1
|
Kreve S, Reis AC. Efficacy of electrical stimulation for antimicrobial capacity of titanium materials implants: a systematic review and meta-analysis. J Oral Biosci 2025; 67:100669. [PMID: 40316013 DOI: 10.1016/j.job.2025.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Antimicrobial resistance undermines the effectiveness of drugs for treating implant-associated infections. Consequently, there is growing interest in identifying alternative methods to prevent and eliminate infections. The aim of this systematic review was to ascertain whether the electrical stimulation of titanium implants or titanium-based implant materials has antimicrobial properties against bacterial biofilms. The search was conducted in various databases, including PubMed/Medline, Web of Science, EMBASE, SCOPUS, and Google Scholar, in February 2024. In addition, a manual search of the reference lists of the included articles was conducted. The eligibility criteria included in vivo and in vitro studies evaluating the effects of electrical stimulation on titanium implants or titanium-based implant materials in reducing biofilm formation or adhesion as well as eradicating or reducing the viability of bacterial biofilms. The variability between studies was determined using the inverse variance method with random- and fixed-effects models. Heterogeneity was assessed using the I2 and prediction interval statistics. Publication bias was qualitatively evaluated using funnel plots. HIGHLIGHTS Different electrical stimulation (ES) parameters (current and voltage) exhibited antibacterial activity, resulting in either bacteriostatic or bactericidal effects. CONCLUSIONS ES in titanium or titanium-based implant materials confers antimicrobial capacity against bacterial biofilms, and its effectiveness depends on the applied tension. The association between ES and antimicrobials was more robust than with ES administered individually.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirao Preto Dental School, USP-University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Andréa C Reis
- Department of Dental Materials and Prosthodontics, Ribeirao Preto Dental School, USP-University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
2
|
Botticelli G, Falisi G, Rastelli S, Iacomino E, Bruni A, Gerardi D, Di Fabio G, Severino M, Bernardi S. A Morphological Evaluation of the Antibiofilm Activity on an Implant Surface Using a New Electric Device: An In Vitro Study. Dent J (Basel) 2025; 13:140. [PMID: 40277470 PMCID: PMC12026443 DOI: 10.3390/dj13040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Peri-implantitis, the most prevalent cause of implant failure, is a multifaceted issue that is influenced by various factors that promote biofilm formation around the implant. Although various innovative methods for microbiological decontamination of dental implants exist, a universally accepted standard protocol has not yet been established. However, the potential of a device that generates an electric current (Ximplant®) in reducing the survival of microorganisms within the biofilm is a promising development. Methods: In this in vitro study, five dental implants, contaminated using a microbial culture from a sample of saliva of a patient suffering from peri-implantitis, were decontaminated using the Ximplant® peri-implantitis protocol. The experimental conditions included a simulated peri-implant site and a subsequent fluorescent assessment of the Live/Dead microbial population. Results: The qualitative and quantitative image analyses showed a predominant dead light signal on the treated sample, demonstrating the potential efficacy of applying the electrostatic field to the contaminated implant surface in reducing the viability of the microorganisms within the biofilm around dental implants. Conclusions: These findings could inspire a new era in peri-implantitis treatment.
Collapse
Affiliation(s)
- Gianluca Botticelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Sofia Rastelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Enzo Iacomino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Angelo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Davide Gerardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Giuseppe Di Fabio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Marco Severino
- Department of Medicine, School of Medicine, Odontostomatological University Centre, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy;
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| |
Collapse
|
3
|
Adhikari M, Wang L, Adhikari D, Khadka S, Ullah M, Mbituyimana B, Bukatuka CF, Shi Z, Yang G. Electric stimulation: a versatile manipulation technique mediated microbial applications. Bioprocess Biosyst Eng 2025; 48:171-192. [PMID: 39611964 DOI: 10.1007/s00449-024-03107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.
Collapse
Affiliation(s)
- Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dhurba Adhikari
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, NO-8049, Bodø, Norway
| | - Sujan Khadka
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67028-67044. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Yang S, Meng X, Zhen Y, Baima Q, Wang Y, Jiang X, Xu Z. Strategies and mechanisms targeting Enterococcus faecalis biofilms associated with endodontic infections: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1433313. [PMID: 39091674 PMCID: PMC11291369 DOI: 10.3389/fcimb.2024.1433313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Enterococcus faecalis is one of the main microorganisms that infects root canals, ranking among the most prevalent microorganisms associated with endodontic treatment failure. Given its pervasive presence in persistent endodontic infections, the successful elimination of Enterococcus faecalis is crucial for effective endodontic treatment and retreatment. Furthermore, Enterococcus faecalis can form biofilms - defense structures that microbes use to fight environmental threats. These biofilms confer resistance against host immune system attacks and antibiotic interventions. Consequently, the presence of biofilms poses a significant challenge in the complete eradication of Enterococcus faecalis and its associated disease. In response, numerous scholars have discovered promising outcomes in addressing Enterococcus faecalis biofilms within root canals and undertaken endeavors to explore more efficacious approaches in combating these biofilms. This study provides a comprehensive review of strategies and mechanisms for the removal of Enterococcus faecalis biofilms.
Collapse
Affiliation(s)
- Shipeng Yang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuqi Zhen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Quzhen Baima
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhibo Xu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Rodrigues F, Pereira HF, Pinto J, Padrão J, Zille A, Silva FS, Carvalho Ó, Madeira S. Zirconia Dental Implants Surface Electric Stimulation Impact on Staphylococcus aureus. Int J Mol Sci 2024; 25:5719. [PMID: 38891904 PMCID: PMC11171956 DOI: 10.3390/ijms25115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Tooth loss during the lifetime of an individual is common. A strategy to treat partial or complete edentulous patients is the placement of dental implants. However, dental implants are subject to bacterial colonization and biofilm formation, which cause an infection named peri-implantitis. The existing long-term treatments for peri-implantitis are generally inefficient. Thus, an electrical circuit was produced with zirconia (Zr) samples using a hot-pressing technique to impregnate silver (Ag) through channels and holes to create a path by LASER texturing. The obtained specimens were characterized according to vitro cytotoxicity, to ensure ZrAg non-toxicity. Furthermore, samples were inoculated with Staphylococcus aureus using 6.5 mA of alternating current (AC). The current was delivered using a potentiostat and the influence on the bacterial concentration was assessed. Using AC, the specimens displayed no bacterial adhesion (Log 7 reduction). The in vitro results presented in this study suggest that this kind of treatment can be an alternative and promising strategy to treat and overcome bacterial adhesion around dental implants that can evolve to biofilm.
Collapse
Affiliation(s)
- Flávio Rodrigues
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Helena F. Pereira
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
- MIT Portugal Program, School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João Pinto
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Jorge Padrão
- Center for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Andrea Zille
- Center for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Filipe S. Silva
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Sara Madeira
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| |
Collapse
|
7
|
Ovchinnikov E, Silanteva T, Stogov M, Diuriagina O, Godovykh N, Kubrak N. Suppression of Staphylococcus aureus biofilm formation under a short-term impact of low-intensity direct current in vitro and in a rat model of implant-associated osteomyelitis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:247-255. [PMID: 38234662 PMCID: PMC10790294 DOI: 10.22038/ijbms.2023.72411.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVES We investigated the effect of short-term low-intensity direct current (LIDC) on Staphylococcus aureus. MATERIALS AND METHODS The reference strain of S. aureus was used. Experiments were performed in agar culture and on a model of rat's femur osteomyelitis. K-wires were used as electrodes. The exposure to LIDC of 150 μA continued for one minute. In vitro exposure was performed once. In vivo group 1 was a control group. Osteomyelitis was modeled in three groups but only groups 3 and 4 were exposed to LIDC four times: either from day 1 or from day 7 post-surgery. The effect was evaluated on day 21. Microbiological, histological, scanning electron, and light microscopy methods were used for evaluation of the LIDC effect. RESULTS Bacteria diameter, oblongness, and division increased 15 min after LIDC exposure in the culture around the cathode. After 24 hr, the amount of exomatrix was lower than in the control test, and the cell diameter and roundness increased. Similar changes around the anode were less pronounced. In vivo, biofilm formation on the intramedullary wire cathode was suppressed in group 3. In group 4, detachment and destruction of the biofilm were observed. The formation of S. aureus microcolonies was suppressed, and the adhesion of fibroblasts and immune cells was activated. LIDC did not stop the development of the osteomyelitis process. CONCLUSION Short-term exposure to LIDC suppresses S. aureus biofilm formation on the implant cathode surface in the acute and early postoperative period but does not have an impact on the development of osteomyelitis.
Collapse
Affiliation(s)
- Evgenii Ovchinnikov
- Experimental Laboratory, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics, Kurgan, Russia
| | - Tamara Silanteva
- Laboratory of Morphology, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics, Kurgan, Russia
| | - Maksim Stogov
- Department of preclinical and laboratory research, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics, Kurgan, Russia
| | - Olga Diuriagina
- Experimental Laboratory, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics, Kurgan, Russia
| | - Natalia Godovykh
- Department of preclinical and laboratory research, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics, Kurgan, Russia
| | - Nadezhda Kubrak
- Experimental Laboratory, National Ilizarov Medical Research Centre for Traumatology and Ortopaedics, Kurgan, Russia
| |
Collapse
|
8
|
Lee MJ, Kim MA, Min KS. Combined effect of electrical energy and graphene oxide on Enterococcus faecalis biofilms. Dent Mater J 2023; 42:844-850. [PMID: 37914231 DOI: 10.4012/dmj.2023-087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This study aimed to investigate the effects of electrical energy and its synergistic activity with graphene oxide (GO) in Enterococcus faecalis (E. faecalis) biofilms. The viability of E. faecalis biofilms was analyzed by colony-forming units, crystal violet staining, and confocal laser scanning microscopy. The morphologies of the biofilms and the bacterial organelles were observed by scanning electron microscopy and transmission emission microscopy (TEM), respectively. Application of electrical energy combined with 0.2% sodium hypochlorite (NaOCl) on E. faecalis in biofilms significantly decreased the bacterial viability and biofilm biomass compared to the 0.2% NaOCl-only-treated group. Furthermore, additional application of GO showed similar antibacterial effects to 0.5% NaOCl. Notably, TEM observation revealed that the bacteria treated with electric energy and GO showed damaged cell membranes. The results suggest that combination of electrical energy and GO enhances antibacterial activity of NaOCl and has the potential to be applied to root canal irrigation protocols.
Collapse
Affiliation(s)
- Myung-Jin Lee
- Department of Conservative Dentistry, School of Dentistry, Seoul National University
| | - Mi-Ah Kim
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University
- Research Institute of Clinical Medicine of Jeonbuk National University
- Biomedical Research Institute of Jeonbuk National University Hospital
| |
Collapse
|
9
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|