1
|
Pereira PML, Fernandes BT, dos Santos VR, Cabral WRC, Lovo-Martins MI, Alonso L, Lancheros CAC, de Paula JC, Camargo PG, Suzukawa HT, Alonso A, Macedo F, Nakamura CV, Tavares ER, de Lima Ferreira Bispo M, Yamauchi LM, Pinge-Filho P, Yamada-Ogatta SF. Antiprotozoal Activity of Benzoylthiourea Derivatives against Trypanosoma cruzi: Insights into Mechanism of Action. Pathogens 2023; 12:1012. [PMID: 37623972 PMCID: PMC10457850 DOI: 10.3390/pathogens12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
For decades, only two nitroheterocyclic drugs have been used as therapeutic agents for Chagas disease. However, these drugs present limited effectiveness during the chronic phase, possess unfavorable pharmacokinetic properties, and induce severe adverse effects, resulting in low treatment adherence. A previous study reported that N-(cyclohexylcarbamothioyl) benzamide (BTU-1), N-(tert-butylcarbamothioyl) benzamide (BTU-2), and (4-bromo-N-(3-nitrophenyl) carbamothioyl benzamide (BTU-3) present selective antiprotozoal activity against all developmental forms of Trypanosoma cruzi Y strain. In this study, we investigated the mechanism of action of these compounds through microscopy and biochemical analyses. Transmission electron microscopy analysis showed nuclear disorganization, changes in the plasma membrane with the appearance of blebs and extracellular arrangements, intense vacuolization, mitochondrial swelling, and formation of myelin-like structures. Biochemical results showed changes in the mitochondrial membrane potential, reactive oxygen species content, lipid peroxidation, and plasma membrane fluidity. In addition, the formation of autophagic vacuoles was observed. These findings indicate that BTU-1, BTU-2, and BTU-3 induced profound morphological, ultrastructural, and biochemical alterations in epimastigote forms, triggering an autophagic-dependent cell death pathway.
Collapse
Affiliation(s)
- Patrícia Morais Lopes Pereira
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Bruna Terci Fernandes
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Vitória Ribeiro dos Santos
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Weslei Roberto Correia Cabral
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Maria Isabel Lovo-Martins
- Laboratory of Experimental Immunopathology, Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina 86057-970, Brazil;
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiania 74690-900, Brazil; (L.A.); (A.A.)
| | | | | | - Priscila Goes Camargo
- Laboratory of Medicinal Molecules Synthesis, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil; (P.G.C.); (M.d.L.F.B.)
| | - Helena Tiemi Suzukawa
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Antônio Alonso
- Institute of Physics, Federal University of Goiás, Goiania 74690-900, Brazil; (L.A.); (A.A.)
| | - Fernando Macedo
- Laboratory of Medicinal Molecules Synthesis, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil; (P.G.C.); (M.d.L.F.B.)
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringa 87020-900, Brazil;
| | - Eliandro Reis Tavares
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Marcelle de Lima Ferreira Bispo
- Laboratory of Medicinal Molecules Synthesis, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil; (P.G.C.); (M.d.L.F.B.)
| | - Lucy Megumi Yamauchi
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Phileno Pinge-Filho
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Experimental Immunopathology, Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina 86057-970, Brazil;
| | - Sueli Fumie Yamada-Ogatta
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| |
Collapse
|
2
|
Alonso L, Dorta ML, Alonso A. Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183977. [PMID: 35654148 DOI: 10.1016/j.bbamem.2022.183977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Spin label electron paramagnetic resonance (EPR) spectroscopy was used to study the mechanisms of action of ivermectin and curcumin against Leishmania (L.) amazonensis promastigotes. EPR spectra showed that treatment of the parasites with both compounds results in plasma membrane rigidity due to oxidative processes. With the IC50 and EPR measurements for assays using different parasite concentrations, estimations could be made for the membrane-water partition coefficient (KM/W), and the concentration of the compound in the membrane (cm50) and in the aqueous phase (cw50), which inhibits cell growth by 50%. The KM/W values indicated that ivermectin has a greater affinity than curcumin for the parasite membrane. Therefore, the activity of ivermectin was higher for experiments with low cell concentrations, but for concentrations greater than 1.5 × 108 parasites/mL the compounds did not show significantly different results. The cm50 values indicated that the concentration of compound in the membrane leading to growth inhibition or membrane alteration is approximately 1 M for both ivermectin and curcumin. This high membrane concentration suggests that many ivermectin molecules per chlorine channel are needed to cause an increase in chlorine ion influx.
Collapse
Affiliation(s)
- Lais Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Alonso L, Menegatti R, Dorta ML, Alonso A. Plasma membrane rigidity effects of 4-hydroxy-2-nonenal in Leishmania, erythrocyte and macrophage. Toxicol In Vitro 2021; 79:105294. [PMID: 34896601 DOI: 10.1016/j.tiv.2021.105294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is a reactive aldehyde produced by cells under conditions of oxidative stress, which has been shown to react with proteins and phosphatidylethanolamine in biological membranes. Using electron paramagnetic resonance (EPR) spectroscopy of a spin label it was demonstrated that 2 h of treatment with HNE causes membrane rigidity in promastigotes of Leishmania (L.) amazonensis, J774.A1 macrophages and erythrocytes. Remarkable fluidity-reducing effects on the parasite membrane were observed at HNE concentrations approximately 4-fold lower than in the case of erythrocyte and macrophage membranes. Autofluorescence of the parasites in PBS suspension (1 × 107 cell/mL) with excitation at 354 nm showed a linear increase of intensity in the range of 400 to 600 nm over 3 h after treatment with 30 μM HNE. Parasite ghosts prepared after this period of HNE treatment showed a high degree of membrane rigidity. Bovine serum albumin (BSA) in PBS treated with HNE for 2 h showed an increase in molecular dynamics and suffered a decrease in its ability to bind a lipid probe. In addition, the antiproliferative activity of L. amazonensis promastigotes, macrophage cytotoxicity and hemolytic potential were assessed for HNE. An IC50 of 24 μM was found, which was a concentration > 10 times lower than the cytotoxic and hemolytic concentrations of HNE. These results indicate that the action of HNE has high selectivity indices for the parasite as opposed to the macrophage and erythrocyte.
Collapse
Affiliation(s)
- Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Medical Pharmaceutical Chemistry Laboratory, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Miriam Leandro Dorta
- Institute of Tropical Pathology and Public Health, Department of Immunology and General Pathology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Nishi L, Sanfelice RADS, da Silva Bortoleti BT, Tomiotto-Pellissier F, Silva TF, Evangelista FF, Lazarin-Bidóia D, Costa IN, Pavanelli WR, Conchon Costa I, Baptista ATA, Bergamasco R, Falavigna-Guilherme AL. Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology 2021; 148:1447-1457. [PMID: 34187608 PMCID: PMC11010153 DOI: 10.1017/s0031182021001086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, and an important problem of public health. The current treatment for toxoplasmosis is the combination of pyrimethamine and sulphadiazine, which do not act in the chronic phase of toxoplasmosis and have several side-effects. This study evaluated the anti-T. gondii activity and potential mechanism of Moringa oleifera seeds’ aqueous extract in vitro. The concentration of M. oleifera extract in HeLa cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assays. The presence of T. gondii was assessed by quantitative polymerase chain reaction and toluidine blue staining. Pyrimethamine and sulphadiazine were used as drug controls. Modifications in T. gondii morphology and ultrastructure were observed by electron microscopy. In vitro, the M. oleifera extract had no toxic effect on HeLa cells at concentrations below 50 μg mL−1. Moringa oleifera extract inhibits T. gondii invasion and intracellular proliferation with similar results for sulphadiazine + pyrimethamine, and also shows cellular nitric oxide production at a concentration of 30 μg mL−1. Electron microscopy analyses indicated structural and ultrastructural modifications in tachyzoites after treatment. We also observed an increase in reactive oxygen species production and a loss of mitochondrial membrane integrity. Nile Red staining assays demonstrated a lipid accumulation. Annexin V–fluorescein isothiocyanate and propidium iodide staining demonstrated that the main action of M. oleifera extract in T. gondii tachyzoites was compatible with late apoptosis. In conclusion, M. oleifera extract has anti-T. gondii activity in vitro and might be a promising substance for the development of a new anti-T. gondii drug.
Collapse
Affiliation(s)
- Letícia Nishi
- Graduate Program in Health Science, State University of Maringá, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz-PR), Curitiba, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz-PR), Curitiba, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Fernanda Ferreira Evangelista
- Graduate Program in Health Science, State University of Maringá, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidóia
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Ivete Conchon Costa
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Aline Takaoka Alves Baptista
- Departament of Food and Chemical Engineering, Federal University of Technology – Paraná – UTFPR, Câmpus Campo Mourão, Via Rosalina Maria Dos Santos, 1233, Zip Code 87301-899, Campo Mourão, Paraná, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| | - Ana Lúcia Falavigna-Guilherme
- Graduate Program in Health Science, State University of Maringá, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
5
|
Sakyi PO, Amewu RK, Devine RNOA, Ismaila E, Miller WA, Kwofie SK. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:489-544. [PMID: 34260050 PMCID: PMC8279035 DOI: 10.1007/s13659-021-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
Despite advancements in the areas of omics and chemoinformatics, potent novel biotherapeutic molecules with new modes of actions are needed for leishmaniasis. The socioeconomic burden of leishmaniasis remains alarming in endemic regions. Currently, reports from existing endemic areas such as Nepal, Iran, Brazil, India, Sudan and Afghanistan, as well as newly affected countries such as Peru, Bolivia and Somalia indicate concerns of chemoresistance to the classical antimonial treatment. As a result, effective antileishmanial agents which are safe and affordable are urgently needed. Natural products from both flora and fauna have contributed immensely to chemotherapeutics and serve as vital sources of new chemical agents. This review focuses on a systematic cross-sectional view of all characterized anti-leishmanial compounds from natural sources over the last decade. Furthermore, IC50/EC50, cytotoxicity and suggested mechanisms of action of some of these natural products are provided. The natural product classification includes alkaloids, terpenes, terpenoids, and phenolics. The plethora of reported mechanisms involve calcium channel inhibition, immunomodulation and apoptosis. Making available enriched data pertaining to bioactivity and mechanisms of natural products complement current efforts geared towards unraveling potent leishmanicides of therapeutic relevance.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Emahi Ismaila
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Accra, Ghana
| |
Collapse
|
6
|
Alonso L, Mendanha SA, Dorta ML, Alonso A. Analysis of the Interactions of Amphotericin B with the Leishmania Plasma Membrane Using EPR Spectroscopy. J Phys Chem B 2020; 124:10157-10165. [DOI: 10.1021/acs.jpcb.0c07721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lais Alonso
- Instituto Federal Goiano, Trindade 76300-000, Goiás, Brazil
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | | | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| |
Collapse
|
7
|
Membrane dynamics in Leishmania amazonensis and antileishmanial activities of β-carboline derivatives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183473. [PMID: 32937102 DOI: 10.1016/j.bbamem.2020.183473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
Two β-carboline compounds, 8i and 6d, demonstrated in vitro antileishmanial activity against Leishmania (L.) amazonensis promastigotes similar to that of miltefosine (MIL). Estimates of the membrane-water partition coefficient (KM/W) and the compound concentrations in the membrane (cm50) and aqueous phase (cw50) for half maximal inhibitory concentration were made. Whereas these biophysical parameters for 6d were not significantly different from those reported for MIL, 8i showed lower affinity for the parasite membrane (lower KM/W) and a lower concentration of the compound in the membrane required to inhibit the growth of the parasite (lower cm50). A 2-hour treatment of Leishmania promastigotes with the compounds 8i and 6d caused membrane rigidity in a concentration-dependent manner, as demonstrated by the electron paramagnetic resonance (EPR) technique and spin label method. This increased rigidity of the membrane was interpreted to be associated with the occurrence of cross-linking of oxidized cytoplasmic proteins to the parasite membrane skeleton. Importantly, the two β-carboline-oxazoline derivatives showed low hemolytic action, both in experiments with isolated red blood cells or with whole blood, denoting their great Leishmania/erythrocyte selectivity index. Using electron microscopy, changes in the membrane of both the amastigote and promastigote form of the parasite were confirmed, and it was demonstrated that compounds 8i and 6d decreased the number of amastigotes in infected murine macrophages. Furthermore, 8i and 6d were more toxic to the protozoa than to J774A.1 macrophages, with treated promastigotes exhibiting a decrease in cell volume, mitochondrial membrane potential depolarization, accumulation of lipid bodies, increased ROS production and changes in the cell cycle.
Collapse
|
8
|
Antileishmanial activity of the chalcone derivative LQFM064 associated with reduced fluidity in the parasite membrane as assessed by EPR spectroscopy. Eur J Pharm Sci 2020; 151:105407. [DOI: 10.1016/j.ejps.2020.105407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
|
9
|
Hatton O, Stitzlein L, Dudley RW, Charvat RA. Evaluating the Antiparasitic Activity of Novel BPZ Derivatives Against Toxoplasma gondii. Microorganisms 2020; 8:microorganisms8081159. [PMID: 32751616 PMCID: PMC7466062 DOI: 10.3390/microorganisms8081159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Prevalence studies revealed that one-third of the human population is chronically infected with Toxoplasma gondii. Presently, such infections are without medical treatment that effectively eradicates the parasite once it is in its latent form. Moreover, the therapeutics used to treat acute infections are poorly tolerated by patients and also cause the parasite to convert into long-lasting tissue cysts. Hence, there is a dire need for compounds with antiparasitic activity against all forms of T. gondii. This study examines the antiparasitic capacity of nine novel bisphenol Z (BPZ) derivatives to determine whether they possessed any activity that prevented T. gondii replication. To begin assessing the efficacy of the novel derivatives, parasites were treated with increasing concentrations of the compounds, then doubling assays and MitoTracker staining were performed. Three of the nine compounds demonstrated strong inhibitory activity, i.e., parasite replication significantly decreased with higher concentrations. Additionally, many of the treated parasites exhibited decreases in fluorescent signaling and disruption of mitochondrial morphology. These findings suggest that bisphenol Z compounds disrupt mitochondrial function to inhibit parasite replication and may provide a foundation for the development of new and effective treatment modalities against T. gondii.
Collapse
Affiliation(s)
- Olivia Hatton
- Department of Biology, University of Findlay, Findlay, OH 45840, USA;
| | - Lea Stitzlein
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA; (L.S.); (R.W.D.)
| | - Richard W. Dudley
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA; (L.S.); (R.W.D.)
| | - Robert A. Charvat
- Department of Biology, University of Findlay, Findlay, OH 45840, USA;
- Correspondence: ; Tel.: +1-419-434-5746
| |
Collapse
|
10
|
Sudatti DB, Duarte HM, Soares AR, Salgado LT, Pereira RC. New Ecological Role of Seaweed Secondary Metabolites as Autotoxic and Allelopathic. FRONTIERS IN PLANT SCIENCE 2020; 11:347. [PMID: 32523586 PMCID: PMC7261924 DOI: 10.3389/fpls.2020.00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Allelopathy and autotoxicity are well-known biological processes in angiosperms but are very little explored or even unknown in seaweeds. In this study, extract and major pure compounds from two distinct populations of the red seaweed Laurencia dendroidea were investigated to evaluate the effect of autotoxicity through auto- and crossed experiments under laboratory conditions, using chlorophyll fluorescence imaging to measure inhibition of photosynthesis (ΦPSII) as a variable response. Individuals of L. dendroidea from Azeda beach were inhibited by their own extract (IC50 = 219 μg/ml) and the major compound elatol (IC50 = 87 μg/ml); both chemicals also inhibited this seaweed species from Forno beach (IC50 = 194 μg/ml for the extract and IC50 = 277 μg/ml for elatol). By contrast, the extract of L. dendroidea from Forno and its major compound obtusol showed no inhibitory effect in individuals of both populations; but obtusol was insoluble to be tested at higher concentrations, which could be active as observed for elatol. The Azeda population displayed higher susceptibility to the Azeda extract and to elatol, manifested on the first day, unlike Forno individuals, in which the effect was only detected on the second day; and inhibition of ΦPSII was more pronounced at apical than basal portions of the thalli of L. dendroidea. This first finding of seaweed autotoxicity and allelopathic effects revealed the potential of the chemistry of secondary metabolites for intra- and inter-populational interactions, and for structuring seaweed populations.
Collapse
Affiliation(s)
- Daniela Bueno Sudatti
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Heitor Monteiro Duarte
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | | | - Renato Crespo Pereira
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10:93. [PMID: 30700697 PMCID: PMC6353990 DOI: 10.1038/s41419-019-1370-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Especially in tropical and developing countries, the clinically relevant protozoa Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness) and Leishmania species (leishmaniasis) stand out and infect millions of people worldwide leading to critical social-economic implications. Low-income populations are mainly affected by these three illnesses that are neglected by the pharmaceutical industry. Current anti-trypanosomatid drugs present variable efficacy with remarkable side effects that almost lead to treatment discontinuation, justifying a continuous search for alternative compounds that interfere with essential and specific parasite pathways. In this scenario, the triggering of trypanosomatid cell death machinery emerges as a promising approach, although the exact mechanisms involved in unicellular eukaryotes are still unclear as well as the controversial biological importance of programmed cell death (PCD). In this review, the mechanisms of autophagy, apoptosis-like cell death and necrosis found in pathogenic trypanosomatids are discussed, as well as their roles in successful infection. Based on the published genomic and proteomic maps, the panel of trypanosomatid cell death molecules was constructed under different experimental conditions. The lack of PCD molecular regulators and executioners in these parasites up to now has led to cell death being classified as an unregulated process or incidental necrosis, despite all morphological evidence published. In this context, the participation of metacaspases in PCD was also not described, and these proteases play a crucial role in proliferation and differentiation processes. On the other hand, autophagic phenotype has been described in trypanosomatids under a great variety of stress conditions (drugs, starvation, among others) suggesting that this process is involved in the turnover of damaged structures in the protozoa and is not a cell death pathway. Death mechanisms of pathogenic trypanosomatids may be involved in pathogenesis, and the identification of parasite-specific regulators could represent a rational and attractive alternative target for drug development for these neglected diseases.
Collapse
|
12
|
Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif 2018; 52:e12563. [PMID: 30525268 PMCID: PMC6496801 DOI: 10.1111/cpr.12563] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac function is determined by the dynamic equilibrium of various cell types and the extracellular matrix that composes the heart. Cardiovascular diseases (CVDs), especially atherosclerosis and myocardial infarction, are often accompanied by cell death and acute/chronic inflammatory reactions. Caspase‐dependent pyroptosis is characterized by the activation of pathways leading to the activation of NOD‐like receptors, especially the NLRP3 inflammasome and its downstream effector inflammatory factors interleukin (IL)‐1β and IL‐18. Many studies in the past decade have investigated the role of pyroptosis in CVDs. The findings of these studies have led to the development of therapeutic approaches based on the regulation of pyroptosis, and some of these approaches are in clinical trials. This review summarizes the molecular mechanisms, regulation and cellular effects of pyroptosis briefly and then discusses the current pyroptosis studies in CVD research.
Collapse
Affiliation(s)
- Zeng Zhaolin
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Li Guohua
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Wu Shiyuan
- Yueyang Maternal and Child Health Hospital, Yueyang, China
| | - Wang Zuo
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
13
|
Zhaolin Z, Jiaojiao C, Peng W, Yami L, Tingting Z, Jun T, Shiyuan W, Jinyan X, Dangheng W, Zhisheng J, Zuo W. OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol 2018; 234:7475-7491. [PMID: 30370524 DOI: 10.1002/jcp.27509] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Pyroptosis participates in the formation and development of atherosclerosis (As) by promoting inflammatory factor release and is closely related to the stability of atherosclerotic plaque. MicroRNAs can regulate the expression of target genes at the posttranscriptional level. Previous studies have shown that miR-125a-5p increases in hyperlipidemic-hyperglycemic conditions and is involved in apoptosis, but its specific role in pyroptosis and As remains unclear. We propose that miR-125a-5p may be implicated in oxidized low-density lipoprotein (oxLDL)-induced vascular endothelial cells (VECs) pyroptosis and therefore conducted the current study. We observed that miR-125a-5p can inhibit tet methylcytosine dioxygenase 2 (TET2) expression at the posttranscription level, resulting in abnormal DNA methylation, mitochondrial dysfunction, and increased reactive oxygen species production, activated nuclear factor-κB that induces activation of inflammasome and maturation, release of proinflammatory cytokines interleukin (IL)-1β and IL-18, and pyroptosis. Given the role of VECs in vascular physiology, oxLDL-induced VEC pyroptosis may promote the development of As. Our current study reveals a novel pathway associated with pyroptosis program regulation, which comprises miR-125a-5p and TET2 in VECs. Modulation of their expression levels may serve as a potential target for therapeutic strategies of As.
Collapse
Affiliation(s)
- Zeng Zhaolin
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Chen Jiaojiao
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Wu Peng
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China.,YueYang Maternal-Child Medicine Health Hospital, Cooperative Innovation Base of University of South China, Hengyang, Hunan, China
| | - Liu Yami
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhang Tingting
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Jun
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Wu Shiyuan
- YueYang Maternal-Child Medicine Health Hospital, Cooperative Innovation Base of University of South China, Hengyang, Hunan, China
| | - Xiao Jinyan
- YueYang Maternal-Child Medicine Health Hospital, Cooperative Innovation Base of University of South China, Hengyang, Hunan, China
| | - Wei Dangheng
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China.,YueYang Maternal-Child Medicine Health Hospital, Cooperative Innovation Base of University of South China, Hengyang, Hunan, China
| | - Jiang Zhisheng
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Wang Zuo
- Key Lab for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China.,YueYang Maternal-Child Medicine Health Hospital, Cooperative Innovation Base of University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Peters TL, Tillotson J, Yeomans AM, Wilmore S, Lemm E, Jiménez-Romero C, Amador LA, Li L, Amin AD, Pongtornpipat P, Zerio CJ, Ambrose AJ, Paine-Murrieta G, Greninger P, Vega F, Benes CH, Packham G, Rodríguez AD, Chapman E, Schatz JH. Target-Based Screening against eIF4A1 Reveals the Marine Natural Product Elatol as a Novel Inhibitor of Translation Initiation with In Vivo Antitumor Activity. Clin Cancer Res 2018; 24:4256-4270. [PMID: 29844128 PMCID: PMC6500731 DOI: 10.1158/1078-0432.ccr-17-3645] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022]
Abstract
Purpose: The DEAD-box RNA helicase eIF4A1 carries out the key enzymatic step of cap-dependent translation initiation and is a well-established target for cancer therapy, but no drug against it has entered evaluation in patients. We identified and characterized a natural compound with broad antitumor activities that emerged from the first target-based screen to identify novel eIF4A1 inhibitors.Experimental Design: We tested potency and specificity of the marine compound elatol versus eIF4A1 ATPase activity. We also assessed eIF4A1 helicase inhibition, binding between the compound and the target including binding site mutagenesis, and extensive mechanistic studies in cells. Finally, we determined maximum tolerated dosing in vivo and assessed activity against xenografted tumors.Results: We found elatol is a specific inhibitor of ATP hydrolysis by eIF4A1 in vitro with broad activity against multiple tumor types. The compound inhibits eIF4A1 helicase activity and binds the target with unexpected 2:1 stoichiometry at key sites in its helicase core. Sensitive tumor cells suffer acute loss of translationally regulated proteins, leading to growth arrest and apoptosis. In contrast to other eIF4A1 inhibitors, elatol induces markers of an integrated stress response, likely an off-target effect, but these effects do not mediate its cytotoxic activities. Elatol is less potent in vitro than the well-studied eIF4A1 inhibitor silvestrol but is tolerated in vivo at approximately 100× relative dosing, leading to significant activity against lymphoma xenografts.Conclusions: Elatol's identification as an eIF4A1 inhibitor with in vivo antitumor activities provides proof of principle for target-based screening against this highly promising target for cancer therapy. Clin Cancer Res; 24(17); 4256-70. ©2018 AACR.
Collapse
Affiliation(s)
- Tara L Peters
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Alison M Yeomans
- Somers Cancer Science Building, University of Southampton, Southampton, United Kingdom
| | - Sarah Wilmore
- University of Southampton, Southampton, United Kingdom
| | - Elizabeth Lemm
- Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - Carlos Jiménez-Romero
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Luis A Amador
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Lingxiao Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit D Amin
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Division of Hematopathology, Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Graham Packham
- Cancer Research UK Centre, University of Southampton, Southampton, United Kingdom
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Eli Chapman
- College of Pharmacy, University of Arizona, Tucson, Arizona.
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
15
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
16
|
C5 induces different cell death pathways in promastigotes of Leishmania amazonensis. Chem Biol Interact 2016; 256:16-24. [DOI: 10.1016/j.cbi.2016.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
|
17
|
Martins SC, Lazarin-Bidóia D, Desoti VC, Falzirolli H, da Silva CC, Ueda-Nakamura T, Silva SDO, Nakamura CV. 1,3,4-Thiadiazole derivatives of R-(+)-limonene benzaldehyde-thiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress. Microbes Infect 2016; 18:787-797. [PMID: 27484335 DOI: 10.1016/j.micinf.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
This work evaluated the in vitro and in vivo activity of TDZ 2 on Trypanosoma cruzi amastigotes and determined the possible mechanism of action of this compound on T. cruzi death. TDZ 2 inhibited T. cruzi proliferation in vitro and had low haemolytic potential. It also induced morphological and ultrastructural alterations. We observed a reduction of cell volume, the depolarization of the mitochondrial membrane, an increase in ROS production, lipoperoxidation of the cell membrane, lipid bodies formation and production of nitric oxide, a decrease in reduced thiols levels and, presence of autophagic vacuoles. The in vivo study found a reduction of parasitemia in animals treated with TDZ 2 alone or combined with benznidazole. Altogether, the alterations induced by TDZ 2 point to an oxidative stress condition that lead to T. cruzi cell death.
Collapse
Affiliation(s)
- Solange C Martins
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Vânia C Desoti
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Hugo Falzirolli
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Cleuza C da Silva
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Sueli de O Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
18
|
In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis. Antimicrob Agents Chemother 2016; 60:3433-44. [PMID: 27001812 DOI: 10.1128/aac.02582-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·(-)) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·(-) concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis.
Collapse
|
19
|
Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Mar Drugs 2016; 14:md14020039. [PMID: 26907303 PMCID: PMC4771992 DOI: 10.3390/md14020039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.
Collapse
|
20
|
Salvador-Neto O, Gomes SA, Soares AR, Machado FLDS, Samuels RI, Nunes da Fonseca R, Souza-Menezes J, Moraes JLDC, Campos E, Mury FB, Silva JR. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae). Mar Drugs 2016; 14:md14020020. [PMID: 26821032 PMCID: PMC4771978 DOI: 10.3390/md14020020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/08/2022] Open
Abstract
Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound.
Collapse
Affiliation(s)
- Orlando Salvador-Neto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
| | - Simone Azevedo Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
| | - Fernanda Lacerda da Silva Machado
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
| | - Richard Ian Samuels
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Laboratório Integrado de Ciências Morfofuncionais (LICMF), Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, (INCT-EM), Rio de Janeiro 21941-590, Brazil.
| | - Jackson Souza-Menezes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Laboratório Integrado de Ciências Morfofuncionais (LICMF), Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, (INCT-EM), Rio de Janeiro 21941-590, Brazil.
| | - Jorge Luiz da Cunha Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, (INCT-EM), Rio de Janeiro 21941-590, Brazil.
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, (INCT-EM), Rio de Janeiro 21941-590, Brazil.
| | - Flávia Borges Mury
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, (INCT-EM), Rio de Janeiro 21941-590, Brazil.
| | - José Roberto Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM); Núcleo em Pesquisas Ecológicas e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro 27965-045, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, (INCT-EM), Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
21
|
Harizani M, Ioannou E, Roussis V. The Laurencia Paradox: An Endless Source of Chemodiversity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2016; 102:91-252. [PMID: 27380407 DOI: 10.1007/978-3-319-33172-0_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth's surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to the MarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.Red algae of the genus Laurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. Since mollusks feeding on Laurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed on Laurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.The chapter addresses: (1) the "Laurencia complex", the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.
Collapse
Affiliation(s)
- Maria Harizani
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| |
Collapse
|
22
|
Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EDF, Teixeira SMR, Machado CR. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:8-22. [DOI: 10.1016/j.mrrev.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
|
23
|
Cristina Desoti V, Lazarin-Bidóia D, Martins Ribeiro F, Cardoso Martins S, da Silva Rodrigues JH, Ueda-Nakamura T, Vataru Nakamura C, Farias Ximenes V, de Oliveira Silva S. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process. PLoS One 2015; 10:e0144033. [PMID: 26641473 PMCID: PMC4671608 DOI: 10.1371/journal.pone.0144033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
Abstract
Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.
Collapse
Affiliation(s)
- Vânia Cristina Desoti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Danielle Lazarin-Bidóia
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Fabianne Martins Ribeiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Solange Cardoso Martins
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Jean Henrique da Silva Rodrigues
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Tania Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Valdecir Farias Ximenes
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP, Brasil
| | - Sueli de Oliveira Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- * E-mail:
| |
Collapse
|
24
|
Portes JA, Souza TG, dos Santos TAT, da Silva LLR, Ribeiro TP, Pereira MD, Horn A, Fernandes C, DaMatta RA, de Souza W, Seabra SH. Reduction of Toxoplasma gondii Development Due to Inhibition of Parasite Antioxidant Enzymes by a Dinuclear Iron(III) Compound. Antimicrob Agents Chemother 2015; 59:7374-86. [PMID: 26392498 PMCID: PMC4649245 DOI: 10.1128/aac.00057-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan that can infect a wide range of vertebrate cells. Here, we describe the cytotoxic effects of the dinuclear iron compound [Fe(HPCINOL)(SO4)]2-μ-oxo, in which HPCINOL is the ligand 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, on T. gondii infecting LLC-MK2 host cells. This compound was not toxic to LLC-MK2 cells at concentrations of up to 200 μM but was very active against the parasite, with a 50% inhibitory concentration (IC50) of 3.6 μM after 48 h of treatment. Cyst formation was observed after treatment, as indicated by the appearance of a cyst wall, Dolichos biflorus lectin staining, and scanning and transmission electron microscopy characteristics. Ultrastructural changes were also seen in T. gondii, including membrane blebs and clefts in the cytoplasm, with inclusions similar to amylopectin granules, which are typically found in bradyzoites. An analysis of the cell death pathways in the parasite revealed that the compound caused a combination of apoptosis and autophagy. Fluorescence assays demonstrated that the redox environment in the LLC-MK2 cells becomes oxidant in the presence of the iron compound. Furthermore, a reduction in superoxide dismutase and catalase activities in the treated parasites and the presence of reactive oxygen species within the parasitophorous vacuoles were observed, indicating an impaired protozoan response against these radicals. These findings suggest that this compound disturbs the redox equilibrium of T. gondii, inducing cystogenesis and parasite death.
Collapse
Affiliation(s)
- J A Portes
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - T G Souza
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil
| | - T A T dos Santos
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil
| | - L L R da Silva
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil
| | - T P Ribeiro
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, RJ, Brazil
| | - M D Pereira
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, RJ, Brazil
| | - A Horn
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, UENF, Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil
| | - C Fernandes
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, UENF, Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil
| | - R A DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil
| | - W de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem (INBEB) and Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), UFRJ, Rio de Janeiro, RJ, Brazil Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ, Brazil
| | - S H Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Cortes LA, Castro L, Pesce B, Maya JD, Ferreira J, Castro-Castillo V, Parra E, Jara JA, López-Muñoz R. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity. PLoS One 2015; 10:e0136852. [PMID: 26317199 PMCID: PMC4552745 DOI: 10.1371/journal.pone.0136852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022] Open
Abstract
Chagas disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP+) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP+-C8, TPP+-C10, TPP+-C11, and TPP+-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP+-C10 and TPP+-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 μM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 μM). At 1 μM, TPP+-C10 and TPP+-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 μM, TPP+-C10 and TPP+-C12 significantly decreased the number of intracellular amastigotes (TPP+-C10: 24.3%, TPP+-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite’s DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP+-C10 and TPP+-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 μM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 μM. Taken together, these results indicate that the TPP+-C10 and TPP+-C12 derivatives of gallic acid are promising trypanocidal agents with mitochondrial activity.
Collapse
Affiliation(s)
- Leonel A. Cortes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Castro
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bárbara Pesce
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan D. Maya
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Ferreira
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vicente Castro-Castillo
- Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Eduardo Parra
- Laboratory of Experimental Biomedicine, University of Tarapacá, Iquique, Chile
| | - José A. Jara
- Unidad de Farmacología y Farmacogenética, ICOD, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- * E-mail: (RLM), (JAJ)
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (RLM), (JAJ)
| |
Collapse
|
26
|
Sesquiterpene lactones from Ambrosia spp. are active against a murine lymphoma cell line by inducing apoptosis and cell cycle arrest. Toxicol In Vitro 2015; 29:1529-36. [PMID: 26086122 DOI: 10.1016/j.tiv.2015.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022]
Abstract
Sesquiterpene lactones (STLs) are natural terpenoid compounds. They have been recognized as antitumor agents. The purpose of this investigation was to explore the antiproliferative effects of psilostachyin, psilostachyin C, peruvin and cumanin on the murine lymphoma cell line BW5147. Cells were treated with the STLs at different concentrations. Tritiated thymidine uptake was employed to determine cell proliferation. MTT assay was used to analyze cell viability. Flow cytometry assay with annexin V-FITC and propidium iodide was employed to evaluate cell death. Reactive oxygen species (ROS), mitochondrial membrane potential and cell cycle analysis were also evaluated by flow cytometry. Antioxidant enzymes activities were determined spectrophotometrically by kinetic assays. Results showed that these STLs inhibited cell proliferation in a concentration-dependent manner by exerting cytotoxicity through apoptosis. Psilostachyin C was the most active and the less toxic compound. This STL induced apoptosis with an impairment in mitochondrial membrane potential. Psilostachyin C was able to induce ROS generation, related to a modulation of the antioxidant enzymes activity. In addition, it induced cell cycle arrest in S phase. In conclusion, psilostachyin C was found to be active against lymphoma cells exerting both cytostatic and cytotoxic effects. These findings may provide a novel approach for lymphoma treatment.
Collapse
|
27
|
Do Carmo GM, Baldissera MD, Vaucher RA, Rech VC, Oliveira CB, Sagrillo MR, Boligon AA, Athayde ML, Alves MP, França RT, Lopes STA, Schwertz CI, Mendes RE, Monteiro SG, Da Silva AS. Effect of the treatment with Achyrocline satureioides (free and nanocapsules essential oil) and diminazene aceturate on hematological and biochemical parameters in rats infected by Trypanosoma evansi. Exp Parasitol 2014; 149:39-46. [PMID: 25499512 DOI: 10.1016/j.exppara.2014.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022]
Abstract
This study aimed to verify the effect of the treatment with A. satureioides essential oil (free and nanoencapsulated forms) and diminazene aceturate on hematological and biochemical variables in rats infected by Trypanosoma evansi. The 56 rats were divided into seven groups with eight rats each. Groups A, C and D were composed by uninfected animals, and groups B, E, F and G were formed by infected rats with T. evansi. Rats from groups A and B were used as negative and positive control, respectively. Rats from the groups C and E were treated with A. satureioides essential oil, and groups D and F were treated with A. satureioides nanoencapsulated essential oil. Groups C, D, E and F received one dose of oil (1.5 mL kg(-1)) during five consecutive days orally. Group G was treated with diminazene aceturate (D.A.) in therapeutic dose (3.5 mg kg(-1)) in an only dose. The blood samples were collected on day 5 PI for analyses of hematological (erythrocytes and leukocytes count, hemoglobin concentration, hematocrit, mean corpuscular and mean corpuscular hemoglobin concentration) and biochemical (glucose, triglycerides, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, urea and creatinine) variables. A. satureioides administered was able to maintain low parasitemia, mainly the nanoencapsulated form, on 5 days post infection. On the infected animals with T. evansi treated with A. satureioides essential oil (free and nanocapsules) the number of total leucocytes, lymphocytes and monocytes present was similar to uninfected rats, and different from infected and not-treated animals (leukocytosis). Treatment with A. satureioides in free form elevated levels of ALT and AST, demonstrating liver damage; however, treatment with nanoencapsulated form did not cause elevation of these enzymes. Finally, treatments inhibited the increase in creatinine levels caused by infection for T. evansi. In summary, the nanoencapsulated form showed better activity on the trypanosome; it did not cause liver toxicity and prevented renal damage.
Collapse
Affiliation(s)
- Guilherme M Do Carmo
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil.
| | - Rodrigo A Vaucher
- Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Virginia Cielo Rech
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Camila B Oliveira
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Aline A Boligon
- Laboratory of Phytochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Margareth L Athayde
- Laboratory of Phytochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marta P Alves
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | | | | | - Claiton I Schwertz
- Section of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, SC, Brazil
| | - Ricardo E Mendes
- Section of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, SC, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|
28
|
Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol 2014; 14:236. [PMID: 25253283 PMCID: PMC4188478 DOI: 10.1186/s12866-014-0236-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of leishmaniasis with pentavalent antimonials is problematic because of their toxicity. Investigations of potentially active molecules are important to discover less toxic drugs that are viable economic alternatives for the treatment of leishmaniasis. Thiosemicarbazones are a group of molecules that are known for their wide versatility and biological activity. In the present study, we examined the antileishmania activity, mechanism of action, and biochemical alterations produced by a novel molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-limonene against Leishmania amazonensis. Results BZTS inhibited the growth of the promastigote and axenic amastigote forms, with an IC50 of 3.8 and 8.0 μM, respectively. Intracellular amastigotes were inhibited by the compound with an IC50 of 7.7 μM. BZTS also had a CC50 of 88.8 μM for the macrophage strain J774A1. BZTS altered the shape, size, and ultrastructure of the parasites, including damage to mitochondria, reflected by extensive swelling and disorganization of the inner mitochondrial membrane, intense cytoplasmic vacuolization, and the presence of concentric membrane structures inside the organelle. Cytoplasmic lipid bodies, vesicles inside vacuoles in the flagellar pocket, and enlargement were also observed. BZTS did not induce alterations in the plasma membrane or increase annexin-V fluorescence intensity, indicating no phosphatidylserine exposure. However, it induced the production of mitochondrial superoxide anion radicals. Conclusions The present results indicate that BZTS induced dramatic effects on the ultrastructure of L. amazonensis, which might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0236-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Ueda-Nakamura T, Nakamura CV, de Oliveira Silva S. Additional evidence of the trypanocidal action of (-)-elatol on amastigote forms through the involvement of reactive oxygen species. Mar Drugs 2014; 12:4973-83. [PMID: 25257785 PMCID: PMC4178491 DOI: 10.3390/md12094973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/25/2014] [Accepted: 04/23/2014] [Indexed: 02/07/2023] Open
Abstract
Chagas’ disease, a vector-transmitted infectious disease, is caused by the protozoa parasite Trypanosoma cruzi. Drugs that are currently available for the treatment of this disease are unsatisfactory, making the search for new chemotherapeutic agents a priority. We recently described the trypanocidal action of (−)-elatol, extracted from the macroalga Laurencia dendroidea. However, nothing has been described about the mechanism of action of this compound on amastigotes that are involved in the chronic phase of Chagas’ disease. The goal of the present study was to evaluate the effect of (−)-elatol on the formation of superoxide anions (O2•−), DNA fragmentation, and autophagy in amastigotes of T. cruzi to elucidate the possible mechanism of the trypanocidal action of (−)-elatol. Treatment of the amastigotes with (−)-elatol increased the formation of O2•− at all concentrations of (−)-elatol assayed compared with untreated parasites. Increased fluorescence was observed in parasites treated with (−)-elatol, indicating DNA fragmentation and the formation of autophagic compartments. The results suggest that the trypanocidal action of (−)-elatol might involve the induction of the autophagic and apoptotic death pathways triggered by an imbalance of the parasite’s redox metabolism.
Collapse
Affiliation(s)
- Vânia Cristina Desoti
- Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Colombo Avenue 5790, Maringa, Parana CEP 87020-900, Brazil.
| | - Danielle Lazarin-Bidóia
- Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Colombo Avenue 5790, Maringa, Parana CEP 87020-900, Brazil.
| | - Daniela Bueno Sudatti
- Department of Marine Biology, Federal Fluminense University, P.O. Box 100644, Niteroi, Rio de Janeiro CEP 24001-970, Brazil.
| | - Renato Crespo Pereira
- Department of Marine Biology, Federal Fluminense University, P.O. Box 100644, Niteroi, Rio de Janeiro CEP 24001-970, Brazil.
| | - Tania Ueda-Nakamura
- Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Colombo Avenue 5790, Maringa, Parana CEP 87020-900, Brazil.
| | - Celso Vataru Nakamura
- Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Colombo Avenue 5790, Maringa, Parana CEP 87020-900, Brazil.
| | - Sueli de Oliveira Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Colombo Avenue 5790, Maringa, Parana CEP 87020-900, Brazil.
| |
Collapse
|
30
|
dos Santos Aliança AS, dos Anjos KFL, de Vasconcelos Reis TN, Higino TMM, Brelaz-de-Castro MCA, Bianco ÉM, de Figueiredo RCBQ. The in vitro biological activity of the Brazilian brown seaweed Dictyota mertensii against Leishmania amazonensis. Molecules 2014; 19:14052-65. [PMID: 25207712 PMCID: PMC6270721 DOI: 10.3390/molecules190914052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/30/2014] [Accepted: 08/30/2014] [Indexed: 11/17/2022] Open
Abstract
Seaweeds present a wide variety of interesting bioactive molecules. In the present work we evaluated the biological activity of the dichloromethane/methanol (2:1) extract (DME) from the brown seaweed Dictyota mertensii against Leishmania amazonensis and its cytotoxic potential on mammalian cells. The extract showed significant inhibitory effect on the growth of promastigote forms (IC50=71.60 μg/mL) and low toxicity against mammalian cells (CC50=233.10 μg/mL). The DME was also efficient in inhibiting the infection in macrophages, with CC50 of 81.4 μg/mL and significantly decreased the survival of amastigote forms within these cells. The selectivity index showed that DME was more toxic to both promastigote (SI=3.25) and amastigote (SI=2.86) forms than to macrophages. Increased NO production was observed in treated macrophages suggesting that besides acting directly on the parasites, the DME also shows an immunomodulatory effect on macrophages. Drastic ultrastructural alterations consistent with loss of viability and cell death were observed in treated parasites. Confocal microscopy and cytometry analyzes showed no significant impairment of plasma membrane integrity, whereas an intense depolarization of mitochondrial membrane could be observed by using propidium iodide and rhodamine 123 staining, respectively. The low toxicity to mammalian cells and the effective activity against promastigotes and amastigotes, point to the use of DME as a promising agent for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Amanda Silva dos Santos Aliança
- Departamento de Microbiologia, Centro de Pesquisa Aggeu Magalhães (CPqAM-FIOCRUZ), Av. Moraes Rego s/n Cidade Universitária, Campus da UFPE, Recife 50670-420, Brazil.
| | - Keicyanne Fernanda Lessa dos Anjos
- Departamento de Microbiologia, Centro de Pesquisa Aggeu Magalhães (CPqAM-FIOCRUZ), Av. Moraes Rego s/n Cidade Universitária, Campus da UFPE, Recife 50670-420, Brazil.
| | | | - Taciana Mirely Maciel Higino
- Departamento de Microbiologia, Centro de Pesquisa Aggeu Magalhães (CPqAM-FIOCRUZ), Av. Moraes Rego s/n Cidade Universitária, Campus da UFPE, Recife 50670-420, Brazil.
| | - Maria Carolina Accioly Brelaz-de-Castro
- Departamento de Imunologia Centro de Pesquisa Aggeu Magalhães (CPqAM-FIOCRUZ), Av. Moraes Rego s/n Cidade Universitária, Campus da UFPE, Recife 50670-420, Brazil.
| | - Éverson Miguel Bianco
- Programa de Pós-graduação em Química, Fundação Universidade Regional de Blumenau (FURB), Campus 1, Rua Antonio da Veiga, 140, Blumenal 89012-900, Brazil.
| | | |
Collapse
|
31
|
Camargos HS, Moreira RA, Mendanha SA, Fernandes KS, Dorta ML, Alonso A. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. PLoS One 2014; 9:e104429. [PMID: 25101672 PMCID: PMC4125203 DOI: 10.1371/journal.pone.0104429] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×106 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4–9%) at their respective IC50 values. For assays with high cell concentrations (2×109 parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.
Collapse
Affiliation(s)
- Heverton Silva Camargos
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Engenharia Elétrica, Fundação Universidade Federal do Tocantins, Palmas, TO, Brasil
| | | | | | | | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
- * E-mail:
| |
Collapse
|
32
|
Baldissera MD, Da Silva AS, Oliveira CB, Santos RC, Vaucher RA, Raffin RP, Gomes P, Dambros MG, Miletti LC, Boligon AA, Athayde ML, Monteiro SG. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp Parasitol 2014; 141:21-7. [DOI: 10.1016/j.exppara.2014.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/16/2014] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
|
33
|
New drugs with antiprotozoal activity from marine algae: a review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Miltefosine increases lipid and protein dynamics in Leishmania amazonensis membranes at concentrations similar to those needed for cytotoxicity activity. Antimicrob Agents Chemother 2014; 58:3021-8. [PMID: 24614380 DOI: 10.1128/aac.01332-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Miltefosine (MT) is a membrane-active alkylphospholipid licensed for the topical treatment of breast cancer skin metastases and the oral treatment of leishmaniasis, although its mechanism of action remains unclear. Electron paramagnetic resonance (EPR) spectroscopy of a spin-labeled lipid and a thiol-specific spin label in the plasma membrane of Leishmania promastigotes showed that MT causes dramatic increases in membrane dynamics. Although these alterations can be detected using a spin-labeled lipid, our experimental results indicated that MT interacts predominantly with the protein component of the membrane. Cell lysis was also detected by analyzing the supernatants of centrifuged samples for the presence of spin-labeled membrane fragments and cytoplasmic proteins. Using a method for the rapid incorporation of MT into the membrane, these effects were measured immediately after treatment under the same range of MT concentrations that cause cell growth inhibition. Cytotoxicity, estimated via microscopic counting of living and dead cells, indicated ∼70% cell death at the concentration of MT at which EPR spectroscopy detected a significant change in membrane dynamics. After this initial impact on the number of viable parasites, the processes of cell death and growth continued during the first 4 h of incubation. The EPR spectra of spin-labeled membrane-bound proteins were consistent with more expanded and solvent-exposed protein conformations, suggesting a detergent-like action. Thus, MT may form micelle-like structures around polypeptide chains, and proteins with a higher hydrophobicity may induce the penetration of hydrophilic groups of MT into the membrane, causing its rupture.
Collapse
|
35
|
Abstract
This review covers the isolation, structural determination, synthesis and chemical and microbiological transformations of natural sesquiterpenoids. The literature from January to December 2012 is reviewed, and 471 references are cited.
Collapse
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
36
|
The Effects of N-Butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro- β -carboline-3-carboxamide against Leishmania amazonensis Are Mediated by Mitochondrial Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:874367. [PMID: 23843887 PMCID: PMC3697299 DOI: 10.1155/2013/874367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/27/2013] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a disease that affects millions of people worldwide. The drugs that are available for the treatment of this infection exhibit high toxicity and various side effects. Several studies have focused on the development of new chemotherapeutic agents that are less toxic and more effective against trypanosomatids. We investigated the effects of N-butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide (C4) and its possible targets against L. amazonensis. The results showed morphological and ultrastructural alterations, depolarization of the mitochondrial membrane, the loss of cell membrane integrity, and an increase in the formation of mitochondrial superoxide anions in L. amazonensis treated with C4. Our results indicate that C4 is a selective antileishmanial agent, and its effects appear to be mediated by mitochondrial dysfunction.
Collapse
|
37
|
Saeidnia S, Gohari AR, Haddadi A. Biogenic trypanocidal sesquiterpenes: lead compounds to design future trypanocidal drugs - a mini review. ACTA ACUST UNITED AC 2013; 21:35. [PMID: 23676125 PMCID: PMC3663703 DOI: 10.1186/2008-2231-21-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/11/2013] [Indexed: 11/10/2022]
Abstract
Human trypanosomiasis is a parasitic disease among poor people in Africa and Latin America. Therapy against African and American trypanosomiasis is based on a few drugs that often cause severe side-effects. Therefore, it is essential to develop drug discovery especially from natural origins. Sesquiterpenes, a diverse group of natural terpenoids, are found in essential oils of many plants and show a broad range of bioactivities. They act through multiple mechanisms in the chemotherapy of trypanosomiasis. Some of these active compounds contain hydroperoxides, aldehydes, alcohols, α,β-unsaturated γ-lactone and even halogenated moieties. Among the compounds reported, sesquiterpene lactones showed a potent anti-trypanosoma effect comparable with commercial trypanocidal drugs. Trypanocidal activity of sesquiterpene lactones mostly depends on the reaction between γ-lactone moieties and nucleophile groups of trypanithione, which is essential for Trypanosoma defense against the oxidative stresses. Elatol is a sesquiterpenoid from marine algae, with a different structure and considerable trypanocidal activity which could be an interesting candidate for further antiprotozoal investigations. To develop novel drugs with higher efficacy and lower toxicity from natural products, this review summarizes the more recent information on trypanocidal activities of various sesquiterpenes.
Collapse
Affiliation(s)
- Soodabeh Saeidnia
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155-6451, Tehran, Iran.
| | | | | |
Collapse
|
38
|
Moreira RA, Mendanha SA, Hansen D, Alonso A. Interaction of Miltefosine with the Lipid and Protein Components of the Erythrocyte Membrane. J Pharm Sci 2013; 102:1661-9. [DOI: 10.1002/jps.23496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/09/2022]
|
39
|
Saeidnia S. Anti-oxidative trypanocidal drugs, myth or reality. ACTA ACUST UNITED AC 2013; 21:21. [PMID: 23497417 PMCID: PMC3599955 DOI: 10.1186/2008-2231-21-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Soodabeh Saeidnia
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|