1
|
Marminon C, Werner C, Gast A, Herfindal L, Charles J, Lindenblatt D, Aichele D, Mularoni A, Døskeland SO, Jose J, Niefind K, Le Borgne M. Exploring the biological potential of the brominated indenoindole MC11 and its interaction with protein kinase CK2. Biol Chem 2025:hsz-2024-0160. [PMID: 40116007 DOI: 10.1515/hsz-2024-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1H-benzotriazole (IC50 = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC50 = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1H-benzotriazole (IC50 = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-b]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4b, IC50 = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (MC11), with an IC50 of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and MC11 demonstrated strong in cellulo activity, particularly against leukemic cell lines like IPC-Bcl2.
Collapse
Affiliation(s)
- Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Christian Werner
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Lars Herfindal
- Department of Clinical Science, University of Bergen, N-5009 Bergen, Norway
| | - Johana Charles
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Dirk Lindenblatt
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Angélique Mularoni
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | | | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| |
Collapse
|
2
|
Jia D, Deng R, Wang W, Hu H, Zhang X. Metabolic engineering of Pseudomonas chlororaphis P3 for high-level and directed production of phenazine-1,6-dicarboxylic acid from crude glycerol. BIORESOURCE TECHNOLOGY 2025; 419:132053. [PMID: 39798811 DOI: 10.1016/j.biortech.2025.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/01/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation. The directed PDC biosynthesis was achieved by introducing the isozymes of PhzF', and PCA derivatives was barely detectable. Subsequently, a high-level PDC-producing strain P3FK2E-aF'EC was obtained by co-overexpression of aroE, phzE, phzC, and aphzF' in a multi-knockout strain. Through scale-up culture, the highest PDC production and proportion reached 6,447.05 mg/L and 99.68 %, with the productivity of 89.54 mg/L·h using KB. Economically, PDC production achieved 5,584.35 mg/L accounting for 99.43 % with the highest productivity of 108.32 mg/L·h from crude glycerol. This study first achieved the directed high-level production of PDC from renewable energy, and presented a potential biosynthesis platform for PDC derivatives in Pseudomonas.
Collapse
Affiliation(s)
- Dan Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruxiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024; 29:4771. [PMID: 39407699 PMCID: PMC11477647 DOI: 10.3390/molecules29194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.
Collapse
Affiliation(s)
- Wei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Chaozhi Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Huai Su
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Feifei Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| |
Collapse
|
4
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
5
|
Fodor A, Gualtieri M, Zeller M, Tarasco E, Klein MG, Fodor AM, Haynes L, Lengyel K, Forst SA, Furgani GM, Karaffa L, Vellai T. Type Strains of Entomopathogenic Nematode-Symbiotic Bacterium Species, Xenorhabdus szentirmaii (EMC) and X. budapestensis (EMA), Are Exceptional Sources of Non-Ribosomal Templated, Large-Target-Spectral, Thermotolerant-Antimicrobial Peptides (by Both), and Iodinin (by EMC). Pathogens 2022; 11:pathogens11030342. [PMID: 35335666 PMCID: PMC8950435 DOI: 10.3390/pathogens11030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial multidrug resistance (MDR) is a global challenge, not only for public health, but also for sustainable agriculture. Antibiotics used in humans should be ruled out for use in veterinary or agricultural settings. Applying antimicrobial peptide (AMP) molecules, produced by soil-born organisms for protecting (soil-born) plants, seems a preferable alternative. The natural role of peptide-antimicrobials, produced by the prokaryotic partner of entomopathogenic-nematode/bacterium (EPN/EPB) symbiotic associations, is to sustain monoxenic conditions for the EPB in the gut of the semi-anabiotic infective dauer juvenile (IJ) EPN. They keep pathobiome conditions balanced for the EPN/EPB complex in polyxenic (soil, vanquished insect cadaver) niches. Xenorhabdus szentirmaii DSM16338(T) (EMC), and X. budapestensis DSM16342(T) (EMA), are the respective natural symbionts of EPN species Steinernema rarum and S. bicornutum. We identified and characterized both of these 15 years ago. The functional annotation of the draft genome of EMC revealed 71 genes encoding non-ribosomal peptide synthases, and polyketide synthases. The large spatial Xenorhabdus AMP (fabclavine), was discovered in EMA, and its biosynthetic pathway in EMC. The AMPs produced by EMA and EMC are promising candidates for controlling MDR prokaryotic and eukaryotic pathogens (bacteria, oomycetes, fungi, protozoa). EMC releases large quantity of iodinin (1,6-dihydroxyphenazine 5,10-dioxide) in a water-soluble form into the media, where it condenses to form spectacular water-insoluble, macroscopic crystals. This review evaluates the scientific impact of international research on EMA and EMC.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- Department of Genetics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-(30)-490-9294
| | - Maxime Gualtieri
- Nosopharm, 110 Allée Charles Babbage, Espace Innovation 2, 30000 Nîmes, France;
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47906, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
- Institute for Sustainable Plant Protection of CNR, Via Amendola 122/D, 70126 Bari, Italy
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Andrea M. Fodor
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
| | - Leroy Haynes
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA;
| | - Katalin Lengyel
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- National Institute of Pharmacy and Nutrition (NIPN), Zrinyi utca 3, H-1051 Budapest, Hungary
| | - Steven A. Forst
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA;
| | - Ghazala M. Furgani
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- Department of Plant Protection, Faculty of Agriculture, University of Tripoli, Tripoli P.O. Box 13793, Libya
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary;
- Institute of Metagenomics, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- MTA-ELTE Genetics Research Group, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
7
|
Ke J, Zhao Z, Coates CR, Hadjithomas M, Kuftin A, Louie K, Weller D, Thomashow L, Mouncey NJ, Northen TR, Yoshikuni Y. Development of platforms for functional characterization and production of phenazines using a multi-chassis approach via CRAGE. Metab Eng 2021; 69:188-197. [PMID: 34890798 DOI: 10.1016/j.ymben.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.
Collapse
Affiliation(s)
- Jing Ke
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cameron R Coates
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michalis Hadjithomas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrea Kuftin
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Linda Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Global Center for Food, Land, and Water Resources, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
8
|
Advances in Phenazines over the Past Decade: Review of Their Pharmacological Activities, Mechanisms of Action, Biosynthetic Pathways and Synthetic Strategies. Mar Drugs 2021; 19:md19110610. [PMID: 34822481 PMCID: PMC8620606 DOI: 10.3390/md19110610] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.
Collapse
|
9
|
Viktorsson EÖ, Aesoy R, Støa S, Lekve V, Døskeland SO, Herfindal L, Rongved P. New prodrugs and analogs of the phenazine 5,10-dioxide natural products iodinin and myxin promote selective cytotoxicity towards human acute myeloid leukemia cells. RSC Med Chem 2021; 12:767-778. [PMID: 34124675 PMCID: PMC8152588 DOI: 10.1039/d1md00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Novel chemotherapeutic strategies for acute myeloid leukemia (AML) treatment are called for. We have recently demonstrated that the phenazine 5,10-dioxide natural products iodinin (3) and myxin (4) exhibit potent and hypoxia-selective cell death on MOLM-13 human AML cells, and that the N-oxide functionalities are pivotal for the cytotoxic activity. Very few structure-activity relationship studies dedicated to phenazine 5,10-dioxides exist on mammalian cell lines and the present work describes our efforts regarding in vitro lead optimizations of the natural compounds iodinin (3) and myxin (4). Prodrug strategies reveal carbamate side chains to be the optimal phenol-attached group. Derivatives with no oxygen-based substituent (-OH or -OCH3) in the 6th position of the phenazine skeleton upheld potency if alkyl or carbamate side chains were attached to the phenol in position 1. 7,8-Dihalogenated- and 7,8-dimethylated analogs of 1-hydroxyphenazine 5,10-dioxide (21) displayed increased cytotoxic potency in MOLM-13 cells compared to all the other compounds studied. On the other hand, dihalogenated compounds displayed high toxicity towards the cardiomyoblast H9c2 cell line, while MOLM-13 selectivity of the 7,8-dimethylated analogs were less affected. Further, a parallel artificial membrane permeability assay (PAMPA) demonstrated the majority of the synthesized compounds to penetrate cell membranes efficiently, which corresponded to their cytotoxic potency. This work enhances the understanding of the structural characteristics essential for the activity of phenazine 5,10-dioxides, rendering them promising chemotherapeutic agents.
Collapse
Affiliation(s)
- Elvar Örn Viktorsson
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland Hofsvallagata 53 IS-107 Reykjavik Iceland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Sindre Støa
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
| | - Viola Lekve
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Stein Ove Døskeland
- Department of Biomedicine, University of Bergen Jonas Lies vei 91 N-5021 Bergen Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
| |
Collapse
|
10
|
Riaz A, Rasul A, Kanwal N, Hussain G, Shah MA, Sarfraz I, Ishfaq R, Batool R, Rukhsar F, Adem Ş. Germacrone: A Potent Secondary Metabolite with Therapeutic Potential in Metabolic Diseases, Cancer and Viral Infections. Curr Drug Metab 2020; 21:1079-1090. [PMID: 32723267 DOI: 10.2174/1389200221999200728144801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nazia Kanwal
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rubab Ishfaq
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Batool
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Science, Çankırı Karatekin Üniversitesi Çankırı, 18100, Turkey
| |
Collapse
|
11
|
Dar D, Thomashow LS, Weller DM, Newman DK. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. eLife 2020; 9:59726. [PMID: 32930660 PMCID: PMC7591250 DOI: 10.7554/elife.59726] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
12
|
Dávila B, Sánchez C, Fernández M, Cerecetto H, Lecot N, Cabral P, Glisoni R, González M. Selective Hypoxia‐Cytotoxin 7‐Fluoro‐2‐Aminophenazine 5,10‐Dioxide: Toward “Candidate‐to‐Drug” Stage in the Drug‐Development Pipeline. ChemistrySelect 2019. [DOI: 10.1002/slct.201902601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Belén Dávila
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Carina Sánchez
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Marcelo Fernández
- Laboratorio de Experimentación AnimalCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Hugo Cerecetto
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Nicole Lecot
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Laboratorio de Técnicas Nucleareas Aplicadas a Bioquímica y BiotecnologíaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Pablo Cabral
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Romina Glisoni
- Departamento de Tecnología FarmacéuticaCátedra de Tecnología Farmacéutica II. CONICETInstituto de Nanobiotecnología (NANOBIOTEC). Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Mercedes González
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| |
Collapse
|
13
|
Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03930-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Shi YM, Brachmann AO, Westphalen MA, Neubacher N, Tobias NJ, Bode HB. Dual phenazine gene clusters enable diversification during biosynthesis. Nat Chem Biol 2019; 15:331-339. [PMID: 30886436 DOI: 10.1038/s41589-019-0246-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/13/2019] [Indexed: 11/10/2022]
Abstract
Biosynthetic gene clusters (BGCs) bridging genotype and phenotype continuously evolve through gene mutations and recombinations to generate chemical diversity. Phenazine BGCs are widespread in bacteria, and the biosynthetic mechanisms of the formation of the phenazine structural core have been illuminated in the last decade. However, little is known about the complex phenazine core-modification machinery. Here, we report the diversity-oriented modifications of the phenazine core through two distinct BGCs in the entomopathogenic bacterium Xenorhabdus szentirmaii, which lives in symbiosis with nematodes. A previously unidentified aldehyde intermediate, which can be modified by multiple enzymatic and non-enzymatic reactions, is a common intermediate bridging the pathways encoded by these BGCs. Evaluation of the antibiotic activity of the resulting phenazine derivatives suggests a highly effective strategy to convert Gram-positive specific phenazines into broad-spectrum antibiotics, which might help the bacteria-nematode complex to maintain its special environmental niche.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Alexander O Brachmann
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany.,Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Margaretha A Westphalen
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Nicholas J Tobias
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Prandina A, Herfindal L, Radix S, Rongved P, Døskeland SO, Le Borgne M, Perret F. Enhancement of iodinin solubility by encapsulation into cyclodextrin nanoparticles. J Enzyme Inhib Med Chem 2018; 33:370-375. [PMID: 29336193 PMCID: PMC6009883 DOI: 10.1080/14756366.2017.1421638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phenazine is known to regroup planar nitrogen-containing heterocyclic compounds. It was used here to enhance the bioavailability of the biologically important compound iodinin, which is near insoluble in aqueous solutions. Its water solubility has led to the development of new formulations using diverse amphiphilic α-cyclodextrins (CDs). With the per-[6-desoxy-6-(3-perfluorohexylpropanethio)-2,3-di-O-methyl]-α-CD, we succeeded to get iodinin-loaded nanoformulations with good parameters such as a size of 97.9 nm, 62% encapsulation efficiency and efficient control release. The study presents an interesting alternative to optimizing the water solubility of iodinin by chemical modifications of iodinin.
Collapse
Affiliation(s)
- Anthony Prandina
- a Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 , Lyon Cedex , France.,b Department of Pharmaceutical Chemistry, School of Pharmacy , University of Oslo , Oslo , Norway
| | - Lars Herfindal
- c Centre for Pharmacy, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Sylvie Radix
- a Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 , Lyon Cedex , France
| | - Pål Rongved
- b Department of Pharmaceutical Chemistry, School of Pharmacy , University of Oslo , Oslo , Norway
| | - Stein O Døskeland
- d Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Marc Le Borgne
- a Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 , Lyon Cedex , France
| | - Florent Perret
- e Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS - CPE Lyon - INSA , Villeurbanne Cedex , France
| |
Collapse
|
16
|
Yao S, Zheng Y, Jiang L, Xie C, Wu F, Huang C, Zhang X, Wong KL, Li Z, Wang K. Methylene violet 3RAX-conjugated porphyrin for photodynamic therapy: synthesis, DNA photocleavage, and cell study. RSC Adv 2018. [DOI: 10.1039/c7ra13176c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel PDT photosensitizer which features great biomedical properties can be simply prepared.
Collapse
Affiliation(s)
- Si Yao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P. R. China
| | - Yunman Zheng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Lijun Jiang
- Department of Chemistry
- Hong Kong Baptist University
- P. R. China
| | - Chen Xie
- Department of Chemistry
- Hong Kong Baptist University
- P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan
- P. R. China
| | - Chi Huang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xiong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan
- P. R. China
| | - Ka-Leung Wong
- Department of Chemistry
- Hong Kong Baptist University
- P. R. China
- Changshu HKBU Technology Company Limited
- China
| | - Zaoying Li
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Kai Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P. R. China
| |
Collapse
|
17
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
18
|
Total synthesis and antileukemic evaluations of the phenazine 5,10-dioxide natural products iodinin, myxin and their derivatives. Bioorg Med Chem 2017; 25:2285-2293. [PMID: 28284865 DOI: 10.1016/j.bmc.2017.02.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 12/13/2022]
Abstract
A new efficient total synthesis of the phenazine 5,10-dioxide natural products iodinin and myxin and new compounds derived from them was achieved in few steps, a key-step being 1,6-dihydroxyphenazine di-N-oxidation. Analogues prepared from iodinin, including myxin and 2-ethoxy-2-oxoethoxy derivatives, had fully retained cytotoxic effect against human cancer cells (MOLM-13 leukemia) at atmospheric and low oxygen level. Moreover, iodinin was for the first time shown to be hypoxia selective. The structure-activity relationship for leukemia cell death induction revealed that the level of N-oxide functionality was essential for cytotoxicity. It also revealed that only one of the two phenolic functions is required for activity, allowing the other one to be modified without loss of potency.
Collapse
|
19
|
Yang K, Zhang X, Yang F, Wu F, Zhang X, Wang K. DNA Photocleavage and Binding Modes of Methylene Violet 3RAX and its Derivatives: Effect of Functional Groups. Aust J Chem 2017. [DOI: 10.1071/ch16496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With 4′-amino-N,N-diethylaniline and aniline as starting materials, methylene violet 3RAX 1 and its derivatives 2–5 were synthesised. The five compounds were characterised by IR, UV-vis, and 1H NMR spectroscopy and mass spectrometry. The binding mode between the synthesised compounds and DNA were investigated. The results show that both compounds 1 and 5 bind to DNA by an intercalative mode, while compounds 2–4 interact with DNA through a mixed binding mode involving groove binding and electrostatic interactions. The photocleavage ability of the five compounds to DNA were calculated to be 38, 40, 30, 20, and 13 %, respectively, when their concentration was adjusted to 400 μM. The singlet oxygen production of compounds measured by the 1,3-diphenylisobenzofuran method was consistent with the trend of DNA photocleavage ability. The DNA studies suggest that the binding mode between methylene violet 3RAX and DNA, the ability of methylene violet 3RAX to generate singlet oxygen, and the DNA photocleavage activity could be adjusted through modification of the amino group on methylene violet 3RAX.
Collapse
|
20
|
Sletta H, Degnes KF, Herfindal L, Klinkenberg G, Fjærvik E, Zahlsen K, Brunsvik A, Nygaard G, Aachmann FL, Ellingsen TE, Døskeland SO, Zotchev SB. Anti-microbial and cytotoxic 1,6-dihydroxyphenazine-5,10-dioxide (iodinin) produced by Streptosporangium sp. DSM 45942 isolated from the fjord sediment. Appl Microbiol Biotechnol 2013; 98:603-10. [PMID: 24158735 DOI: 10.1007/s00253-013-5320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/03/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Phenazine natural products/compounds possess a range of biological activities, including anti-microbial and cytotoxic, making them valuable starting materials for drug development in several therapeutic areas. These compounds are biosynthesized almost exclusively by eubacteria of both terrestrial and marine origins from erythrose 4-phosphate and phosphoenol pyruvate via the shikimate pathway. In this paper, we report isolation of actinomycete bacteria from marine sediment collected in the Trondheimfjord, Norway. Screening of the isolates for biological activity produced several "hits", one of which was followed up by identification and purification of the active compound from the actinomycete bacterium Streptosporangium sp. The purified compound, identified as 1,6-dihydroxyphenazine-5,10-dioxide (iodinin), was subjected to extended tests for biological activity against bacteria, fungi and mammalian cells. In these tests, the iodinin demonstrated high anti-microbial and cytotoxic activity, and was particularly potent against leukaemia cell lines. This is the first report on the isolation of iodinin from a marine-derived Streptosporangium.
Collapse
Affiliation(s)
- Håvard Sletta
- SINTEF Materials and Chemistry, Department of Biotechnology, Sem Sælands vei 2a, 7465, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|