1
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
2
|
Soto-Arriaza M, Cena Ahumada E, Bonardd S, Melendez J. Calcein release from DPPC liposomes by phospholipase A2 activity: Effect of cholesterol and amphipathic copolymers. J Liposome Res 2024; 34:617-629. [PMID: 38850012 DOI: 10.1080/08982104.2024.2361610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
In this study, we evaluated the impact of incorporating diblock and triblock amphiphilic copolymers, as well as cholesterol into DPPC liposomes on the release of a model molecule, calcein, mediated by exogenous phospholipase A2 activity. Our findings show that calcein release slows down in the presence of copolymers at low concentration, while at high concentration, the calcein release profile resembles that of the DPPC control. Additionally, calcein release mediated by exogenous PLA2 decreases as the amount of solubilized cholesterol increases, with a maximum between 18 mol% and 20 mol%. At concentrations higher than 24 mol%, no calcein release was observed. Studies conducted on HEK-293 and HeLa cells revealed that DPPC liposomes reduced viability by only 5% and 12%, respectively, after 3 hours of incubation, while DPPC liposome in presence of 33 mol% of Cholesterol reduced viability by approximately 11% and 23%, respectively, during the same incubation period. For formulations containing copolymers at low and high concentrations, cell viability decreased by approximately 20% and 40%, respectively, after 3 hours of incubation. Based on these preliminary results, we can conclude that the presence of amphiphilic copolymers at low concentration can be used in the design of new DPPC liposomes, and together with cholesterol, they can modulate liposome stabilization. The new formulations showed low cytotoxicity in HEK-293 cells, and it was observed that calcein release depended entirely on PLA2 activity and the presence of calcium ions.
Collapse
Affiliation(s)
- Marco Soto-Arriaza
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eduardo Cena Ahumada
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Bonardd
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Donostia-San Sebastían, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | | |
Collapse
|
3
|
Gao XJ, Ciura K, Ma Y, Mikolajczyk A, Jagiello K, Wan Y, Gao Y, Zheng J, Zhong S, Puzyn T, Gao X. Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407793. [PMID: 39252670 DOI: 10.1002/adma.202407793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejiao J Gao
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, 80-416, Poland
| | - Yuanjie Ma
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Karolina Jagiello
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Yuxin Wan
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yurou Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Asada M, Wakai A, Tanaka H, Suwa Y, Tamura Y, Kouyama M, Osawa S, Otsuka H. Investigating the effect of the micelle structures of block and random copolymers on dye solubilization. SOFT MATTER 2024; 20:5040-5044. [PMID: 38804221 DOI: 10.1039/d4sm00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
To elucidate the correlation between dye solubilization into micelles and their core-shell aggregated structure, the structures of block and random copolymer micelles were characterized. The block copolymer micelles exhibited a higher dye solubilization capacity which correlated with their core volume, clear core-shell contrast and slow solubilization rate.
Collapse
Affiliation(s)
- Masahiko Asada
- Central Research Laboratories, DIC Corporation, 631, Sakado, Sakura, Chiba 285-8668, Japan.
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Airi Wakai
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Hisakazu Tanaka
- Central Research Laboratories, DIC Corporation, 631, Sakado, Sakura, Chiba 285-8668, Japan.
| | - Yukie Suwa
- Sakai Plant, DIC Corporation, 3, Takasago 1-chome, Takaishi, Osaka 592-0001, Japan
| | - Yuuji Tamura
- Central Research Laboratories, DIC Corporation, 631, Sakado, Sakura, Chiba 285-8668, Japan.
| | - Mariko Kouyama
- Central Research Laboratories, DIC Corporation, 631, Sakado, Sakura, Chiba 285-8668, Japan.
| | - Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Hidenori Otsuka
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
5
|
Li T, Zhang M, He J, Ni P. Synthesis and Characterization of Graft Copolymers with Poly(ε-caprolactone) Side Chain Using Hydroxylated Poly(β-myrcene- co-α-methyl styrene). Molecules 2024; 29:2363. [PMID: 38792224 PMCID: PMC11124195 DOI: 10.3390/molecules29102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Graft copolymers have unique application scenarios in the field of high-performance thermoplastic elastomers, resins and rubbers. β-myrcene (My) is a biomass monomer derived from renewable plant resources, and its homopolymer has a low glass transition temperature and high elasticity. In this work, a series of tapered copolymers P(My-co-AMS)k (k = 1, 2, 3) were first synthesized in cyclohexane by one-pot anionic polymerization of My and α-methyl styrene (AMS) using sec-BuLi as the initiator. PAMS chain would fracture when heated at high temperature and could endow the copolymer with thermal degradation property. The effect of the incorporation of AMS unit on the thermal stability and glass transition temperature of polymyrcene main chain was studied. Subsequently, the double bonds in the linear copolymers were partially epoxidized and hydroxylated into hydroxyl groups to obtain hydroxylated copolymer, which was finally used to initiate the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) to synthesize the graft copolymer with PCL as the side chain. All these copolymers before and after modifications were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), thermogravimetry analysis (TGA), and differential scanning calorimeter (DSC).
Collapse
Affiliation(s)
| | | | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China; (T.L.); (M.Z.); (P.N.)
| | | |
Collapse
|
6
|
Bulbul YE, Uygun Oksuz A. Cold atmospheric plasma modified polycaprolactone solution prior to electrospinning: A novel approach for improving quercetin-loaded nanofiber drug delivery systems. Int J Pharm 2024; 651:123789. [PMID: 38185337 DOI: 10.1016/j.ijpharm.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
In this study, we present a novel approach for enhancing the performance of Quercetin-loaded nanofiber drug delivery systems through the modification of Polycaprolactone (PCL) solution using Cold Atmospheric Plasma (CAP) prior to electrospinning. CAP treatment was applied to PCL solutions for varying durations, namely, 0.5, 1, and 3 min. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) collectively demonstrate that CAP application and QU loading induce morphological changes in nanofibers, facilitating the creation of drug delivery systems with modified fiber diameters, devoid of bead formation. CAP treatment duration correlates with varying fiber diameters, with the longest treatment (3 min) producing the largest fibers (1324 ± 387 nm). Concurrently, the incorporation of quercetin (QU) into the PCL nanofibers resulted in reduced fiber diameter. These observations emphasize the pivotal role of CAP modification in tailoring nanofiber size and morphology. Notably, minimal peak shifts indicate no significant molecular structure changes in PCL nanofibers compared to PCL solutions, assuring the absence of unwanted chemical modifications or degradation during electrospinning. Furthermore, specific QU peaks are undetectable in Fourier-transform infrared (FTIR) spectra, suggesting dispersed or amorphous QU molecules within the nanofibers. Additionally, X-ray diffraction (XRD) results demonstrate that CAP treatment does not alter the crystalline structure of the PCL nanofiber drug delivery system. Crystalline planes of PCL remain unchanged, affirming stability under CAP treatment conditions. Water contact angles indicate that CAP treatment affects nanofiber hydrophobicity, with shorter CAP treatment times rendering more hydrophilic surfaces. Cumulative QU release percentages vary, with PCL/CAP-0.5-QU exhibiting the highest release at 56 ± 2.2 %, surpassing unmodified PCL/QU. Moreover, cell viability remains comparable or slightly increased when QU is incorporated into CAP-treated PCL nanofibers, suggesting potential mitigation of cytotoxic effects induced by CAP treatment. The combination of QU and CAP treatment enhances cancer cell viability reduction, QU release from nanofibers, and drug loading efficiency in a synergistic manner.
Collapse
Affiliation(s)
- Y Emre Bulbul
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32220 Isparta, Turkey.
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32220 Isparta, Turkey.
| |
Collapse
|
7
|
Lee J, Dutta SD, Acharya R, Park H, Kim H, Randhawa A, Patil TV, Ganguly K, Luthfikasari R, Lim KT. Stimuli-Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing. Adv Healthc Mater 2024; 13:e2302394. [PMID: 37950552 DOI: 10.1002/adhm.202302394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune-related diseases.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
8
|
Alves A, Silva AM, Nunes C, Cravo S, Reis S, Pinto M, Sousa E, Rodrigues F, Ferreira D, Costa PC, Correia-da-Silva M. The Synthesis and Characterization of a Delivery System Based on Polymersomes and a Xanthone with Inhibitory Activity in Glioblastoma. Life (Basel) 2024; 14:132. [PMID: 38255746 PMCID: PMC10820267 DOI: 10.3390/life14010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma (GBM) is the most common and deadly primary malignant brain tumor. Current therapies are insufficient, and survival for individuals diagnosed with GBM is limited to a few months. New GBM treatments are urgent. Polymeric nanoparticles (PNs) can increase the circulation time of a drug in the brain capillaries. Polymersomes (PMs) are PNs that have been described as having attractive characteristics, mainly due to their stability, prolonged circulation period, biodegradability, their ability to sustain the release of drugs, and the possibility of surface functionalization. In this work, a poly(ethylene glycol)-ε-caprolactone (PEG-PCL) copolymer was synthesized and PMs were prepared and loaded with an hydrolytic instable compound, previously synthesized by our research team, the 3,6-bis(2,3,4,6-tetra-O-acetyl-β-glucopyranosyl)xanthone (XGAc), with promising cytotoxicity on glioblastoma cells (U-373 MG) but also on healthy cerebral endothelial cells (hCMEC/D3). The prepared PMs were spherical particles with uniform morphology and similar sizes (mean diameter of 200 nm) and were stable in aqueous suspension. The encapsulation of XGAc in PMs (80% encapsulation efficacy) protected the healthy endothelial cells from the cytotoxic effects of this compound, while maintaining cytotoxicity for the glioblastoma cell line U-373 MG. Our studies also showed that the prepared PMs can efficiently release XGAc at intratumoral pHs.
Collapse
Affiliation(s)
- Ana Alves
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Margarida Silva
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Claúdia Nunes
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Cravo
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Salette Reis
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV—Associated Laboratory for Green Chemistry, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Domingos Ferreira
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Mneimneh AT, Mehanna MM. Chondroitin Sulphate: An emerging therapeutic multidimensional proteoglycan in colon cancer. Int J Biol Macromol 2024; 254:127672. [PMID: 38287564 DOI: 10.1016/j.ijbiomac.2023.127672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) that has captured massive attention in the field of drug delivery. As the colon is considered the preferred site for local and systemic delivery of bioactive agents for the treatment of various diseases, colon-targeted drug delivery rose to the surface of research. Amid several tactics to attain colon-targeted drug release, the exploitation of polymers degraded by colonic bacteria holds great promise. Chondroitin sulfate as a biodegradable, biocompatible mucopolysaccharide is known for its anti-inflammatory, anti-osteoarthritis, anti-atherosclerotic, anti-oxidant, and anti-coagulant effects. Besides these therapeutic functions, CS thrived to play a major role in nanocarriers as a matrix material, coat, and targeting ligand. This review focuses on the role of CS in nanocarriers as a matrix material or as a targeting moiety for colon cancer therapy, relating the present applications to future perspectives.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
10
|
Rad ME, Soylukan C, Kulabhusan PK, Günaydın BN, Yüce M. Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55201-55231. [PMID: 37994836 DOI: 10.1021/acsami.3c10065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.
Collapse
Affiliation(s)
- Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
11
|
Kamenova K, Momekova D, Grancharov G, Prancheva A, Toncheva-Moncheva N, Ivanov E, Konstantinov S, Petrov PD. In Situ Gelling Hydroxypropyl Cellulose Formulation Comprising Cannabidiol-Loaded Block Copolymer Micelles for Sustained Drug Delivery. Int J Mol Sci 2023; 24:16534. [PMID: 38003722 PMCID: PMC10671718 DOI: 10.3390/ijms242216534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cannabidiol (CBD) is a natural terpenophenolic compound with known pharmacological activities, but the poor solubility of CBD in water limits its widespread use in medicine and pharmacy. Polymeric (nano)carriers demonstrated high potential for enhancing the solubility and therapeutic activity of lipophilic drugs such as CBD. Here, we report the elaboration of a novel hydroxypropyl cellulose (HPC)-based in situ gelling formulation for controlled delivery of CBD. In the first stage, nanosized polymeric micelles from poly(ethylene oxide)-block-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone) (PEO-b-P(CyCL-co-CL) diblock copolymers) were used to increase the solubility of CBD in water. Different copolymers were assessed, and the carrier with the highest encapsulation efficiency (EE) and drug loading capacity (DLC) was selected for further elaboration of nanocomposite in situ gel formulations. Next, the sol-to-gel transition behavior of HPC as a function of K2SO4 concentration in the aqueous solution was investigated by microcalorimetry and dynamic oscillatory rheology, and the optimal formulation capable of forming a physical gel under physiological conditions was determined. Finally, injectable nanocomposite hydrogels comprising cannabidiol were fabricated, and their drug release profile and cytotoxicity against human tumor cell lines were evaluated. The in situ gels exhibited prolonged drug release over 12 h, controlled by gel erosion, and the cytotoxicity of formulated cannabidiol was comparable with that of a free drug.
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.M.); (E.I.); (S.K.)
| | - Georgy Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Anna Prancheva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Ervin Ivanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.M.); (E.I.); (S.K.)
- Pobelch Gle Ltd., 1618 Sofia, Bulgaria
| | - Spiro Konstantinov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.M.); (E.I.); (S.K.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| |
Collapse
|
12
|
Sharma R, Shrivastava P, Gautam L, Agrawal U, Mohana Lakshmi S, Vyas SP. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discov Today 2023; 28:103786. [PMID: 37742910 DOI: 10.1016/j.drudis.2023.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Various polymeric materials have been investigated to produce unique modes of delivery for drug modules to achieve either temporal or spatial control of bioactives delivery. However, after intravenous administration, phagocytic cells quickly remove these nanostructures from the systemic circulation via the reticuloendothelial system (RES). To overcome these concerns, ecofriendly block copolymers are increasingly being investigated as innovative carriers for the delivery of bioactives. In this review, we discuss the design, fabrication techniques, and recent advances in the development of block copolymers and their applications as drug carrier systems to improve the physicochemical and pharmacological attributes of bioactives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India; Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
13
|
Zieniuk B, Pawełkowicz M. Recent Advances in the Application of Cucurbitacins as Anticancer Agents. Metabolites 2023; 13:1081. [PMID: 37887406 PMCID: PMC10608718 DOI: 10.3390/metabo13101081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cucurbitacins are tetracyclic triterpenoid secondary metabolites, widely distributed in the Cucurbitaceae family. These bitter-tasting compounds act primarily as defense mechanisms against external injuries, and thus against herbivores, and furthermore, they have also found use in folk medicine in the treatment of various diseases. Many studies have acknowledged significant biological activities of cucurbitacins, such as antioxidant and anti-inflammatory activities, antimicrobial properties, or antitumor potential. Overall, cucurbitacins have the ability to inhibit cell proliferation and induce apoptosis in various cancer cell lines. Both in vitro and in vivo studies were performed to evaluate the anticancer activity of varied cucurbitacins. Cucurbitacins offer a promising avenue for future cancer treatment strategies, and their diverse mechanisms of action make them attractive candidates for further investigation. The aim of the present study is to shed light on the chemical diversity of this group of compounds by providing the sources of origin of selected compounds and their chemical structure, as well as insight into their anticancer potential. In addition, within this paper molecular targets for cucurbitacins and signalling pathways important for cancer cell proliferation and/or survival that are affected by the described class of compounds have been presented.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
14
|
Gjerde N, Del Giudice A, Zhu K, Knudsen KD, Galantini L, Schillén K, Nyström B. Synthesis and Characterization of a Thermoresponsive Copolymer with an LCST-UCST-like Behavior and Exhibiting Crystallization. ACS OMEGA 2023; 8:31145-31154. [PMID: 37663484 PMCID: PMC10468772 DOI: 10.1021/acsomega.3c03162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
In this work, the diblock copolymer methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (MPEG-b-PCL) was synthesized with a block composition that allows this polymer in aqueous media to possess both an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST) over a limited temperature interval. The value of the UCST, associated with crystallization of the PCL-block, depended on heating (H) or cooling (C) of the sample and was found to be CPUCSTH = 32 °C and CPUCSTC = 23 °C, respectively. The LCST was not affected by the heating or cooling scans; assumed a value of 52 °C (CPLCSTH = CPLCSTC). At intermediate temperatures (e.g., 45 °C), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM) showed that the solution consisted of a large population of spherical core-shell particles and some self-assembled rodlike objects. At low temperatures (below 32 °C), differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) in combination with SAXS disclosed the formation of crystals with a cylindrical core-shell structure. Cryo-TEM supported a thread-like appearance of the self-assembled polymer chains. At temperatures above 52 °C, incipient phase separation took place and large aggregation complexes of amorphous morphology were formed. This work provides insight into the intricate interplay between UCST and LCST and the type of structures formed at these conditions in aqueous solutions of MPEG-b-PCL diblock copolymers.
Collapse
Affiliation(s)
- Natalie
Solfrid Gjerde
- Department
of Chemistry, “Sapienza” University
of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Alessandra Del Giudice
- Department
of Chemistry, “Sapienza” University
of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Kaizheng Zhu
- Faculty
of Engineering, Østfold University
College, P.O. Box 700, 1757 Halden, Norway
| | | | - Luciano Galantini
- Department
of Chemistry, “Sapienza” University
of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Karin Schillén
- Division
of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|