1
|
Walter JM, Greses S, Hagen LH, Schiml VC, Pope PB, González-Fernández C, Arntzen MØ. Anaerobic digestion of microalgae: microbial response and recovery after organic loading disturbances. mSystems 2025; 10:e0167424. [PMID: 40013791 PMCID: PMC11915838 DOI: 10.1128/msystems.01674-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Industrial anaerobic digestion (AD) represents a relevant energy source beyond today's fossil fuels, wherein organic matter is recycled to methane gas via an intricate and complex microbial food web. Despite its potential, anaerobic reactors often undergo process instability over time, which is frequently caused by substrate composition perturbations, making the system unreliable for stable energy production. To ensure the reliability of AD technologies, it is crucial to identify microbial and system responses to better understand the effect of such perturbations and ultimately detect signatures indicative of process failure. Here, we investigate the effect of the microalgal organic loading rate (OLR) on the fermentation product profile, microbiome dynamics, and disruption/recovery of major microbial metabolisms. Reactors subjected to low- and high-OLR disturbances were operated and monitored for fermentation products and biogas production over time, while microbial responses were investigated via 16S rRNA gene amplicon data, shotgun metagenomics, and metagenome-centric metaproteomics. Both low- and high-ORL fed systems encountered a sudden decline in methane production during OLR disturbances, followed by a recovery of the methanogenic activity within the microbiome. In the high-OLR disturbances, system failure triggered an upregulation of hydrolytic enzymes, an accumulation of fermentation products, and a shift in the methanogenic population from hydrogenotrophic to acetoclastic methanogens, with the latter being essential for recovery of the system after collapse. IMPORTANCE Anaerobic digestion (AD) with microalgae holds great potential for sustainable energy production, but process instability caused by substrate disturbances remains a significant barrier. This study highlights the importance of understanding the microbial dynamics and system responses during organic loading rate perturbations. By identifying key shifts in microbial populations and enzyme activity, particularly the transition from hydrogenotrophic to acetoclastic methanogens during recovery, this research provides critical insights for improving AD system stability and can contribute to optimizing microalgae-based AD processes for more reliable and efficient methane production.
Collapse
Affiliation(s)
- Juline M. Walter
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, As, Norway
| | - Silvia Greses
- Biotechnological Processes Unit—IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, Spain
| | - Live H. Hagen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, As, Norway
| | - Valerie C. Schiml
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, As, Norway
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, As, Norway
- Faculty of Biosciences, NMBU—Norwegian University of Life Sciences, As, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Cristina González-Fernández
- Biotechnological Processes Unit—IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina,, Valladolid, Spain
- Institute of Sustainable Processes, Dr. Mergelina, Valladolid, Spain
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
2
|
Hwang K, Choe H, Kim KM. Complete genome and carbohydrate-active enzymes of Arenibacter antarcticus KCTC 52924 T isolated from deep sea sediment of Ross Sea, Antarctica. Mar Genomics 2024; 78:101149. [PMID: 39515970 DOI: 10.1016/j.margen.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Members of the genus Arenibacter were widely distributed in oceanic habitats around the world and have been studied for a variety of useful properties, including antigen deactivation, pollutant degradation, and the production of antimicrobial agents. Arenibacter antarcticus KCTC 52924T of our interest is an aerobic, non-motile, Gram-negative, psychrotolerant type strain isolated from the deep-sea sediment of Ross Sea, Antarctica. The extreme conditions of this habitat are believed to have diversified the substrate spectrum and range of operational conditions of the enzymes, offering both scientific interest and potential industrial benefits. Here, we obtained the complete genome sequence of this promising strain, which consists of 4,694,007 bp (G + C content of 38.8 %) with a single chromosome, 3917 protein-coding genes, 43 tRNAs, and 3 rRNA operons. The functional annotations of the genome reveal four metabolite biosynthesis clusters and a variety of carbohydrate-active enzymes with potential biotechnological applications. Additionally, several interesting features related to environmental interactions were identified. Therefore, this genome data and its genomic potentials figured out in this study serve as a conner stone in further study aimed at understanding physiology of this strain which may be valuable in biotechnological purpose.
Collapse
Affiliation(s)
- Kyuin Hwang
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea.
| | - Hanna Choe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
3
|
Wang YH, Liu JC, Du YH, Xu JH, Du ZJ, Ye MQ. Psychromarinibacter sediminicola sp. nov., a novel moderately halophilic, metabolically diverse bacterium isolated from a solar saltern sediment, and comparison between members of family Roseobacteraceae. Arch Microbiol 2023; 205:331. [PMID: 37698663 DOI: 10.1007/s00203-023-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 ℃, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).
Collapse
Affiliation(s)
- Yu-Hui Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Jun-Cheng Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Yi-Heng Du
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jin-Hao Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, People's Republic of China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, 264209, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, Guangdong, People's Republic of China.
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Redman WK, Welch GS, Williams AC, Damron AJ, Northcut WO, Rumbaugh KP. Efficacy and safety of biofilm dispersal by glycoside hydrolases in wounds. Biofilm 2021; 3:100061. [PMID: 34825176 PMCID: PMC8605310 DOI: 10.1016/j.bioflm.2021.100061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Novel anti-biofilm and dispersal agents are currently being investigated in an attempt to combat biofilm-associated wound infections. Glycoside hydrolases (GHs) are enzymes that hydrolyze the glycosidic bonds between sugars, such as those found within the exopolysaccharides of the biofilm matrix. Previous studies have shown that GHs can weaken the matrix, inducing bacterial dispersal, and improving antibiotic clearance. Yet, the number of GH enzymes that have been examined for potential therapeutic effects is limited. In this study, we screened sixteen GHs for their ability to disperse mono-microbial and polymicrobial biofilms grown in different environments. Six GHs, α-amylase (source: A. oryzae), alginate lyase (source: various algae), pectinase (source: Rhizopus sp.), amyloglucosidase (source: A. niger), inulinase (source: A. niger), and xylanase (source: A. oryzae), exhibited the highest dispersal efficacy in vitro. Two GHs, α-amylase (source: Bacillus sp.) and cellulase (source: A. niger), used in conjunction with meropenem demonstrated infection clearing ability in a mouse wound model. GHs were also effective in improving antibiotic clearance in diabetic mice. To examine their safety, we screened the GHs for toxicity in cell culture. Overall, there was an inverse relationship between enzyme exposure time and cellular toxicity, with twelve out of sixteen GHs demonstrating some level of toxicity in cell culture. However, only one GH exhibited harmful effects in mice. These results further support the ability of GHs to improve antibiotic clearance of biofilm-associated infections and help lay a foundation for establishing GHs as therapeutic agents for chronic wound infections.
Collapse
Affiliation(s)
- Whitni K Redman
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Garrett S Welch
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Avery C Williams
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Addyson J Damron
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Peng S, Hao W, Li Y, Wang L, Sun T, Zhao J, Dong Z. Bacterial Communities Associated With Four Blooming Scyphozoan Jellyfish: Potential Species-Specific Consequences for Marine Organisms and Humans Health. Front Microbiol 2021; 12:647089. [PMID: 34025606 PMCID: PMC8131558 DOI: 10.3389/fmicb.2021.647089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cnidarians have large surface areas available for colonization by microbial organisms, which serve a multitude of functions in the environment. However, relatively few studies have been conducted on scyphozoan-associated microbial communities. Blooms of scyphozoan species are common worldwide and can have numerous deleterious consequences on the marine ecosystem. Four scyphozoan species, Aurelia coerulea, Cyanea nozakii, Nemopilema nomurai, and Rhopilema esculentum, form large blooms in Chinese seas. In this study, we analyzed the bacterial communities associated with these four jellyfish based on 16S rRNA gene sequencing. We found that the bacterial communities associated with each scyphozoan species were significantly different from each other and from those of the surrounding seawater. There were no significant differences between the bacterial communities associated with different body parts of the four scyphozoan jellyfish. Core bacteria in various compartments of the four scyphozoan taxa comprised 57 OTUs (Operational Taxonomic Units), dominated by genera Mycoplasma, Vibrio, Ralstonia, Tenacibaculum, Shingomonas and Phyllobacterium. FAPROTAX function prediction revealed that jellyfish could influence microbially mediated biogeochemical cycles, compound degradation and transmit pathogens in regions where they proliferate. Finally, Six genera of potentially pathogenic bacteria associated with the scyphozoans were detected: Vibrio, Mycoplasma, Ralstonia, Tenacibaculum, Nautella, and Acinetobacter. Our study suggests that blooms of these four common scyphozoans may cause jellyfish species-specific impacts on element cycling in marine ecosystems, and serve as vectors of pathogenic bacteria to threaten other marine organisms and human health.
Collapse
Affiliation(s)
- Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenjin Hao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Zan F, Guo G, Zheng T, Chen G. Biofilm development in a pilot-scale gravity sewer: Physical characteristics, microstructure, and microbial communities. ENVIRONMENTAL RESEARCH 2021; 195:110838. [PMID: 33581085 DOI: 10.1016/j.envres.2021.110838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The existence of abundant biofilms on sewer pipeline walls can lead to negative environmental impacts, such as poisonous gas release and pipe corrosions through transforming various pollutants. Investigating the formation process of sewer biofilms is of importance in advancing knowledge of sewer operation and maintenance. In this study, the changes in physical characteristics, microstructure, and microbial communities of sewer biofilm were analyzed in-depth in a pilot-scale gravity sewer during a 45-day operation. The results show that a high specific surface area at the early stage could channel the substrates for stimulating the primary colonizers (e.g., Cytophagia, Sphingobacteriia, Alpha-, and Betaproteobacteria), which could excrete an extracellular matrix to facilitate biofilm growth. The sewer biofilms were gradually formed with 62 g VS/m2 organic content, 1.2 mm biofilm thickness, and 89 mg/cm3 dry density after 45 days operation. Moreover, the biofilm growth promoted the emergence of facultative bacteria and anaerobes (affiliated with Flavobacteriia, Gemmatimonadetes, Deltaproteobacteria, and Epsilonproteobacteria). Microelectrode analysis further verified that an anaerobic zone existed in mature biofilm with a negative oxidation-reduction potential (-105 mV), where approximately 0.1 μmol/L of sulfide was produced. Our results suggest that the migration of the microbial community correlated with the changes in the evolved physical characteristics and microstructure of sewer biofilm, and this can contribute to the strategies for sulfide control for improving sewer maintenance.
Collapse
Affiliation(s)
- Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Tianlong Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
7
|
Tan X, Hu Y, Jia Y, Hou X, Xu Q, Han C, Wang Q. A Conserved Glycoside Hydrolase Family 7 Cellobiohydrolase PsGH7a of Phytophthora sojae Is Required for Full Virulence on Soybean. Front Microbiol 2020; 11:1285. [PMID: 32714289 PMCID: PMC7343703 DOI: 10.3389/fmicb.2020.01285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Phytopathogens deploy glycoside hydrolases (GHs) to disintegrate plant cell walls for nutrition and invasion. However, the pathogenic mechanisms of the majority of GHs in virulence remain unknown, especially in oomycetes. In this study, a Phytophthora sojae gene encodes a GH7 family cellobiohydrolase, named PsGH7a, was identified. PsGH7a was highly induced during the cyst germination and infection stages. PsGH7a is conserved in oomycetes, and shares a high amino acid sequence identity (>85%) within Phytophthora genus. The recombinant PsGH7a catalyzes the hydrolysis of β-1,4-glucan and avicel, which represent the major components of cellulose in plant cell wall. The mutation of catalytic residue Glu236 to alanine resulted in a lower catalytic activity. In addition, the PsGH7a promotes Phytophthora invasion, while the mutant can not. Notably, PsGH7a protein triggers hypersensitive cell death in diverse plants. PsGH7a knockout mutants were generated via CRISPR/Cas9 system, to investigate its biological function. Compared to wild-type strain P6497, the mutants showed reduced virulence on susceptible soybean, indicates PsGH7a is indispensable to P. sojae virulence.
Collapse
Affiliation(s)
- Xinwei Tan
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yuyao Hu
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yuli Jia
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xiaoyuan Hou
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qian Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Chao Han
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qunqing Wang
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Bakunina I, Likhatskaya G, Slepchenko L, Balabanova L, Tekutyeva L, Son O, Shubina L, Makarieva T. Effect of Pentacyclic Guanidine Alkaloids from the Sponge Monanchora pulchra on Activity of α-Glycosidases from Marine Bacteria. Mar Drugs 2019; 17:E22. [PMID: 30609674 PMCID: PMC6356649 DOI: 10.3390/md17010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/09/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022] Open
Abstract
The effect of monanchomycalin B, monanhocicidin A, and normonanhocidin A isolated from the Northwest Pacific sample of the sponge Monanchora pulchra was investigated on the activity of α-galactosidase from the marine γ-proteobacterium Pseudoalteromonas sp. KMM 701 (α-PsGal), and α-N-acetylgalactosaminidase from the marine bacterium Arenibacter latericius KMM 426T (α-NaGa). All compounds are slow-binding irreversible inhibitors of α-PsGal, but have no effect on α-NaGa. A competitive inhibitor d-galactose protects α-PsGal against the inactivation. The inactivation rate (kinact) and equilibrium inhibition (Ki) constants of monanchomycalin B, monanchocidin A, and normonanchocidin A were 0.166 ± 0.029 min-1 and 7.70 ± 0.62 μM, 0.08 ± 0.003 min-1 and 15.08 ± 1.60 μM, 0.026 ± 0.000 min-1, and 4.15 ± 0.01 μM, respectively. The 2D-diagrams of α-PsGal complexes with the guanidine alkaloids were constructed with "vessel" and "anchor" parts of the compounds. Two alkaloid binding sites on the molecule of α-PsGal are shown. Carboxyl groups of the catalytic residues Asp451 and Asp516 of the α-PsGal active site interact with amino groups of "anchor" parts of the guanidine alkaloid molecules.
Collapse
Affiliation(s)
- Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larisa Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Tatyana Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
9
|
Bakunina I, Slepchenko L, Anastyuk S, Isakov V, Likhatskaya G, Kim N, Tekutyeva L, Son O, Balabanova L. Characterization of Properties and Transglycosylation Abilities of Recombinant α-Galactosidase from Cold-Adapted Marine Bacterium Pseudoalteromonas KMM 701 and Its C494N and D451A Mutants. Mar Drugs 2018; 16:E349. [PMID: 30250010 PMCID: PMC6213131 DOI: 10.3390/md16100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
A novel wild-type recombinant cold-active α-d-galactosidase (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site of the enzyme, using the crystal structure of the α-galactosidase from Lactobacillus acidophilus as a template. The circular dichroism spectra of the wild α-PsGal and mutant C494N were approximately identical. The C494N mutation decreased the efficiency of retaining the affinity of the enzyme to standard p-nitrophenyl-α-galactopiranoside (pNP-α-Gal). Thin-layer chromatography, matrix-assisted laser desorption/ionization mass spectrometry, and nuclear magnetic resonance spectroscopy methods were used to identify transglycosylation products in reaction mixtures. α-PsGal possessed a narrow acceptor specificity. Fructose, xylose, fucose, and glucose were inactive as acceptors in the transglycosylation reaction. α-PsGal synthesized -α(1→6)- and -α(1→4)-linked galactobiosides from melibiose as well as -α(1→6)- and -α(1→3)-linked p-nitrophenyl-digalactosides (Gal₂-pNP) from pNP-α-Gal. The D451A mutation in the active center completely inactivated the enzyme. However, the substitution of C494N discontinued the Gal-α(1→3)-Gal-pNP synthesis and increased the Gal-α(1→4)-Gal yield compared to Gal-α(1→6)-Gal-pNP.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Stanislav Anastyuk
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Vladimir Isakov
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Natalya Kim
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| |
Collapse
|
10
|
Balabanova LA, Bakunina IY, Slepchenko LV, Kirichuk NN, Khudyakova YV, Son OM, Pivkin MV, Rasskazov VA. Polysaccharide-Degrading Activity in Marine and Terrestrial Strains of Mycelial Fungi. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bakunina I, Chadova O, Malyarenko O, Ermakova S. The Effect of Fucoidan from the Brown Alga Fucus evanescence on the Activity of α- N-Acetylgalactosaminidase of Human Colon Carcinoma Cells. Mar Drugs 2018; 16:E155. [PMID: 29748462 PMCID: PMC5983286 DOI: 10.3390/md16050155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
α-N-acetylgalactosaminidase (EC 3.2.1.49) (alpha-NaGalase) catalyzes the hydrolysis of N-acetamido-2-deoxy-α-d-galactoside residues from non-reducing ends of various complex carbohydrates and glycoconjugates. It is known that human cancer cells express an alpha-NaGalase, which accumulates in the blood plasma of patients. The enzyme deglycosylates the Gc protein-derived macrophage activating factor (GcMAF) and inhibits macrophage activity acting as an immunosuppressor. The high specific activity 0.033 ± 0.002 μmol mg−1 min−1 of the enzyme was found in human colon carcinoma cells DLD-1. The alpha-NaGalase of DLD-1 cells was isolated and biochemical characterized. The enzyme exhibits maximum activity at pH 5.2 and temperature 55 °C. The Km is 2.15 mM, Vmax⁻0.021 μmol min−1 mL−1, kcat⁻1.55 min−1 and kcat/Km⁻0.72 min−1 mM−1 at 37 °C, pH 5.2. The effects of fucoidan from the brown alga Fucus evanescence on the activity of alpha-NaGalase in human colon carcinoma DLD-1 cells and on the biosynthesis of this enzyme were investigated. It was shown that fucoidan did not inhibit free alpha-NaGalase, however, it reduced the expression of the enzyme in the DLD-1 cells at IC50 73 ± 4 μg mL−1.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Oksana Chadova
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690091, Russia.
| | - Olesya Malyarenko
- Laboratory of Enzyme Chemistry of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Svetlana Ermakova
- Laboratory of Enzyme Chemistry of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
12
|
Nedashkovskaya OI, Kim SG, Balabanova LA, Zhukova NV, Bakunina IY, Mikhailov VV. Polaribacter staleyi sp. nov., a polysaccharide-degrading marine bacterium isolated from the red alga Ahnfeltia tobuchiensis. Int J Syst Evol Microbiol 2018; 68:623-629. [DOI: 10.1099/ijsem.0.002554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Larissa A. Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| | - Natalia V. Zhukova
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
- National Scientific Center of Marine Biology, Russian Academy of Science, Palchevskogo 17, Vladivostok 690041, Russia
| | - Irina Y. Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
| | - Valery V. Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| |
Collapse
|
13
|
Lima RN, Porto ALM. Recent Advances in Marine Enzymes for Biotechnological Processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:153-92. [PMID: 27452170 DOI: 10.1016/bs.afnr.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds.
Collapse
Affiliation(s)
- R N Lima
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - A L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.
| |
Collapse
|
14
|
Zhang Z, Chen Y, Wang R, Cai R, Fu Y, Jiao N. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities. PLoS One 2015; 10:e0142690. [PMID: 26571122 PMCID: PMC4646686 DOI: 10.1371/journal.pone.0142690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/26/2015] [Indexed: 12/02/2022] Open
Abstract
Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not be completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. The fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.
Collapse
Affiliation(s)
- Zilian Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (NJ); (ZZ)
| | - Yi Chen
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Rui Wang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Yingnan Fu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (NJ); (ZZ)
| |
Collapse
|
15
|
Bakunina IY, Balabanova LA, Pennacchio A, Trincone A. Hooked on α-d-galactosidases: from biomedicine to enzymatic synthesis. Crit Rev Biotechnol 2015; 36:233-45. [PMID: 25394540 DOI: 10.3109/07388551.2014.949618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-d-Galactosidases (EC 3.2.1.22) are enzymes employed in a number of useful bio-based applications. We have depicted a comprehensive general survey of α-d-galactosidases from different origin with special emphasis on marine example(s). The structures of natural α-galactosyl containing compounds are described. In addition to 3D structures and mechanisms of action of α-d-galactosidases, different sources, natural function and genetic regulation are also covered. Finally, hydrolytic and synthetic exploitations as free or immobilized biocatalysts are reviewed. Interest in the synthetic aspects during the next years is anticipated for access to important small molecules by green technology with an emphasis on alternative selectivity of this class of enzymes from different sources.
Collapse
Affiliation(s)
- Irina Yu Bakunina
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok , Russia and
| | - Larissa A Balabanova
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok , Russia and
| | - Angela Pennacchio
- b Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Pozzuoli , Napoli , Italy
| | - Antonio Trincone
- b Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Pozzuoli , Napoli , Italy
| |
Collapse
|
16
|
In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3). PLoS One 2015; 10:e0127499. [PMID: 26039074 PMCID: PMC4454575 DOI: 10.1371/journal.pone.0127499] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
The “Latescibacteria” (formerly WS3), member of the Fibrobacteres–Chlorobi–Bacteroidetes (FCB) superphylum, represents a ubiquitous candidate phylum found in terrestrial, aquatic, and marine ecosystems. Recently, single-cell amplified genomes (SAGs) representing the “Latescibacteria” were obtained from the anoxic monimolimnion layers of Sakinaw Lake (British Columbia, Canada), and anoxic sediments of a coastal lagoon (Etoliko lagoon, Western Greece). Here, we present a detailed in-silico analysis of the four SAGs to gain some insights on their metabolic potential and apparent ecological roles. Metabolic reconstruction suggests an anaerobic fermentative mode of metabolism, as well as the capability to degrade multiple polysaccharides and glycoproteins that represent integral components of green (Charophyta and Chlorophyta) and brown (Phaeophycaea) algae cell walls (pectin, alginate, ulvan, fucan, hydroxyproline-rich glycoproteins), storage molecules (starch and trehalose), and extracellular polymeric substances (EPSs). The analyzed SAGs also encode dedicated transporters for the uptake of produced sugars and amino acids/oligopeptides, as well as an extensive machinery for the catabolism of all transported sugars, including the production of a bacterial microcompartment (BMC) to sequester propionaldehyde, a toxic intermediate produced during fucose and rhamnose metabolism. Finally, genes for the formation of gas vesicles, flagella, type IV pili, and oxidative stress response were found, features that could aid in cellular association with algal detritus. Collectively, these results indicate that the analyzed “Latescibacteria” mediate the turnover of multiple complex organic polymers of algal origin that reach deeper anoxic/microoxic habitats in lakes and lagoons. The implications of such process on our understanding of niche specialization in microbial communities mediating organic carbon turnover in stratified water bodies are discussed.
Collapse
|
17
|
Balabanova LA, Golotin VA, Bakunina IY, Slepchenko LV, Isakov VV, Podvolotskaya AB, Rasskazov VA. Recombinant α-NAcetylgalactosaminidase from Marine Bacterium-Modifying A Erythrocyte Antigens. Acta Naturae 2015; 7:117-20. [PMID: 25927009 PMCID: PMC4410403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
A plasmid based on pET-40b was constructed to synthesize recombinant α-N-acetylgalactosaminidase of the marine bacterium Arenibacter latericius KMM 426T (α-AlNaGal) in Escherichia coli cells. The yield of α-Al- NaGal attains 10 mg/ml with activity of 49.7 ± 1.3 U at 16°C, concentration of inductor 2 mM, and cultivation for 12 h. Techniques such as anion exchange, metal affinity and gel filtration chromatography to purify α-AlNaGal were applied. α-AlNaGal is a homodimer with a molecular weight of 164 kDa. This enzyme is stable at up to 50°C with a temperature range optimum activity of 20-37°C. Furthermore, its activity is independent of the presence of metal ions in the incubation medium. 1H NMR spectroscopy revealed that α-AlNaGal catalyzes the hydrolysis of the O-glycosidic bond with retention of anomeric stereochemistry and possesses a mechanism of action identical to that of other glycoside hydrolases of the 109 family. α-AlNaGal reduces the serological activity of A erythrocytes at pH 7.3. This property of α-AlNaGal can potentially be used for enzymatic conversion of A and AB erythrocytes to blood group O erythrocytes.
Collapse
Affiliation(s)
- L. A. Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Vladivostoka Ave., 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova Str., 8, 690950, Vladivostok, Russia
| | - V. A. Golotin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Vladivostoka Ave., 159, 690022, Vladivostok, Russia
| | - I. Y. Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Vladivostoka Ave., 159, 690022, Vladivostok, Russia
| | - L. V. Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Vladivostoka Ave., 159, 690022, Vladivostok, Russia
| | - V. V. Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Vladivostoka Ave., 159, 690022, Vladivostok, Russia
| | - A. B. Podvolotskaya
- Far Eastern Federal University, Sukhanova Str., 8, 690950, Vladivostok, Russia
| | - V. A. Rasskazov
- Far Eastern Federal University, Sukhanova Str., 8, 690950, Vladivostok, Russia
| |
Collapse
|
18
|
Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch Microbiol 2014; 196:745-52. [DOI: 10.1007/s00203-014-1010-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|