1
|
Freis B, Kiefer C, Ramirez MDLA, Harlepp S, Mertz D, Pichon B, Iacovita C, Laurent S, Begin S. Defects or no defects? Or how to design 20-25 nm spherical iron oxide nanoparticles to harness both magnetic hyperthermia and photothermia. NANOSCALE 2024; 16:20542-20555. [PMID: 39422589 DOI: 10.1039/d4nr01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Designing iron oxide nanoparticles (IONPs) to effectively combine magnetic hyperthermia (MH) and photothermia (PTT) in one IONP formulation presents a significant challenge to ensure a multimodal therapy allowing the adaptation of the treatment to each patient. Recent research has highlighted the influence of factors such as the size, shape, and amount of defects on both therapeutic approaches. In this study, 20-25 nm spherical IONPs with a spinel composition were synthesized by adapting the protocol of the thermal decomposition method to control the amount of defects. By tuning different synthesis parameters such as the precursor nature, the introduction of a well-known oxidizing agent, dibenzylether (DBE), in the reaction medium, the heating rate and duration and the introduction of a nucleation step, we thus established two different synthesis protocols, one involving the use of a small amount of DBE leading to IONPs with only a few defects and another that took an optimized route to oxidize the wüstite nuclei during the IONP growth and led to IONPs exhibiting more structural and oxygen defects. IONPs exhibiting fewer defects showed enhanced MH and PTT heating values even when immobilized in a matrix, despite a decrease in MH heating values showing that they release mainly heat through the Brownian mechanism. These MH measurements have also confirmed that defects play a key role in enhancing Néel relaxation. PTT measurements demonstrated higher heating values with IONPs with fewer defects and a correlation between Urbach energy and SAR values suggesting an impact of vacancy defects on PTT performances. Therefore, IONPs exhibiting fewer defects under our synthesis conditions appear as suitable IONPs to combine both MH and PTT treatments with high performances. These findings pave the way for promising applications in combined therapies for cancer treatment.
Collapse
Affiliation(s)
- Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Céline Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Maria de Los Angeles Ramirez
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Benoit Pichon
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania.
| | - Sophie Laurent
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Sylvie Begin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
2
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
3
|
Investigation of structural, morphological and magnetic properties of nanostructured strontium hexaferrite through co-precipitation technique: Impacts of annealing temperature and Fe/Sr ratio. Heliyon 2023; 9:e14532. [PMID: 37020949 PMCID: PMC10068113 DOI: 10.1016/j.heliyon.2023.e14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
M-type strontium hexaferrite (SrM) were successfully synthesized from Sr2+ and Fe3+ precursor salt through co-precipitation technique. Different higher sintering temperatures (800-1000 °C) were used to get the desired SrM with variation of Fe3+/Sr2+ mole ratio as well. The characterization of SrM and its properties were investigated using modern instrumental techniques viz. X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer, Scanning Electron Microscopy, Vibrating Sample Magnetometer, UV-Visible NIR Spectrometer, Impedance Analyzer and Thermal Conductivity Meter. The phase of the synthesized SrM were confirmed by comparing the XRD patterns with the standard ICDD data and Reitvelt Refinement for the SrM having Fe3+/Sr2+ ratio 10 and SrM with distinct annealing temperature were performed. The structural parameters, particle size (75 nm-318 nm) and shape of the as prepared samples were changed with calcination temperature as well as mole ratio. The saturation magnetization (73.77-24.27 emu/g), coercivity (3732.28-642.10 Oe) and remanant magnetization (39.15-8.86 emu/g) were varied with calcination temperature and composition. The dielectric properties, optical properties and thermophysical properties were measured for the SrM keeping Fe3+/Sr2+ ratio 10 calcined at 1000 °C. The synthesized SrM can be applied in magnetic recording media and as photocatalyst due to its low coercivity (2764.48 Oe), high saturation magnetization (73.77 emu/g) and low band gap energy (Eg-2.04 eV) respectively.
Collapse
|
4
|
Szatmari A, Bortnic R, Souca G, Hirian R, Barbu-Tudoran L, Nekvapil F, Iacovita C, Burzo E, Dudric R, Tetean R. The Influence of Zn Substitution on Physical Properties of CoFe 2O 4 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:189. [PMID: 36616099 PMCID: PMC9823853 DOI: 10.3390/nano13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Co1−xZnxFe2O4 nanoparticles (0 ≤ x ≤ 1) have been synthesized via a green sol−gel combustion method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), Raman, and magnetic measurements. All samples were found to be single phases and have a cubic Fd-3m structure. EDS analysis confirmed the presence of cobalt, zinc, iron, and oxygen in all studied samples. Raman spectra clearly show that Zn ions are preferentially located in T sites for low Zn concentrations. Due to their high crystallinity, the nanoparticles show high values of the magnetization, which increases with the Zn content for x < 0.5. The magnetic properties are discussed based on Raman results. Co ferrite doped with 30% of Zn produced the largest SAR values, which increase linearly from 148 to 840 W/gMNPs as the H is increased from 20 to 60 kA/m.
Collapse
Affiliation(s)
- Adam Szatmari
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Rares Bortnic
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Gabriela Souca
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Razvan Hirian
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, Fântânele 42, 400293 Cluj-Napoca, Romania
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Emil Burzo
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Romulus Tetean
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Nandhini G, Shobana MK. Influence of phytochemicals with iron oxide nanoparticles for biomedical applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles. Int J Mol Sci 2022; 23:ijms232314825. [PMID: 36499152 PMCID: PMC9735482 DOI: 10.3390/ijms232314825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetically soft-soft MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized through a seed-mediated method using the organometallic decomposition of metal acetyl acetonates. Two sets of core-shell nanoparticles (S1 and S2) of similar core sizes of 5.0 nm and different shell thicknesses (4.1 nm for S1 and 5.7 nm for S2) were obtained by changing the number of nucleating sites. Magnetic measurements were conducted on the nanoparticles at low and room temperatures to study the shell thickness and temperature dependence of the magnetic properties. Interestingly, both core-shell nanoparticles showed similar saturation magnetization, revealing the ineffective role of the shell thickness. In addition, the coercivity in both samples displayed similar temperature dependencies and magnitudes. Signatures of spin glass (SG) like behavior were observed from the field-cooled temperature-dependent magnetization measurements. It was suggested to be due to interface spin freezing. We observed a slight and non-monotonic temperature-dependent exchange bias in both samples with slightly higher values for S2. The effective magnetic anisotropy constant was calculated to be slightly larger in S2 than that in S1. The magnetothermal efficiency of the chitosan-coated nanoparticles was determined by measuring the specific absorption rate (SAR) under an alternating magnetic field (AMF) at 200-350 G field strengths and frequencies (495.25-167.30 kHz). The S2 nanoparticles displayed larger SAR values than the S1 nanoparticles at all field parameters. A maximum SAR value of 356.5 W/g was obtained for S2 at 495.25 kHz and 350 G for the 1 mg/mL nanoparticle concentration of ferrogel. We attributed this behavior to the larger interface SG regions in S2, which mediated the interaction between the core and shell and thus provided indirect exchange coupling between the core and shell phases. The SAR values of the core-shell nanoparticles roughly agreed with the predictions of the linear response theory. The concentration of the nanoparticles was found to affect heat conversion to a great extent. The in vitro treatment of the MDA-MB-231 human breast cancer cell line and HT-29 human colorectal cancer cell was conducted at selected frequencies and field strengths to evaluate the efficiency of the nanoparticles in killing cancer cells. The cellular cytotoxicity was estimated using flow cytometry and an MTT assay at 0 and 24 h after treatment with the AMF. The cells subjected to a 45 min treatment of the AMF (384.50 kHz and 350 G) showed a remarkable decrease in cell viability. The enhanced SAR values of the core-shell nanoparticles compared to the seeds with the most enhancement in S2 is an indication of the potential for tailoring nanoparticle structures and hence their magnetic properties for effective heat generation.
Collapse
|
7
|
Lucaciu CM, Nitica S, Fizesan I, Filip L, Bilteanu L, Iacovita C. Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3578. [PMID: 36296768 PMCID: PMC9611223 DOI: 10.3390/nano12203578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/23/2023]
Abstract
The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.
Collapse
Affiliation(s)
- Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Liviu Bilteanu
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae St., 077190 Bucharest, Romania
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Ramírez-Morales MA, Goldt AE, Kalachikova PM, Ramirez B. JA, Suzuki M, Zhigach AN, Ben Salah A, Shurygina LI, Shandakov SD, Zatsepin T, Krasnikov DV, Maekawa T, Nikolaev EN, Nasibulin AG. Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2869. [PMID: 36014734 PMCID: PMC9414223 DOI: 10.3390/nano12162869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.
Collapse
Affiliation(s)
- Maria Antonieta Ramírez-Morales
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
- Hi-QNano s.r.l., Via Barsanti No. 1, 73010 Arnesano, Italy
- Department of Engineering of Innovation, University of Salento, Via per Arnesano km 1, 73100 Lecce, Italy
| | - Anastasia E. Goldt
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
| | - Polina M. Kalachikova
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
- School of Chemical Engineering, Aalto University, Kemistintie 1, 02015 Espoo, Finland
| | - Javier A. Ramirez B.
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
| | - Masashi Suzuki
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Saitama, Japan
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe 350-8585, Saitama, Japan
| | - Alexey N. Zhigach
- V.L. Talrose Institute for Energy Problems of Chemical Physics at Federal Research Center of Chemical Physics, Russian Academy of Sciences, Leninsky Prospect 38 Building 2, 119334 Moscow, Russia
| | - Asma Ben Salah
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Saitama, Japan
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe 350-8585, Saitama, Japan
| | | | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
| | - Dmitry V. Krasnikov
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Saitama, Japan
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe 350-8585, Saitama, Japan
| | - Evgeny N. Nikolaev
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
| | - Albert G. Nasibulin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia
- School of Chemical Engineering, Aalto University, Kemistintie 1, 02015 Espoo, Finland
| |
Collapse
|
9
|
Gubanova EM, Usov NA, Oleinikov VA. Heating ability of elongated magnetic nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1404-1412. [PMID: 35028264 PMCID: PMC8722399 DOI: 10.3762/bjnano.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Low-frequency hysteresis loops and specific absorption rate (SAR) of various assemblies of elongated spheroidal magnetite nanoparticles have been calculated for a range of particle semiaxis ratios a/b = 1.0-3.0. The SAR of a dilute randomly oriented assembly of magnetite nanoparticles in an alternating magnetic field of moderate frequency, f = 300 kHz, and amplitude H 0 = 100-200 Oe is shown to decrease significantly with an increase in the aspect ratio of nanoparticles. In addition, there is a narrowing and shift of the intervals of optimal particle diameters towards smaller particle sizes. However, the orientation of a dilute assembly of elongated nanoparticles in a magnetic field leads to an almost twofold increase in SAR at the same frequency and amplitude of the alternating magnetic field, the range of optimal particle diameters remaining unchanged. The effect of the magneto-dipole interaction on the SAR of a dilute assembly of oriented clusters of elongated magnetite nanoparticles has also been investigated depending on the volume fraction of nanoparticles in a cluster. It has been found that the SAR of the assembly of oriented clusters decreases by approximately an order of magnitude with an increase in the volume fraction of nanoparticles in a cluster in the range of 0.04-0.2.
Collapse
Affiliation(s)
| | - Nikolai A Usov
- National Research Nuclear University “MEPhI”, 115409, Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia
| | | |
Collapse
|
10
|
Fizesan I, Iacovita C, Pop A, Kiss B, Dudric R, Stiufiuc R, Lucaciu CM, Loghin F. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics 2021; 13:2148. [PMID: 34959431 PMCID: PMC8708233 DOI: 10.3390/pharmaceutics13122148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022] Open
Abstract
The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs' hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 μg/cm2). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 μg/cm2. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells.
Collapse
Affiliation(s)
- Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Bela Kiss
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| |
Collapse
|
11
|
Iacoviță C, Fizeșan I, Nitica S, Florea A, Barbu-Tudoran L, Dudric R, Pop A, Vedeanu N, Crisan O, Tetean R, Loghin F, Lucaciu CM. Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro. Pharmaceutics 2021; 13:2026. [PMID: 34959308 PMCID: PMC8706665 DOI: 10.3390/pharmaceutics13122026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Increasing the biocompatibility, cellular uptake, and magnetic heating performance of ferromagnetic iron-oxide magnetic nanoparticles (F-MNPs) is clearly required to efficiently induce apoptosis of cancer cells by magnetic hyperthermia (MH). Thus, F-MNPs were coated with silica layers of different thicknesses via a reverse microemulsion method, and their morphological, structural, and magnetic properties were evaluated by multiple techniques. The presence of a SiO2 layer significantly increased the colloidal stability of F-MNPs, which also enhanced their heating performance in water with almost 1000 W/gFe as compared to bare F-MNPs. The silica-coated F-MNPs exhibited biocompatibility of up to 250 μg/cm2 as assessed by Alamar Blues and Neutral Red assays on two cancer cell lines and one normal cell line. The cancer cells were found to internalize a higher quantity of silica-coated F-MNPs, in large endosomes, dispersed in the cytoplasm or inside lysosomes, and hence were more sensitive to in vitro MH treatment compared to the normal ones. Cellular death of more than 50% of the malignant cells was reached starting at a dose of 31.25 μg/cm2 and an amplitude of alternating magnetic field of 30 kA/m at 355 kHz.
Collapse
Affiliation(s)
- Cristian Iacoviță
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (C.I.); (S.N.); (N.V.)
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (C.I.); (S.N.); (N.V.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath St., 400293 Cluj-Napoca, Romania
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (R.D.); (R.T.)
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Nicoleta Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (C.I.); (S.N.); (N.V.)
| | - Ovidiu Crisan
- Department of Organic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes St., 400012 Cluj-Napoca, Romania;
| | - Romulus Tetean
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (R.D.); (R.T.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (C.I.); (S.N.); (N.V.)
| |
Collapse
|
12
|
Mdlovu NV, Lin KS, Weng MT, Hsieh CC, Lin YS, Carrera Espinoza MJ. In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Vamvakidis K, Maniotis N, Dendrinou-Samara C. Magneto-fluorescent nanocomposites: experimental and theoretical linkage for the optimization of magnetic hyperthermia. NANOSCALE 2021; 13:6426-6438. [PMID: 33885523 DOI: 10.1039/d1nr00121c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magneto-fluorescent nanocomposites have been recognized as an emerging class of materials displaying great potential for improved magnetic hyperthermia assisted by optical imaging. In this study, we have designed a series of hybrid composites that consist of zinc doped ZnxFe3-xO4 ferrites functionalized by polyethylene-glycol (PEG8000) and an orange-emitting platinum complex [Pt(phen)Cl2]. Experimental and theoretical studies on the optimization of their magnetically-mediated heating properties were conducted. PEG was assembled around particles' surface by two different approaches; in situ and post-PEGylation. PEGylation ensured the optimal distance between the magnetic core and Pt(ii)-complex to maintain significant luminescence in the composite. The successful inclusion of the complex to the organic matrix was confirmed by a variety of spectroscopic techniques. A theoretical model was developed, based on linear response theory, in order to examine the composites' power losses dependence on their properties. Within this model, inter-particle interactions were quantified by inserting a mean dipolar energy term in the estimation of Néel relaxation time, and consequently, the size and concentration that maximize power loss were derived (20 nm and 4 mg mL-1). Moreover, a decrease in the anisotropy of nanoparticles resulted in an increase in specific loss power values. Theoretical estimations are validated by experimental data when heating aqueous dispersions of composites in 24 kA m-1, 765 kHz AMF for various values of concentration and size. Magnetic hyperthermia results showed that the theory-predicted values of optimum concentration and size delivered the maximum-specific loss power which was found equal to 545 W g-1. By the present approach, a quantitative link between the particles' dipolar interactions and their heating properties is established, while opening new perspectives to nanotheranostic applications.
Collapse
Affiliation(s)
- Kosmas Vamvakidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
14
|
Mdlovu NV, Lin KS, Chen Y, Wu CM. Formulation of magnetic nanocomposites for intracellular delivery of micro-RNA for MYCN inhibition in neuroblastoma. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@NiFe2O4 Spinel Ferrite. COATINGS 2020. [DOI: 10.3390/coatings10121200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Statistics show that more than 700 thousand tons of dye are produced annually across the globe. Around 10–20% of this is used in industrial processes such as printing and dyeing, while about 50% of the dye produced is discharged into the environment without proper physicochemical treatment. Even trace amounts of dye in water can reduce oxygen solubility and have carcinogenic, mutagenic, and toxic effects on aquatic organisms. Therefore, before dye-containing wastewater is discharged into the environment, it must be properly treated. The present study investigates the green synthesis of nickel ferrite NiFe2O4 (NIFE) spinel magnetic nanoparticles (MNPs) via chemical coprecipitation of a solution of Ni2+/Fe3+ in the presence of a biopolymer blend of chitosan (CT) and ascorbic acid (AS). The magnetic nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDX), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), and vibrating-sample magnetometry (VSM). The material was further explored as a catalyst for the photocatalytic degradation of malachite green (MG) under visible light irradiation coupled with ultrasonic waves. The combination of 90 min of visible solar light irradiation with 6.35 W·mL−1 ultrasonic power at pH 8 resulted in 99% of the photocatalytic efficiency of chitosan-ascorbic acid@NIFE (CTAS@NIFE) catalyst for 70 mg·L−1 MG. The quenching of the photocatalytic efficiency from 98% to 64% in the presence of isopropyl alcohol (IPA) suggested the involvement of hydroxy (•OH) radicals in the mineralization process of MG. The high regression coefficients (R2) of 0.99 for 35, 55, and 70 mg·L−1 MG indicated the sonophotocatalysis of MG by CTAS@NIFE was best defined by a pseudo first-order kinetic model. The mechanism involves the adsorption of MG on the catalyst surface in the first step and thereby mineralization of the MG by the generated hydroxyl radicals (•OH) under the influence of visible radiation coupled with 6.34 W·mL−1 ultrasonic power. In the present study the application of photodegradation process with sonochemistry results in 99% of MG mineralization without effecting the material structure unlike happens in the case adsorption process. So, the secondary pollution (generally happens in case of adsorption) can be avoided by reusing the spent material for another application instead of disposing it. Thus, the ecofriendly synthesis protocol, ease in design of experimentation like use of solar irradiation instead of electric power lamps, reusability and high efficiency of the material suggested the study to be potentially economical for industrial development at pilot scale towards wastewater remediation.
Collapse
|
16
|
Das A, Mohanty S, Kumar R, Kuanr BK. Tailoring the Design of a Lanthanide Complex/Magnetic Ferrite Nanocomposite for Efficient Photoluminescence and Magnetic Hyperthermia Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42016-42029. [PMID: 32799438 DOI: 10.1021/acsami.0c13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we have designed a magnetoluminescent nanocomposite as a single platform for optical imaging and safe magnetic hyperthermia therapy by optimizing the composition of magnetic nanoparticles and controlling the conjugation strategy of the luminescent lanthanide complex. We have synthesized CoxMn1-xFe2O4 nanoferrites, with x = 0 to 1 in 0.25 steps, from soft (MnFe2O4) to hard (CoFe2O4) ferrites of size (∼20 nm) following a one-pot oxidative hydrolysis method. We have performed the induction heating study with an aqueous dispersion of nanoferrites using an alternating magnetic field (AMF) of 12 kAm-1, 335 kHz. This shows an enhancement of heating efficiency with the increment of manganese content and attains the highest intrinsic loss power (ILP) of 6.47 nHm2 kg-1 for MnFe2O4 nanoparticles. We have then fabricated a magnetoluminescent nanocomposite employing MnFe2O4 nanoparticles as it shows outstanding heating performance within the threshold limit of AMF (≤5 × 109 Am-1 s-1). A layer-by-layer coating strategy is followed, where a pure silica coating of thickness ∼10 nm on MnFe2O4 nanoparticles is achieved before encapsulation of the luminescent complex of europium(III), 2-thenoyltrifluoroacetone, and 1,10-phenanthroline in the second layer of silica. This is to ensure the optimal distance between the magnetic core and Eu(III)-complex to pertain significant luminescence in the composite (Eu-MnFe2O4). The photoluminescence spectra of an aqueous dispersion of Eu-MnFe2O4 by excitation in the UV region show a narrow and strong emission at 612 nm, which is stable even after 72 h. The induction heating study of an aqueous dispersion of Eu-MnFe2O4 in 12 kAm-1, 335 kHz AMF shows an ILP as 4.02 nHm2 kg-1, which is remarkably higher than the hyperthermia efficiency of reported magnetoluminescent nanoparticles.
Collapse
Affiliation(s)
- Anindita Das
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonali Mohanty
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|