1
|
Mabrouk M, Ashour M, Abdelghany MF, Elokaby MA, Abdel-Warith AWA, Younis EM, Davies S, El-Haroun E, Gewida AGA. Effects of dietary supplementation with benthic diatom Amphora coffeaeformis on blood biochemistry, steroid hormone levels and seed production efficiency of Nile tilapia Oreochromis niloticus broodstock. J Anim Physiol Anim Nutr (Berl) 2024; 108:1605-1615. [PMID: 38879794 DOI: 10.1111/jpn.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 11/07/2024]
Abstract
Aquafeed additive quality and quantity remain pivotal factors that constrain the sustainability and progress of aquaculture feed development. This study investigates the impact of incorporating the benthic diatom Amphora coffeaeformis into the diet of Nile tilapia (Oreochromis niloticus) broodstock, on the blood biochemistry, steroid hormone (SH) levels and seed production efficiency. Broodstock females displaying mature ovary indications were initially combined with males at a ratio of three females to one male. A total of 384 adult Nile tilapia (288 females and 96 males) were used, with 32 fish (24 females and eight males) assigned to each of 12 concrete tanks (8 m³; 2 m × 4 m × 1 m), with three replicate tanks for each dietary treatment, throughout a 14-day spawning cycle until egg harvest. Fish were fed one of four different dietary treatments: AM0% (control diet), and AM2%, AM4% and AM6% enriched with the diatom A. coffeaeformis at levels of 20, 40 and 60 g/kg of diet respectively. At the trial's conclusion, total protein, albumin, triglyceride and creatinine), SHs (follicle-stimulating hormone, luteinizing hormone, free testosterone, total testosterone, progesterone and prolactin) and seeds production efficiency of Nile tilapia improved significantly (p < 0.05) in alignment with the increment of A. coffeaeformis supplementation. The findings propose that including A. coffeaeformis at levels ranging from 4% to 6% could be effectively employed as a feed additive during the Nile tilapia broodstock's spawning season.
Collapse
Affiliation(s)
- Mohamed Mabrouk
- Department of Fish Production, Faculty of Agriculture in Cairo, Al-Azhar University, Cairo, Egypt
| | - Mohamed Ashour
- Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed F Abdelghany
- Department of Fish Production, Faculty of Agriculture in Cairo, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Elokaby
- Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon Davies
- School of Science and Engineering, National University of Ireland Galway Republic of Ireland, Galway, Ireland
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Ahmed G A Gewida
- Department of Fish Production, Faculty of Agriculture in Cairo, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Roushdy MH, Elkhashab NA, Osman AI, Ali DA. Efficient phosphate removal from water using ductile cast iron waste: a response surface methodology approach. Front Chem 2024; 12:1458420. [PMID: 39415822 PMCID: PMC11479870 DOI: 10.3389/fchem.2024.1458420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Water scarcity is a critical issue worldwide. This study explores a novel method for addressing this issue by using ductile cast iron (DCI) solid waste as an adsorbent for phosphate ions, supporting the circular economy in water remediation. The solid waste was characterized using XRD, XRF, FTIR, and particle size distribution. Wastewater samples of different phosphate ion concentrations are prepared, and the solid waste is used as an adsorbent to adsorb phosphate ions using different adsorbent doses and process time. The removal percentage is attained through spectrophotometer analysis and experimental results are optimized to get the optimum conditions using Design Expert V13. The pseudo-second order (PSO) kinetics model and Langmuir isotherm were fitted with the experimental results with maximum adsorption capacity (qmax = 0.28 mg/g). The thermodynamic analysis indicated that this adsorption process was spontaneous based on the negative value of Gibbs free energy (∆G). Additionally, the positive values of enthalpy (∆H) indicated the endothermic nature of this adsorption system. It was able to reach the highest adsorption percentage of 98.9 (%) for phosphate ions from aqueous solutions using response surface methodology (RSM) with optimum conditions of 10 mg/L phosphate ion concentration, pH = 8, normal room temperature, 9 min adsorption, and 0.5 g/L adsorbent dosage.
Collapse
Affiliation(s)
- Mai Hassan Roushdy
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk, Cairo, Egypt
| | - Nada Amr Elkhashab
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk, Cairo, Egypt
| | - Ahmed Ibrahim Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Dalia Amer Ali
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk, Cairo, Egypt
| |
Collapse
|
3
|
Ashour M, Mabrouk MM, Mansour AIA, Abdelhamid AF, Kader MFA, Elokaby MA, El-Nawsany MM, Abdelwarith AA, Younis EM, Davies SJ, El-Haroun E, Naiel MAE. Impact of dietary administration of Arthrospira platensis free-lipid biomass on growth performance, body composition, redox status, immune responses, and some related genes of pacific whiteleg shrimp, Litopenaeus vannamei. PLoS One 2024; 19:e0300748. [PMID: 38889121 PMCID: PMC11185442 DOI: 10.1371/journal.pone.0300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/04/2024] [Indexed: 06/20/2024] Open
Abstract
The current study aimed to assess the influence of dietary inclusion of cyanobacterium Arthrospira platensis NIOF17/003 as a dry material and as a free-lipid biomass (FL) on the growth performance, body composition, redox status, immune responses, and gene expression of whiteleg shrimp, Litopenaeus vannamei postlarvae. L. vannamei were fed five different supplemented diets; the first group was fed on an un-supplemented diet as a negative control group (C-N), the second group was fed on a commercial diet supplemented with 2% of A. platensis complete biomass as a positive control group (C-P20), whereas, the three remaining groups were fed on a commercial diet supplemented with graded amounts of FL at 1%, 2%, and 3% (FL10, FL20, and FL30, respectively). The obtained results indicated that the diet containing 1% FL significantly increased the growth performance, efficiency of consumed feed, and survival percentage of L. vannamei compared to both C-N and C-P20 groups. As for the carcass analysis, diets containing A. platensis or its FL at higher levels significantly increased the protein, lipid, and ash content compared to the C-N group. Moreover, the shrimp group fed on C-P20 and FL10 gave significantly stimulated higher digestive enzyme activities compared with C-N. The shrimp fed C-P20 or FL exhibited higher innate immune responses and promoted their redox status profile. Also, the shrimp fed a low FL levels significantly upregulated the expression of both the peroxiredoxin (Prx) and prophenoloxidase (PPO1) genes than those receiving C-N. The current results recommended that dietary supplementation with 1% FL is the most effective treatment in promoting the performance and immunity of whiteleg shrimp.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed M. Mabrouk
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed F. Abdelhamid
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Marwa F. AbdEl Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C, Kafrelsheikh, Egypt
| | | | - Mohamed M. El-Nawsany
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J. Davies
- School of Natural Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
El-Bayoumy FI, Osman AI, Rooney DW, Roushdy MH. Utilization of iron fillings solid waste for optimum biodiesel production. Front Chem 2024; 12:1404107. [PMID: 38873404 PMCID: PMC11169888 DOI: 10.3389/fchem.2024.1404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
This study explores the innovative application of iron filings solid waste, a byproduct from mechanical workshops, as a heterogeneous catalyst in the production of biodiesel from waste cooking oil. Focusing on sustainability and waste valorization, the research presents a dual-benefit approach: addressing the environmental issue of solid waste disposal while contributing to the renewable energy sector. Particle size distribution analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), Thermal analysis (TG-DTA), and FTIR analysis were used to characterize the iron filings. The response surface methodology (RSM) was used to guide a series of experiments that were conducted to identify the optimum transesterification settings. Important factors that greatly affect the production of biodiesel are identified by the study, including catalyst loading, reaction time, methanol-to-oil ratio, reaction temperature, and stirring rate. The catalyst proved to be successful as evidenced by the 96.4% biodiesel conversion efficiency attained under ideal conditions. The iron filings catalyst's reusability was evaluated, demonstrating its potential for numerous applications without noticeably decreasing activity. This work offers a road towards more environmentally friendly and sustainable chemical processes in energy production by making a strong argument for using industrial solid waste as a catalyst in the biodiesel manufacturing process.
Collapse
Affiliation(s)
- Fady I. El-Bayoumy
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk City, Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Mai H. Roushdy
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk City, Egypt
| |
Collapse
|
5
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
6
|
Tripathi M, Singh S, Pathak S, Kasaudhan J, Mishra A, Bala S, Garg D, Singh R, Singh P, Singh PK, Shukla AK, Pathak N. Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. TOXICS 2023; 11:940. [PMID: 37999592 PMCID: PMC10674586 DOI: 10.3390/toxics11110940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The presence of dye in wastewater causes substantial threats to the environment, and has negative impacts not only on human health but also on the health of other organisms that are part of the ecosystem. Because of the increase in textile manufacturing, the inhabitants of the area, along with other species, are subjected to the potentially hazardous consequences of wastewater discharge from textile and industrial manufacturing. Different types of dyes emanating from textile wastewater have adverse effects on the aquatic environment. Various methods including physical, chemical, and biological strategies are applied in order to reduce the amount of dye pollution in the environment. The development of economical, ecologically acceptable, and efficient strategies for treating dye-containing wastewater is necessary. It has been shown that microbial communities have significant potential for the remediation of hazardous dyes in an environmentally friendly manner. In order to improve the efficacy of dye remediation, numerous cutting-edge strategies, including those based on nanotechnology, microbial biosorbents, bioreactor technology, microbial fuel cells, and genetic engineering, have been utilized. This article addresses the latest developments in physical, chemical, eco-friendly biological and advanced strategies for the efficient mitigation of dye pollution in the environment, along with the related challenges.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sakshi Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Jahnvi Kasaudhan
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Aditi Mishra
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| |
Collapse
|
7
|
Das S, Cherwoo L, Singh R. Decoding dye degradation: Microbial remediation of textile industry effluents. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:64-76. [PMID: 39416919 PMCID: PMC11446375 DOI: 10.1016/j.biotno.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/19/2024]
Abstract
The extensive use of chemical dyes, primarily Azo and anthraquinone dyes, in textiles has resulted in their alarming release into the environment by textile industries. The introduction of heavy metals into these dyes leads to an increase in Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and water toxicity. Conventional physicochemical methods for treating textile effluents are costly and energy-intensive. Here introduction of new strategies is eminent, microbial bioremediation for the biodegradation and detoxification of these hazardous dyes, possesses as an innovative solution for the existing problem, discussed are specific groups of bacteria, fungi, and algae which could be one of the potential decolorizing agents that could replace the majority of other expensive processes in textile wastewater treatment by using enzymes like peroxidase, laccase, and azoreductase. These enzymes catalyzes chemical reactions that break down the dye molecules into less harmful substances. Additionally, novel strategies and advancements to enhance the effectiveness of these microbes and their products are comprehensively discussed.
Collapse
Affiliation(s)
- Soumyajit Das
- Department of Biotechnology, Chandigarh University, Punjab, India
| | - Lubhan Cherwoo
- CSIR- Central Scientific Instruments Organisation, Chandigarh, India
| | - Ravinder Singh
- Department of Biotechnology, Chandigarh University, Punjab, India
| |
Collapse
|
8
|
Tarroum M, Alfarraj NS, Al-Qurainy F, Al-Hashimi A, Khan S, Nadeem M, Salih AM, Shaikhaldein HO. Improving the Production of Secondary Metabolites via the Application of Biogenic Zinc Oxide Nanoparticles in the Calli of Delonix elata: A Potential Medicinal Plant. Metabolites 2023; 13:905. [PMID: 37623850 PMCID: PMC10456625 DOI: 10.3390/metabo13080905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The implementation of nanotechnology in the field of plant tissue culture has demonstrated an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of secondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were collected and germinated, and then the plant species was determined based on the PCR product sequence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like UV-visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight (5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation (358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore, the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed that nine phytochemical compounds were common among all extracts. Moreover, the most predominant compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate, with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli and improved their production of bioactive compounds, especially at a dose of 30 mg/L.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Paczyńska K, Jóźwiak T, Filipkowska U. The Effect of Modifying Canadian Goldenrod ( Solidago canadensis) Biomass with Ammonia and Epichlorohydrin on the Sorption Efficiency of Anionic Dyes from Water Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4586. [PMID: 37444899 DOI: 10.3390/ma16134586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
This study examined the effect of modifying Canadian goldenrod (Solidago canadensis) biomass on its sorption capacity of Reactive Black 5 (RB5) and Reactive Yellow 84 anionic dyes. The scope of the research included the characteristics of sorbents (FTIR, elementary analysis, pHPZC), the effect of pH on dye sorption efficiency, sorption kinetics, and the maximum sorption capacity (describing the data with Langmuir 1 and 2 and Freundlich models). FTIR analyses showed the appearance of amine functional groups in the materials modified with ammonia water, which is indicative of the sorbent amination process. The amination efficiency was higher in the case of materials pre-activated with epichlorohydrin, which was confirmed by elemental analysis and pHPZC values. The sorption efficiency of RB5 and RY84 on the tested sorbents was the highest in the pH range of 2-3. The sorption capacity of the goldenrod biomass pre-activated with epichlorohydrin and then aminated with ammonia water was 71.30 mg/g and 59.29 mg/g in the case of RB5 and RY84, respectively, and was higher by 2970% and 2510%, respectively, compared to the unmodified biomass. Amination of biomass pre-activated with epichlorohydrin can increase its sorption capacity, even by several dozen times.
Collapse
Affiliation(s)
- Karolina Paczyńska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Tomasz Jóźwiak
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| |
Collapse
|
10
|
Cardinale AM, Alberti S, Reverberi AP, Catauro M, Ghibaudo N, Fortunato M. Antibacterial and Photocatalytic Activities of LDH-Based Sorbents of Different Compositions. Microorganisms 2023; 11:microorganisms11041045. [PMID: 37110468 PMCID: PMC10144488 DOI: 10.3390/microorganisms11041045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.
Collapse
Affiliation(s)
- Anna Maria Cardinale
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Andrea Pietro Reverberi
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Nicolò Ghibaudo
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Marco Fortunato
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
11
|
Alprol AE, Mansour AT, El-Beltagi HS, Ashour M. Algal Extracts for Green Synthesis of Zinc Oxide Nanoparticles: Promising Approach for Algae Bioremediation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16072819. [PMID: 37049112 PMCID: PMC10096179 DOI: 10.3390/ma16072819] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 05/31/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) possess unique properties, making them a popular material across various industries. However, traditional methods of synthesizing ZnO-NPs are associated with environmental and health risks due to the use of harmful chemicals. As a result, the development of eco-friendly manufacturing practices, such as green-synthesis methodologies, has gained momentum. Green synthesis of ZnO-NPs using biological substrates offers several advantages over conventional approaches, such as cost-effectiveness, simplicity of scaling up, and reduced environmental impact. While both dried dead and living biomasses can be used for synthesis, the extracellular mode is more commonly employed. Although several biological substrates have been successfully utilized for the green production of ZnO-NPs, large-scale production remains challenging due to the complexity of biological extracts. In addition, ZnO-NPs have significant potential for photocatalysis and adsorption in the remediation of industrial effluents. The ease of use, efficacy, quick oxidation, cost-effectiveness, and reduced synthesis of harmful byproducts make them a promising tool in this field. This review aims to describe the different biological substrate sources and technologies used in the green synthesis of ZnO-NPs and their impact on properties. Traditional synthesis methods using harmful chemicals limit their clinical field of use. However, the emergence of algae as a promising substrate for creating safe, biocompatible, non-toxic, economic, and ecological synthesis techniques is gaining momentum. Future research is required to explore the potential of other algae species for biogenic synthesis. Moreover, this review focuses on how green synthesis of ZnO-NPs using biological substrates offers a viable alternative to traditional methods. Moreover, the use of these nanoparticles for industrial-effluent remediation is a promising field for future research.
Collapse
Affiliation(s)
- Ahmed E. Alprol
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al Hofuf 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| |
Collapse
|
12
|
Impact of Dietary Administration of Seaweed Polysaccharide on Growth, Microbial Abundance, and Growth and Immune-Related Genes Expression of The Pacific Whiteleg Shrimp ( Litopenaeus vannamei). Life (Basel) 2023; 13:life13020344. [PMID: 36836701 PMCID: PMC9962296 DOI: 10.3390/life13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
This work aims to determine the impact of dietary supplementation of polysaccharide, extracted from brown seaweeds Sargassum dentifolium on growth indices, feed utilization, biochemical compositions, microbial abundance, expressions of growth and immunity-related genes, and stress genes of the Pacific Whiteleg shrimp Litopenaeus vannamei. A total of 360 post-larvae of L. vannamei were randomly distributed into a 12-glass aquarium (40 L of each) at a stocking density of 30 shrimp with an initial weight of (0.0017 ± 0.001 g). During the 90-day experiment trial, all shrimp larvae were fed their respective diets at 10% of total body weight, three times a day. Three experimental diets were prepared with different seaweed polysaccharide (SWP) levels. The basal control diet had no polysaccharide level (SWP0), while SWP1, SWP2, and SWP3 contained polysaccharides at concentrations of 1, 2, and 3 g kg-1 diet, respectively. Diets supplemented with polysaccharide levels showed significant improvements in weight gain and survival rate, compared to the control diet. Whole-body biochemical composition and the microbial abundance (the total count of heterotrophic bacteria and Vibrio spp.) of L. vannamei showed significant differences among polysaccharide-treated diets compared to the control. At the end of the feeding experiment, the dietary supplementation of polysaccharide levels enhanced the expression of growth-related genes (Insulin-like growth factors (IGF-I, IGF-II), immune-related genes (β -Glucan-binding protein (β-Bgp), Prophenoloxidase (ProPO), Lysozyme (Lys), and Crustin), and stress genes (Superoxide dismutase (SOD) and Glutathione peroxidase (GPx) in the muscle tissue of L. vannamei. However, the current study concluded that the inclusion rate of 2 g kg-1 of polysaccharide as a dietary additive administration enhanced both weight gain and survival rate of L. vannamei, while the incorporation level of 3 g kg-1 reduces the abundance of pathogenic microbes and enhances the growth-, immunity- and stress-related gene expressions of L. vannamei.
Collapse
|
13
|
Jóźwiak T, Filipkowska U, Bakuła T, Bralewska-Piotrowicz B, Karczmarczyk K, Gierszewska M, Olewnik-Kruszkowska E, Szyryńska N, Lewczuk B. The Use of Chitin from the Molts of Mealworm ( Tenebrio molitor) for the Removal of Anionic and Cationic Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020545. [PMID: 36676283 PMCID: PMC9865315 DOI: 10.3390/ma16020545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 05/27/2023]
Abstract
The possibility of using chitin from the molts of an insect-ealworm (Tenebrio molitor) to remove anionic (RB5, RY84) and cationic dyes (BV10, BR46) from aqueous solutions was investigated. The scope of the research included, among others: Characteristics of chitin from mealworms (FTIR, SEM, pHPZC), the effect of pH on sorption efficiency, sorption kinetics (pseudo-first, pseudo-second order, intramolecular diffusion models) and the determination of the maximum sorption capacity (Langmuir and Freundlich models). The sorption efficiency of anionic dyes on chitin from mealworm was the highest at pH 2-3, and for cationic dyes at pH 6. The equilibrium time of sorption of anionic dyes was 240-300 min and for cationic dyes it was 180-240 min. The experimental data on dye sorption kinetics was best described by the pseudo-second order model. The maximum sorption capacity of chitin from the mealworm for the anionic dyes RB5 and RY84 was 121.15 mg/g and 138.55 mg/g, respectively, and was higher than with some carbon-based materials (literature data). In the case of cationic dyes, the sorption capacity of the tested chitin was lower and reached 3.22 mg/g and 59.56 mg/g for BV10 and BR46, respectively.
Collapse
Affiliation(s)
- Tomasz Jóźwiak
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-718 Olsztyn, Poland
| | - Beata Bralewska-Piotrowicz
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Konrad Karczmarczyk
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| | - Natalia Szyryńska
- Department of Histology and Embryology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-719 Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-719 Olsztyn, Poland
| |
Collapse
|
14
|
Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blue biotechnology can greatly help solve some of the most serious social problems due to its wide biodiversity, which includes marine environments. Microalgae are important resources for human needs as an alternative to terrestrial plants because of their rich biodiversity, rapid growth, and product contributions in many fields. The production scheme for microalgae biomass mainly consists of two processes: (I) the Build-Up process and (II) the Pull-Down process. The Build-Up process consists of (1) the super strain concept and (2) cultivation aspects. The Pull-Down process includes (1) harvesting and (2) drying algal biomass. In some cases, such as the manufacture of algal products, the (3) extraction of bioactive compounds is included. Microalgae have a wide range of commercial applications, such as in aquaculture, biofertilizer, bioenergy, pharmaceuticals, and functional foods, which have several industrial and academic applications around the world. The efficiency and success of biomedical products derived from microalgal biomass or its metabolites mainly depend on the technologies used in the cultivation, harvesting, drying, and extraction of microalgae bioactive molecules. The current review focuses on recent advanced technologies that enhance microalgae biomass within microalgae production schemes. Moreover, the current work highlights marine drugs and human health products derived from microalgae that can improve human immunity and reduce viral activities, especially COVID-19.
Collapse
|
15
|
The efficiency of adsorption modelling and Plackett-Burman design for remediation of crystal violet by Sargassum latifolium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Al-Arjan WS. Zinc Oxide Nanoparticles and Their Application in Adsorption of Toxic Dye from Aqueous Solution. Polymers (Basel) 2022; 14:polym14153086. [PMID: 35956598 PMCID: PMC9370170 DOI: 10.3390/polym14153086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Dye waste is one of the most serious types of pollution in natural water bodies, since its presence can be easily detected by the naked eye, and it is not easily biodegradable. In this study, zinc oxide nanoparticles (ZnO-NPs) were generated using a chemical reduction approach involving the zinc nitrate procedure. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and UV-vis techniques were used to analyse the surface of ZnO-NPs. The results indicate the creation of ZnO-NPs with a surface area of 95.83 m2 g−1 and a pore volume of 0.058 cm3 g−1, as well as an average pore size of 1.22 nm. In addition, the ZnO-NPs were used as an adsorbent for the removal of Ismate violet 2R (IV2R) dye from aqueous solutions under various conditions (dye concentration, pH, contact time, temperature, and adsorbent dosage) using a batch adsorption technique. Furthermore, FTIR and SEM examinations performed before and after the adsorption process indicated that the surface functionalisation and shape of the ZnO-NP nanocomposites changed significantly. A batch adsorption analysis was used to examine the extent to which operating parameters, the equilibrium isotherm, adsorption kinetics, and thermodynamics affected the results. The results of the batch technique revealed that the best results were obtained in the treatment with 0.04 g of ZnO-NP nanoparticles at 30 °C and pH 2 with an initial dye concentration of 10 mg L−1, which removed 91.5% and 65.6% of dye from synthetic and textile industry effluents, respectively. Additionally, six adsorption isotherm models were investigated by mathematical modelling and were validated for the adsorption process, and error function equations were applied to the isotherm model results in order to find the best-fit isotherm model. Likewise, the pseudo-second-order kinetic model fit well. A thermodynamic study revealed that IV2R adsorption on ZnO-NPs is a spontaneous, endothermic, and feasible sorption process. Finally, the synthesised nanocomposites prove to be excellent candidates for IV2R removal from water and real wastewater systems.
Collapse
Affiliation(s)
- Wafa Shamsan Al-Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Green Synthesis of Zinc Oxide Nanoparticles Using Red Seaweed for the Elimination of Organic Toxic Dye from an Aqueous Solution. MATERIALS 2022; 15:ma15155169. [PMID: 35897601 PMCID: PMC9330049 DOI: 10.3390/ma15155169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022]
Abstract
This study aims to produce green zinc oxide nanoparticles (ZnO-NPs) derived from red seaweed (Pterocladia Capillacea) and evaluate their potential to absorb Ismate violet 2R (IV2R) ions from an aqueous solution. UV-vis spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and a Brunauer-Emmett-Teller surface area analysis (BET) were used to analyze the structural, morphological, and optical features of the synthesized nanoparticles. The change in color of the chemical solution revealed the formation of zinc oxide nanoparticles. The FTIR examination confirmed the synthesis of both Zn and ZnO nanoparticle powder, with a BET surface area of 113.751 m2 g-1 and an average pore size of 2.527 nm for the synthesized adsorbent. Furthermore, the maximum removal effectiveness of IV2R was 99% when 0.08 g ZnO-NPs was applied at a pH of 6, a temperature of 55 °C, and a contact time of 120 min. The dye adsorption capacity of the ZnO-NPs was 72.24 mg g-1. The adsorption process was also controlled by the Freundlich adsorption model and pseudo-second-order reaction kinetics. The adsorption of IV2R ions onto the ZnO-NPs could be represented as a nonideal and reversible sorption process of a nonuniform surface, according to Freundlich adsorption isotherms. In addition, the constant values of the model parameters were determined using various nonlinear regression error functions. Moreover, thermodynamic parameters such as entropy change, enthalpy change, and free energy change were investigated; the adsorption process was spontaneous and endothermic. The high capacity of the ZnO-NPs synthesized by red seaweed promotes them as promising substances for applications in water treatment for the removal of IV2R dye from aqueous systems.
Collapse
|