICC-4022 were 29,710,801 bp and 47.02 %, respectively. The annotation of protein-encoding genes showed that P. cyclopium CICC-4022 is highly active and has many carbohydrate transport and metabolic functions, and most of its proteases are glycolytic anhydrases. Furthermore, the gene encoding PC-Edex was successfully annotated. Molecular dynamics simulations indicated that van der Waals interaction was the main driving force of interaction. Residues Ile114, Asp115, Tyr332, Lys344, and Gln403 significantly promoted the binding between dextran and PC-Edex. In summary, this study explored the active site catalyzed by PC-Edex based on the binding pattern of PC-Edex and dextran. Therefore, this study provides genomic information on dextranase and data supporting the rational modification and enhancement of PC-Edex.
Collapse
Affiliation(s)
- Yirui Zhang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China
| | - Donghui Zhang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China
| | - Mei Li
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China; Key Laboratory of Chemical and Biological Transforming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China.
| | - Qin Qin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China; Key Laboratory of Chemical and Biological Transforming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China
| | - Yuhui Jin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China
| | - Yan Fang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China
| | - Guoliang Sun
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, PR China
| |
Collapse
|
5
|
Xu Y, Wang H, Lin Q, Miao Q, Liu M, Ni H, Zhang L, Lyu M, Wang S. Immobilization of Dextranase Obtained from the Marine Cellulosimicrobium sp. Y1 on Nanoparticles: Nano-TiO 2 Improving Hydrolysate Properties and Enhancing Reuse. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1065. [PMID: 36985959 PMCID: PMC10056431 DOI: 10.3390/nano13061065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Dextranase is widely used in sugar production, drug synthesis, material preparation, and biotechnology, among other fields. The immobilization of dextranase using nanomaterials in order to make it reusable, is a hot research topic. In this study, the immobilization of purified dextranase was performed using different nanomaterials. The best results were obtained when dextranase was immobilized on titanium dioxide (TiO2), and a particle size of 30 nm was achieved. The optimum immobilization conditions were pH 7.0, temperature 25 °C, time 1 h, and immobilization agent TiO2. The immobilized materials were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, and field emission gun scanning electron microscopy. The optimum temperature and pH of the immobilized dextranase were 30 °C and 7.5, respectively. The activity of the immobilized dextranase was >50% even after 7 times of reuse, and 58% of the enzyme was active even after 7 days of storage at 25 °C, indicating the reproducibility of the immobilized enzyme. The adsorption of dextranase by TiO2 nanoparticles exhibited secondary reaction kinetics. Compared with free dextranase, the hydrolysates of the immobilized dextranase were significantly different, and consisted mainly of isomaltotriose and isomaltotetraose. The highly polymerized isomaltotetraose levels could reach >78.69% of the product after 30 min of enzymatic digestion.
Collapse
Affiliation(s)
- Yingying Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qianru Lin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Jin X, Wang JK, Wang Q. Microbial β-glucanases: production, properties, and engineering. World J Microbiol Biotechnol 2023; 39:106. [PMID: 36847914 DOI: 10.1007/s11274-023-03550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Lignocellulosic biomass, which mainly consists of cellulose and hemicellulose, is the most abundant renewable biopolymer on earth. β-Glucanases are glycoside hydrolases (GHs) that hydrolyze β-glucan, one of the dominant components of the plant cell wall, into cello-oligosaccharides and glucose. Among them, endo-β-1,4-glucanase (EC 3.2.1.4), exo-glucanase/cellobiohydrolase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21) play critical roles in the digestion of glucan-like substrates. β-Glucanases have attracted considerable interest within the scientific community due to their applications in the feed, food, and textile industries. In the past decade, there has been considerable progress in the discovery, production, and characterization of novel β-glucanases. Advances in the development of next-generation sequencing techniques, including metagenomics and metatranscriptomics, have unveiled novel β-glucanases isolated from the gastrointestinal microbiota. The study of β-glucanases is beneficial for research and development of commercial products. In this study, we review the classification, properties, and engineering of β-glucanases.
Collapse
Affiliation(s)
- Xinyi Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China. .,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Bashari M, Ahmed H, Mustafa A, Riaz A, Wang J, Saddick S, Omar A, Afifi M, Al-Farga A, AlJumaiah L, Abourehab M, Belal A, Zaky M. Fabrication and Characterization of Dextranase Nano-Entrapped Enzymes in Polymeric Particles Using a Novel Ultrasonication–Microwave Approach. Catalysts 2023; 13:125. [DOI: 10.3390/catal13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the current study, a novel method to improve the nano-entrapment of enzymes into Ca-alginate gel was investigated to determine the synergistic effects of ultrasound combined with microwave shock (UMS). The effects of UMS treatment on dextranase enzymes’ loading effectiveness (LE) and immobilization yield (IY) were investigated. By using FT-IR spectra and SEM, the microstructure of the immobilized enzyme (IE) was characterized. Additionally, the free enzyme was used as a control to compare the reusability and enzyme-kinetics characteristics of IEs produced with and without UMS treatments. The results demonstrated that the highest LE and IY were obtained when the IE was produced with a US of 40 W at 25 kHz for 15 min combined with an MS of 60 W at a shock rate of 20 s/min for 20 min, increasing the LE and the IY by 97.32 and 78.25%, respectively, when compared with an immobilized enzyme prepared without UMS treatment. In comparison with the control, UMS treatment dramatically raised the Vmax, KM, catalytic, and specificity constant values for the IE. The outcomes suggested that a microwave shock and ultrasound combination would be an efficient way to improve the immobilization of enzymes in biopolymer gel.
Collapse
Affiliation(s)
- Mohanad Bashari
- Food Science and Human Nutrition Department, College of Applied and Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman
| | - Hani Ahmed
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Ayman Mustafa
- Therapeutic Nutrition Department, Faculty of Nursing and Health Sciences, Misurata University, Misrata 2478, Libya
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Jinpeng Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulkader Omar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Mohamed Afifi
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Lulwah AlJumaiah
- Biology Department, Faculty of Science, University of Hail, Hail 55221, Saudi Arabia
| | - Mohammed Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Oncology Division, Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, 58215 Linköping, Sweden
| |
Collapse
|
8
|
Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Cloning of Cold-Adapted Dextranase and Preparation of High Degree Polymerization Isomaltooligosaccharide. Catalysts 2022. [DOI: 10.3390/catal12070784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intestinal diseases are mainly caused by a decrease in the relative abundance of probiotics and an increase in the number of pathogenic bacteria due to dysbiosis of the intestinal flora. High degree polymerization isomaltooligosaccharide (IMO) can promote probiotic metabolism and proliferation. In this study, the dextranase (PsDex1711) gene of marine bacterial Pseudarthrobacter sp. RN22 was cloned and expressed in Escherichia coli BL21 (DE3). The optimal pH and temperature of the dextranase were 6.0 and 30 °C, respectively, showing the highest stability at 20 °C. The dextran T70 could be hydrolyzed to produce IMO3, IMO4, IMO5, and IMO6 with a high degree of polymerization. The hydrolysate of 1 mg/mL could significantly promote the growth of Lactobacillus and Bifidobacterium after 12 h culture and the formation of biofilms by 58.2%. The hydrolysates could promote the proliferation of probiotics. Furthermore, the IC50 of scavenging rate of DPPH, hydroxyl radical, and superoxide anion was less than 20 mg/mL. This study provides a crucial theoretical basis for the application of dextranase such as pharmaceutical and food industries.
Collapse
|
10
|
Suksatan W, Kazemzadeh P, Afzali D, Moghaddam-manesh M, Chauhan NPS, Sargazi G. A controllable study on ultrasound assisted synthesis of a novel Ni/Zn based hybrid MOF nanostructures for Dextranase immobilization. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Ameri A, Asadi F, Shakibaie M, Ameri A, Forootanfar H, Ranjbar M. Hydroxyapatite/Glycyrrhizin/Lithium-Based Metal-Organic Framework (HA/GL/Li-MOF) Nanocomposite as Support for Immobilization of Thermomyces lanuginosus Lipase. Appl Biochem Biotechnol 2022; 194:2108-2134. [PMID: 35032306 DOI: 10.1007/s12010-022-03800-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
The hydroxyapatite/glycyrrhizin/lithium-based metal-organic framework (HA/GL/Li-MOF) nanocomposites were synthesized via the hydrothermal method in the presence of lecithin and glycyrrhizin. Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) were applied for characterization of the fabricated nanocomposites. The HA/GL/Li-MOF and Li-MOF nanocomposites were employed as support for immobilization of Thermomyces lanuginosus lipase (TLL). The Plackett-Burman and Box-Behnken designs were used for screening and optimizing of variables affecting the immobilization conditions, respectively. The optimum specific activity of immobilized TLL on HA/GL/Li-MOF and Li-MOF nanocomposites (41.8 ± 1.2 U/mg and 39.4 ± 3.1 U/mg, respectively) was predictably determined at support concentration of 0.5 mg/mL, glutaraldehyde concentration of 5 mM, and enzyme activity of 20 U/mg, while the specific activities of TLL@ HA/GL/Li-MOF and TLL@Li-MOF were experimentally found to be 39.5 ± 3.7 U/mg and 38.5 ± 2.3 U/mg, respectively. The stability results showed that the TLL@ HA/GL/Li-MOF has suitable stability against pH and thermal denaturation. However, the immobilized TLL on Li-MOF represented lower stability compared with that of the HA/GL/Li-MOF. The immobilized TLL on HA/GL/Li-MOF maintained near 70% of its original activity after 15 days' storage and during 5 runs of application. In addition, TLL@HA/GL/Li-MOF exhibited higher enzyme-substrate affinity (Km, 10.1 mM) compared to that of TLL@Li-MOF (Km, 23.4 mM). Therefore, these findings demonstrated the potential use of HA/GL/Li-MOF nanocomposites for enzyme immobilization.
Collapse
Affiliation(s)
- Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Asadi
- Department of Chemistry, University of Vali-e-Asr Rafsanjan, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Dong W, Wang K, Zhao L, Li T, Wang Q, Ding Z. Selective immobilization of his-tagged phosphomannose isomerase on Ni chelated nanoparticles with good reusability and activity. Chembiochem 2021; 23:e202100497. [PMID: 34958513 DOI: 10.1002/cbic.202100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/02/2021] [Indexed: 11/06/2022]
Abstract
In this paper, self-stable precipitation polymerization was used to prepare the enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni 2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ~ 184 mg/g. Compared with the free enzymes, the activity of the immobilized enzymes has been significantly improved. In addition, the immoblized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We have observed that the enzyme activity did not decrease significantly after 6 cycles of repeating usages. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.
Collapse
Affiliation(s)
- Weifu Dong
- Jiangnan University, School of Chemical and Material Engineering, Lihu Road 1800, 214122, Wuxi, CHINA
| | - Kangjing Wang
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Liting Zhao
- Jiangnan University, School of Biotechnology, CHINA
| | - Ting Li
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Qian Wang
- University of South Carolina, Chemistry and Biochemistry, UNITED STATES
| | | |
Collapse
|
13
|
Kaczmarek K, Leniart A, Lapinska B, Skrzypek S, Lukomska-Szymanska M. Selected Spectroscopic Techniques for Surface Analysis of Dental Materials: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2624. [PMID: 34067921 PMCID: PMC8156406 DOI: 10.3390/ma14102624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
The presented work focuses on the application of spectroscopic methods, such as Infrared Spectroscopy (IR), Fourier Transform Infrared Spectroscopy (FT-IR), Raman spectroscopy, Ultraviolet and Visible Spectroscopy (UV-Vis), X-ray spectroscopy, and Mass Spectrometry (MS), which are widely employed in the investigation of the surface properties of dental materials. Examples of the research of materials used as tooth fillings, surface preparation in dental prosthetics, cavity preparation methods and fractographic studies of dental implants are also presented. The cited studies show that the above techniques can be valuable tools as they are expanding the research capabilities of materials used in dentistry.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | - Andrzej Leniart
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Slawomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | | |
Collapse
|
14
|
Martínez D, Menéndez C, Chacón O, Fuentes AD, Borges D, Sobrino A, Ramírez R, Pérez ER, Hernández L. Removal of bacterial dextran in sugarcane juice by Talaromyces minioluteus dextranase expressed constitutively in Pichia pastoris. J Biotechnol 2021; 333:10-20. [PMID: 33901619 DOI: 10.1016/j.jbiotec.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
A gene construct encoding the mature region of Talaromyces minioluteus dextranase (EC 3.2.1.11) fused to the Saccharomyces cerevisiae SUC2 signal sequence was expressed in Pichia pastoris under the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter (pGAP). The increase of the transgene dosage from one to two and four copies enhanced proportionally the extracellular yield of the recombinant enzyme (r-TmDEX) without inhibiting cell growth. The volumetric productivity of the four-copy clone in fed batch fermentation (51 h) using molasses as carbon source was 1706 U/L/h. The secreted N-glycosylated r-TmDEX was optimally active at pH 4.5-5.5 and temperature 50-60 °C. The addition of sucrose (600 g/L) as a stabilizer retained intact the r-TmDEX activity after 1-h incubation at 50-60 °C and pH 5.5. Bacterial dextran in deteriorated sugarcane juice was completely removed by applying a crude preparation of secreted r-TmDEX. The high yield of r-TmDEX in methanol-free cultures and the low cost of the fed batch fermentation make the P. pastoris pGAP-based expression system appropriate for the large scale production of dextranase and its use for dextran removal at sugar mills.
Collapse
Affiliation(s)
- Duniesky Martínez
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Carmen Menéndez
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Osmani Chacón
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Alejandro D Fuentes
- Grupo Virología de Plantas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Dalia Borges
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Alina Sobrino
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Ricardo Ramírez
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Enrique R Pérez
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Lázaro Hernández
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba.
| |
Collapse
|