1
|
Baiocco D, Lobel BT, Al-Sharabi M, Cayre OJ, Routh AF, Zhang Z. Organic-Inorganic Multilayer Microcarriers with Superior Mechanical Properties for Potential Active Delivery in Fast-Moving Consumer Goods. Ind Eng Chem Res 2025; 64:4917-4931. [PMID: 40070692 PMCID: PMC11891905 DOI: 10.1021/acs.iecr.4c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
This study introduces an eco-friendly approach to fabricating superstrong, core-shell, composite microcapsules, offering a sustainable alternative to traditional insoluble microplastic-based materials like melamine-formaldehyde. These microcapsules were engineered with a thick CaCO3 shell formed via crystal ripening in the presence of water-soluble poly(acrylic acid), encasing a hexylsalicylate oil core armored by hydrophilic SiO2 nanoparticles. An additional polydopamine layer was deposited via oxidative autopolymerization at pH 8.5 for improved structural and surface properties of the resulting microcapsules. These microcapsules (D 3,2 = 8.8 ± 0.3 μm) were spherical, with a relatively smooth surface, and exhibited unique mechanical properties, which are essential to broaden their applications in industry. Remarkably, compression tests showed a mean rupture stress of 73.5 ± 5.0 MPa, which dramatically surpasses any other inorganic/synthetic microcarrier reported in the literature. In addition, only 10-20% of the core active was released within 2 h into a mixed water-propanol medium used as an accelerated release test, where the solubility of the active oil is high, with full release over 3 days. Herein, we also propose a novel pathway-specific binding constant (PSBC) that describes the strong interaction between Ca2+ ions and poly(acrylic acid), in connection with their stoichiometric ratio. Overall, these microcapsules hold promise for multiple fast-moving consumer goods, where maximizing the mechanical strength of microcapsules for encapsulation of valuable functional actives is paramount; this includes but is not limited to energy storage, household, agrochemical, personal care, and healthcare applications.
Collapse
Affiliation(s)
- Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Benjamin T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- School
of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
2
|
Deng X, Yang Z, Chan KW, Ismail N, Abu Bakar MZ. 5-Fluorouracil in Combination with Calcium Carbonate Nanoparticles Loaded with Antioxidant Thymoquinone against Colon Cancer: Synergistically Therapeutic Potential and Underlying Molecular Mechanism. Antioxidants (Basel) 2024; 13:1030. [PMID: 39334689 PMCID: PMC11429434 DOI: 10.3390/antiox13091030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Colon cancer is the third most common cancer worldwide, with high mortality. Adverse side effects and chemoresistance of the first-line chemotherapy 5-fluorouracil (5-FU) have promoted the widespread use of combination therapies. Thymoquinone (TQ) is a natural compound with potent antioxidant activity. Loading antioxidants into nano delivery systems has been a major advance in enhancing their bioavailability to improve clinical application. Hence, this study aimed to prepare the optimal TQ-loaded calcium carbonate nanoparticles (TQ-CaCO3 NPs) and investigate their therapeutic potential and underlying molecular mechanisms of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Firstly, we developed purely aragonite CaCO3 NPs with a facile mechanical ball-milling method. The pH-sensitive and biocompatible TQ-CaCO3 NPs with sustained release properties were prepared using the optimal synthesized method (a high-speed homogenizer). The in vitro study revealed that the combination of TQ-CaCO3 NPs (15 μM) and 5-FU (7.5 μM) inhibited CT26 cell proliferation and migration, induced cell apoptosis and cell cycle arrest in the G0/G1 phase, and suppressed the CT26 spheroid growth, exhibiting a synergistic effect. Finally, network pharmacology and molecular docking results indicated the potential targets and crucial signaling pathways of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Therefore, TQ-CaCO3 NPs combined with 5-FU could enhance the anti-colon cancer effects of 5-FU with broader therapeutic targets, warranting further application for colon cancer treatment.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
3
|
Yan H, Zhu X, Liu Z, Jin S, Liu J, Han Z, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Zhao Y, Waheed J, Zhao H. Co-removal and recycling of Ba 2+ and Ca 2+ in hypersaline wastewater based on the microbially induced carbonate precipitation technique: Overlooked Ba 2+ in extracellular and intracellular vaterite. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134923. [PMID: 38889469 DOI: 10.1016/j.jhazmat.2024.134923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
This study investigates the co-precipitation of calcium and barium ions in hypersaline wastewater under the action of Bacillus licheniformis using microbially induced carbonate precipitation (MICP) technology, as well as the bactericidal properties of the biomineralized product vaterite. The changes in carbonic anhydrase activity, pH, carbonate and bicarbonate concentrations in different biomineralization systems were negatively correlated with variations in metal ion concentrations, while the changes in polysaccharides and protein contents in bacterial extracellular polymers were positively correlated with variations in barium concentrations. In the mixed calcium and barium systems, the harvested minerals were vaterite containing barium. The increasing concentrations of calcium promoted the incorporation and adsorption of barium onto vaterite. The presence of barium significantly increased the contents of O-CO, N-CO, and Ba-O in vaterite. Calcium promoted barium precipitation, but barium inhibited calcium precipitation. After being treated by immobilized bacteria, the concentrations of calcium and barium ions decreased from 400 and 274 to 1.72 and 0 mg/L (GB/T15454-2009 and GB8978-1996). Intracellular minerals were also vaterite containing barium. Extracellular vaterite exhibited bactericidal properties. This research presents a promising technique for simultaneously removing and recycling hazardous heavy metals and calcium in hypersaline wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaofei Zhu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiyong Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jilai Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; Cabot Institute, University of Bristol, Cantock's Close, Bristol BS8 1UJ, UK
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao 266555, China
| | - Junaid Waheed
- University of Azad Jammu and Kashmir, Muzaffarabad, Azad Jammu and Kashmir, 13110, Pakistan
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
4
|
Karpov TE, Rogova A, Akhmetova DR, Tishchenko YA, Chinakova AV, Lipin DV, Gavrilova NV, Gorbunova IA, Shipilovskikh SA, Timin AS. Encapsulation of a small-molecule drug based on substituted 2-aminothiophenes in calcium carbonate carriers for therapy of melanoma. Biomater Sci 2024; 12:3431-3445. [PMID: 38812410 DOI: 10.1039/d4bm00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Although small molecule drugs are widely used in chemotherapy, their low bioavailability, low-concentrated dose in the tumor zone, systemic toxicity, and chemoresistance can significantly limit the therapeutic outcome. These drawbacks can be overcome by two main strategies: (i) development of novel therapeutic molecules with more significant antitumor activity than currently available drugs and (ii) loading chemotherapeutic agents into drug delivery systems. In this study, we aimed to encapsulate a highly prospective small molecule drug based on substituted 2-aminothiophene (2-AT) into calcium carbonate (CaCO3) microparticles (MPs) for the treatment of melanoma tumors. In particular, we have optimized the encapsulation of 2-AT into MPs (2-AT@MPs), studied drug release efficiency, investigated cellular uptake, and evaluated in vivo biodistribution and tumor inhibition efficiency. In vitro results revealed that 2-AT@MPs were able to penetrate into tumor spheroids, leading to prolonged release of 2-AT. By performing intratumoral injection of 2-AT@MPs we observed significant melanoma suppressions in murine models: ∼0.084 cm3 for 2-AT@MPs at a dose of 0.4 g kg-1versus ∼1.370 cm3 for untreated mice. In addition, the 2-AT@MPs showed negligible in vivo toxicity towards major organs such as heart, lung, liver, kidney, and spleen. Thus, this work provided an efficient strategy for the improved chemotherapy of solid tumors by using an encapsulated form of small molecule drugs.
Collapse
Affiliation(s)
- Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Anna Rogova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Yulia A Tishchenko
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- Alferov Saint Petersburg National Research Academic University, Khlopin Street 8/3A, St. Petersburg 194021, Russian Federation
| | - Anastasia V Chinakova
- Alferov Saint Petersburg National Research Academic University, Khlopin Street 8/3A, St. Petersburg 194021, Russian Federation
| | - Dmitriy V Lipin
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Nina V Gavrilova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- Smorodintsev Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popov Str. 15/17, St. Petersburg 197376, Russian Federation
| | - Irina A Gorbunova
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Sergei A Shipilovskikh
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Perm State University, Bukireva 15, Perm, 614990, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| |
Collapse
|
5
|
Nakanishi Y, Cheng B, Richardson JJ, Ejima H. Using phenolic polymers to control the size and morphology of calcium carbonate microparticles. RSC Adv 2023; 13:30539-30547. [PMID: 37860174 PMCID: PMC10583160 DOI: 10.1039/d3ra04791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Calcium carbonate (CaCO3) is a naturally occurring mineral that occurs in biology and is used industrially. Due to its benign nature, CaCO3 microparticles have found use in the food and medical fields, where the specific size of the microparticles determine their functionality and potential applications. We demonstrate that phenolic polymers with different numbers of hydroxy groups can be used to control the diameter of CaCO3 microparticles in a range of 2-9 μm, and obtained particles were relatively uniform. The largest particles (∼9 μm in diameter) were obtained using poly(2,3,4,5-tetrahydroxystyrene) (P4HS), which showed the highest water solubility among the tested phenolic polymers. The polymer concentration and stirring speed influenced the size of microparticles, where the size of the obtained particles became smaller as the concentrations of phenolic polymers increased and as the stirring speed increased, both likely due to promoting the formation of a large number of individual crystal seeds by shielding seed-seed fusion and increasing the chances for precursor contact, respectively. The preparation time and temperature had a great influence on the morphology of the CaCO3 particles, where vaterite transforms into calcite over time. Specifically, aragonite crystals were observed at preparation temperature of 80 °C and vaterite particles with rough surfaces were obtained at 40 °C. Molecular weight and scale of reaction were also factors which affect the size and morphologies of CaCO3 particles. This research represents a facile method for producing relatively monodisperse CaCO3 microparticles with diameters that have previously proven difficult to access.
Collapse
Affiliation(s)
- Yurie Nakanishi
- Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Bohan Cheng
- Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Joseph J Richardson
- Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- School of Engineering, RMIT University Melbourne VIC 3000 Australia
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
6
|
Liang T, Feng Z, Zhang X, Li T, Yang T, Yu L. Research progress of calcium carbonate nanomaterials in cancer therapy: challenge and opportunity. Front Bioeng Biotechnol 2023; 11:1266888. [PMID: 37811375 PMCID: PMC10551635 DOI: 10.3389/fbioe.2023.1266888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer has keeping the main threat to the health of human being. Its overall survival rate has shown rare substantial progress in spite of the improving diagnostic and treatment techniques for cancer in recent years. Indeed, such classic strategies for malignant tumor as surgery, radiation and chemotherapy have been developed and bring more hope to the patients, but still been accompanied by certain limitations, which include the challenge of managing large wound sizes, systemic toxic side effects, and harmful to the healthy tissues caused by imprecise alignment with tumors in radiotherapy. Furthermore, immunotherapy exhibits a limited therapeutic effect in advanced tumors which is reported only up to 25%-30%. The combination of nanomaterials and cancer treatment offers new hope for cancer patients, demonstrating strong potential in the field of medical research. Among the extensively utilized nanomaterials, calcium carbonate nanomaterials (CCNM) exhibit a broad spectrum of biomedical applications due to their abundant availability, cost-effectiveness, and exceptional safety profile. CCNM have the potential to elevate intracellular Ca2+ levels in tumor cells, trigger the mitochondrial damage and ultimately lead to tumor cell death. Moreover, compared with other types of nanomaterials, CCNM exhibit remarkable advantages as delivery systems owing to their high loading capacity, biocompatibility and biodegradability. The purpose of this review is to provide an overview of CCNM synthesis, focusing on summarizing its diverse roles in cancer treatment and the benefits and challenges associated with CCNM in cancer therapy. Hoping to present the significance of CCNM as for the clinical application, and summarize information for the design of CCNM and other types of nanomaterials in the future.
Collapse
Affiliation(s)
- Tiantian Liang
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Zongqi Feng
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tianfang Li
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tingyu Yang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Green synthesis, characterization and application of calcium carbonate nanoparticles in the effective treatment of grey water for sustainable water management. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
8
|
Deghiedy NM, El-Bastawisy HS, Gomaa OM. Spatiotemporal based response for methylene blue removal using surface modified calcium carbonate microspheres coated with Bacillus sp. RSC Adv 2023; 13:1842-1852. [PMID: 36712634 PMCID: PMC9830531 DOI: 10.1039/d2ra05466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Calcium carbonate microspheres are attractive for their biocompatibility, high loading capacity and easy preparation. They can be used in biomedicine and catalytic applications. In the present work, calcium carbonate microspheres were surface modified with polyvinylpyrrolidone (PVP) followed by irradiation at 5 kGy prior to coating with Bacillus sp. cells. To provide cell protection and internal energy storage, polyhydroxybutyrate (PHB) was induced using 3 factors 2 levels factorial design where the order of effect on PHB% was pH > incubation time > glucose concentration. The highest production was 81.68 PHB% at pH 9, 20 g L-1 glucose and 4 days incubation time. Bacillus sp. cells grown under PHB optimal conditions were used to coat the surface modified calcium carbonate microspheres. Characterization was performed using X-ray diffraction, Fourier Transform Infrared Spectroscopy, Dynamic light Scattering, Zeta potential and Scanning Electron Microscopy. The results obtained confirm the formation and coating of microspheres of 2.34 μm and -16 mV. The prepared microspheres were used in bioremoval of methylene blue dye, the results showed spatiotemporal response for MB-microsphere interaction, where PHB induced Bacillus sp. coated microspheres initially adsorb MB to its outer surface within 1 h but decolorization takes place when the incubation time extends to 18 h. The microspheres can be reused up to 3 times with the same efficiency and with no desorption. These results suggest that the surface modified calcium carbonate can be tailored according to the requirement which can be delivery of biomaterial, bioadsorption or bioremediation.
Collapse
Affiliation(s)
- Noha M. Deghiedy
- Radiation Polymer Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)CairoEgypt
| | - Hanan S. El-Bastawisy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)CairoEgypt
| | - Ola M. Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)CairoEgypt
| |
Collapse
|
9
|
Verkhovskii R, Ermakov A, Grishin O, Makarkin MA, Kozhevnikov I, Makhortov M, Kozlova A, Salem S, Tuchin V, Bratashov D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules 2022; 27:6073. [PMID: 36144805 PMCID: PMC9501256 DOI: 10.3390/molecules27186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects' magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules' capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension's flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells' membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.
Collapse
Affiliation(s)
- Roman Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Alexey Ermakov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Oleg Grishin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail A. Makarkin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Ilya Kozhevnikov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail Makhortov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Anastasiia Kozlova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Samia Salem
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Department of Physics, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Valery Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Ave., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
- Bach Institute of Biochemistry, FRC “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 119071 Moscow, Russia
| | - Daniil Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| |
Collapse
|
10
|
Al Rasbi AWYA, Devi MG, Chandrasekhar G. Synthesis and application of silica and calcium carbonate nanoparticles in the reduction of organics from refinery wastewater. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Persano F, Nobile C, Piccirillo C, Gigli G, Leporatti S. Monodisperse and Nanometric-Sized Calcium Carbonate Particles Synthesis Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1494. [PMID: 35564205 PMCID: PMC9102943 DOI: 10.3390/nano12091494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Calcium carbonate (CaCO3) particles represent an appealing choice as a drug delivery system due to their biocompatibility, biodegradability, simplicity and cost-effectiveness of manufacturing, and stimulus-responsiveness. Despite this, the synthesis of CaCO3 particles with controlled size in the nanometer range via a scalable manufacturing method remains a major challenge. Here, by using a co-precipitation technique, we investigated the impact on the particle size of different synthesis parameters, such as the salt concentration, reaction time, stirring speed, and temperature. Among them, the salt concentration and temperature resulted in having a remarkable effect on the particle size, enabling the preparation of well-dispersed spherical nanoparticles with a size below 200 nm. Upon identification of optimized synthesis conditions, the encapsulation of the antitumoral agent resveratrol into CaCO3 nanoparticles, without significantly impacting the overall size and morphology, has been successfully achieved.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy;
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy; (C.N.); (C.P.)
| | - Concetta Nobile
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy; (C.N.); (C.P.)
| | - Clara Piccirillo
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy; (C.N.); (C.P.)
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy;
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy; (C.N.); (C.P.)
| | - Stefano Leporatti
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy; (C.N.); (C.P.)
| |
Collapse
|