1
|
Mesquita A, Cerqueira D, Rocha M, Silva D, Martins C, Souza B. A Review on Rare and Symbiotic Actinobacteria: Emerging Biotechnological Tools Against Antimicrobial Resistance. J Basic Microbiol 2025:e70036. [PMID: 40241336 DOI: 10.1002/jobm.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a global threat to public health, with projections estimating 10 million deaths annually by 2050 if current trends persist. Actinobacteria, renowned for their biosynthetic capacity, are a key source of bioactive compounds, producing over 75% of known antibiotics. The adaptability of these microorganisms allows them to thrive in diverse habitats, including extreme ones, through the production of secondary metabolites that are of paramount importance for industry. Furthermore, actinobacteria are capable of living in symbiosis with several organisms, producing metabolites to protect and promote the growth of the host in exchange for nutrients and shelter. Some of these metabolites, such as antibiotics, play a key role in combating host pathogens and can be biotechnologically exploited to combat human resistant pathogens. This review presents the origins of AMR, the unique biology of actinobacteria, as well as their diverse biosynthetic pathways and their role in mitigating the AMR crisis. It also highlights the need for innovative biotechnological strategies for the isolation of rare and understudied actinobacteria, as symbiotic actinobacteria, to avoid rediscovery of molecules while finding new potential natural products and scaffolds for synthetic drugs. By providing a better understanding of their ecological, genomic, and metabolic diversity, this review provides valuable insights into the exploration of rare and symbiotic actinobacteria for developing antimicrobial solutions.
Collapse
Affiliation(s)
- Ariel Mesquita
- Laboratory of Fisheries Technology, Department of Fisheries Engineering, Federal University of Ceará, Brazil
| | - Davi Cerqueira
- Laboratory of Fisheries Technology, Department of Fisheries Engineering, Federal University of Ceará, Brazil
| | - Matheus Rocha
- Laboratory of Environmental Microbiology, Department of Biology, Federal University of Ceará, Brazil
| | - Dino Silva
- Laboratory of Environmental Microbiology, Department of Biology, Federal University of Ceará, Brazil
| | - Claudia Martins
- Laboratory of Environmental Microbiology, Department of Biology, Federal University of Ceará, Brazil
| | - Bartolomeu Souza
- Laboratory of Fisheries Technology, Department of Fisheries Engineering, Federal University of Ceará, Brazil
| |
Collapse
|
2
|
Longo C, Pierri C, Trani R, Mercurio M, Nonnis Marzano C, Corriero G, Aguilo-Arce J, Sini V, Massari F, Zambonin C, Vona D, Cotugno P, Ragni R, Masini S, Giangrande A, D'Onghia G, Ferriol P. Toward a green strategy of sponge mariculture and bioactive compounds recovery. Sci Rep 2025; 15:5999. [PMID: 39966515 PMCID: PMC11836350 DOI: 10.1038/s41598-025-90192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Sponges are benthic filter-feeder invertebrates capable to produce a variety of high value bioactive compounds. Nevertheless, exploitation of sponges as bio-factories requires scalable and sustainable strategies to supply sponge biomass without threatening wild natural populations and to minimize the consumption of toxic organic solvents in metabolites extraction and purification procedures. Sponges farming in integrated facilities nearby fish mariculture cages represents a highly efficient strategy combining the production of sponge biomass with bioremediation. Here we report the results of the in situ rearing of the keratose sponge Sarcotragus spinosulus developed within three years in an innovative Integrated Multi-Trophic Aquaculture system in the Gulf of Taranto (Southern Italy, Mediterranean Sea), capable to supply large-scale sponge biomass with a minimal impact on wild populations. Moreover, we demonstrate the proof of concept that it is possible to produce polyprenyl hydroquinones, selected as well-known bioactive model metabolites, in good yields, high purity degree and low organic solvent consumption, by means of an innovative protocol based on the combination of supercritical carbon dioxide fluid extraction and gel permeation chromatography. Such a combination of eco-friendly techniques paves the way to eco-sustainable supply of bioactive compounds from marine organisms highly profitable in terms of working times, costs, solvents, and energy saving.
Collapse
Affiliation(s)
- Caterina Longo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Cataldo Pierri
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Roberta Trani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Maria Mercurio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Carlotta Nonnis Marzano
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Giuseppe Corriero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Joseba Aguilo-Arce
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Valeria Sini
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Federica Massari
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Carlo Zambonin
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Danilo Vona
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pietro Cotugno
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - Roberta Ragni
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - Serena Masini
- ECOPAN SRL, Viale Virgilio, 142, 74121, Taranto, Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce, 73100, Monteroni, Lecce, Italy
| | - Gianfranco D'Onghia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, University of Balearic Islands, Car. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
3
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
4
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Guo YS, Zuo TT, Chen AZ, Wang Z, Jin HY, Wei F, Li P, Ma SC. Progress in quality control, detection techniques, speciation and risk assessment of heavy metals in marine traditional Chinese medicine. Chin Med 2023; 18:73. [PMID: 37328891 DOI: 10.1186/s13020-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
Marine traditional Chinese medicines (MTCMs) hold a significant place in the rich cultural heritage in China. It plays an irreplaceable role in addressing human diseases and serves as a crucial pillar for the development of China's marine economy. However, the rapid pace of industrialization has raised concerns about the safety of MTCM, particularly in relation to heavy metal pollution. Heavy metal pollution poses a significant threat to the development of MTCM and human health, necessitating the need for detection analysis and risk assessment of heavy metals in MTCM. In this paper, the current research status, pollution situation, detection and analysis technology, removal technology and risk assessment of heavy metals in MTCM are discussed, and the establishment of a pollution detection database and a comprehensive quality and safety supervision system for MTCM is proposed. These measures aim to enhance understanding of heavy metals and harmful elements in MTCM. It is expected to provide a valuable reference for the control of heavy metals and harmful elements in MTCM, as well as the sustainable development and application of MTCM.
Collapse
Affiliation(s)
- Yuan-Sheng Guo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - An-Zhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Ping Li
- China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
6
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
7
|
Kashif M, Sang Y, Mo S, Rehman SU, Khan S, Khan MR, He S, Jiang C. Deciphering the biodesulfurization pathway employing marine mangrove Bacillus aryabhattai strain NM1-A2 according to whole genome sequencing and transcriptome analyses. Genomics 2023; 115:110635. [PMID: 37150229 DOI: 10.1016/j.ygeno.2023.110635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
In the biogeochemical cycle, sulfur oxidation plays a vital role and is typically referred to as the elemental sulfur or reductive sulfide oxidation process. This study aimed to characterize a subtropical mangrove-isolated bacterial strain using biochemical, whole-genome, and transcriptome sequencing analyses to enhance our understanding of sulfur metabolism and biodegradation from a molecular genetic perspective. Strain NM1-A2 was characterized as Gram-positive and found to have a close molecular phylogenetic relationship with Bacillus aryabhattai. NM1-A2 efficiently converted dibenzothiophene (DBT) into 2-hydroxybiphenyl (2-HBP) via a 4S pathway with 95% efficiency, using enzymes encoded by the dsz operon (dszA, dszB, and dszC), which determine monooxygenases (DszA & DszC) and desulfinase (DszB). The whole-genome sequence of NM1-A2 had a length of approximately 5,257,678 bp and included 16 sulfur metabolism-related genes, featuring the ABC transport system, small subunit (ssu) and cysteine (cys) gene families, and adenosine 5'-phosphosulfate (APS) and 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis-related genes. Transcriptomic analysis of NM1-A2 using three sulfur groups-magnesium sulfate (MS), sulfur powder (SP), and sodium thiosulfate (ST) resulted in a significant number of differentially expressed genes (1200, 2304, and 2001, respectively). This analysis revealed that intracellular cysteine concentration directly regulated the expression of cys and ssu genes. Sulfate did not directly affect cys gene expression but repressed ssu gene expression. The cys gene expression levels decreased during the conversion of sulfate to sulfide and cysteine. The transcriptomic data was validated by analyzing the expression patterns of NM1-A2 using real-time quantitative PCR validation analysis. The expression levels of cysl, mccB, and nrnA were significantly upregulated, while cysH, metB, and sat were downregulated in the SP, ST, and MS groups, respectively. This research contributes to our understanding of marine mangrove microorganisms' bacterial efficiency through characterization, whole-genome, and transcriptome sequencing-based molecular degradation of organic compounds in the mangrove ecosystem, which may enhance nutrient availability.
Collapse
Affiliation(s)
- Muhammad Kashif
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yimeng Sang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Sohail Khan
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Muhammad Rafiullah Khan
- Department of Food Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road, Mang, Haripur, Pakistan
| | - Sheng He
- Guangxi Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region. Nanning 530033, China
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Weiland-Bräuer N, Saleh L, Schmitz RA. Functional Metagenomics as a Tool to Tap into Natural Diversity of Valuable Biotechnological Compounds. Methods Mol Biol 2023; 2555:23-49. [PMID: 36306077 DOI: 10.1007/978-1-0716-2795-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The marine ecosystem covers more than 70% of the world's surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Livía Saleh
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany.
| |
Collapse
|
10
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
11
|
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221075514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms are potentially a pretty good source of highly bioactive secondary metabolites that are best known for their anti-inflammation, anti-infection, and anti-cancer potential. The growing threat of bacterial resistance to synthetic antibiotics, is a potential source to screen terrestrial and marine natural organisms to discover promising anti-inflammatory and antimicrobial agents which can synergistically overcome the inflammatory and infectious disases. Algae and sponge have been studied enormously to evaluate their medicinal potential to fix variety of diseases, especially inflammation, infections, cancers, and diabetes. Cytarabine is the first isolated biomolecule from marine organism which was successfully practiced in clinical setup as chemotherapeutic agent against xylogenous leukemia both in acute and chronic conditions. This discovery opened the horizon for systematic evaluation of broad range of human disorders. This review is designed to look into the literature reported on anti-inflammatory, anti-infectious, and anti-cancerous potential of algae and sponge to refine the isolated compounds for value addition process.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sadaf U Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Identification of Microorganisms Dwelling on the 19th Century Lanna Mural Paintings from Northern Thailand Using Culture-Dependent and -Independent Approaches. BIOLOGY 2022; 11:biology11020228. [PMID: 35205094 PMCID: PMC8869426 DOI: 10.3390/biology11020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary In this study, we compared microbial communities in Lanna mural paintings in temples with different numbers of visitors using culture-dependent and culture independent approaches. The results showed that microorganisms could damage the colors that are used on murals. The process of degradation involved the production of organic acids and formation of the calcium crystal. Furthermore, we found that the site with higher number of visitors is associated with microbial contamination from humans while the site with lower number of visitors had higher saprotroph population. Further research into these microorganisms, their activities and functional roles may provide crucial information to aid the preservation of mural paintings. Abstract Lanna painting is a unique type of painting in many temples in the Northern Thai region. Similar to most mural paintings, they usually decay over time partly due to the activity of microbes. This study aimed to investigate the microorganisms from two Lanna masterpiece paintings in two temples that differ in the numbers of visitors using both culture-dependent and -independent approaches. The microorganisms isolated from the murals were also tested for the biodeterioration activities including discoloration, acid production and calcium precipitation. Most microorganisms extracted from the paintings were able to discolor the paints, but only fungi were able to discolor, produce acids and precipitate calcium. The microorganism communities, diversity and functional prediction were also investigated using the culture-independent method. The diversity of microorganisms and functional prediction were different between the two temples. Gammaproteobacteria was the predominant group of bacteria in both temples. However, the fungal communities were different between the two temples as Aspergillus was the most abundant genus in the site with higher number of visitors [Buak Krok Luang temple (BK)]. Conversely, mural paintings at Tha Kham temple (TK) were dominated by the Neodevriesia genera. We noticed that a high number of visitors (Buak Krok Luang) was correlated with microbial contamination from humans while the microbial community at Tha Kham temple had a higher proportion of saprotrophs. These results could be applied to formulate a strategy to mitigate the amount of tourists as well as manage microorganism to slow down the biodeterioration process.
Collapse
|
13
|
Cheun-Arom T, Chuanasa T. An Efficient DNA Extraction for a Blue Xestospongia sp. Sponge and Its Associated Microorganisms Containing Cytotoxic Substances. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:917-927. [PMID: 34714444 DOI: 10.1007/s10126-021-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Extraction of high quantity and quality DNAs from marine sponges, which contain diverse and abundant microbial communities, is important to molecular biology techniques for the analysis of nucleic acids. Several marine sponges and their associated microorganisms have been known to produce cytotoxic natural products on several cancer cell lines via DNA damage mechanisms. These marine cytotoxic substances might be one of the factors that cause the low quantity and quality of DNAs during the DNA extraction from its living origin. Therefore, the extraction of DNA of a Thai blue marine sponge Xestospongia sp. with sufficient purity and quantity for molecular study can be challenging. In this study, we developed an efficient extraction method to prepare DNAs from a Thai blue marine sponge Xestospongia sp. which accumulated a highly potent cytotoxic alkaloid with DNA-damaging activity, named Renieramycin M (RM), as a major constituent in high quantity. We demonstrated that removal of RM from the sponge samples by a simple methanolic extraction before DNA extraction dramatically increased the yield and purity of DNAs compared to the RM-unremoved sponge samples. High molecular weight (HMW) genomic DNA was obtained from sponge samples with 8 times of RM elimination by using modified NaOAc salting-out extraction method. The quantity and quality of the prepared DNAs were comparatively determined via spectrophotometry, electrophoresis, and 16S rRNA gene amplification. Our result suggests that the removal of DNA-damaging constituents from the samples is a crucial step and must be seriously taken as the necessary consideration for the practical protocol of DNA extraction.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Vaz R, Valpradinhos B, Frasco MF, Sales MGF. Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds. SENSORS (BASEL, SWITZERLAND) 2021; 21:5784. [PMID: 34502675 PMCID: PMC8434157 DOI: 10.3390/s21175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Beatriz Valpradinhos
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Manuela F. Frasco
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Maria Goreti F. Sales
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| |
Collapse
|
15
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
16
|
Schwarz M, Murphy EJ, Foley AM, Woods DF, Castilla IA, Reen FJ, Collins SG, O'Gara F, Maguire AR. Exploring the synthetic potential of a marine transaminase including discrimination at a remote stereocentre. Org Biomol Chem 2021; 19:188-198. [PMID: 33119023 DOI: 10.1039/d0ob01848a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The marine transaminase, P-ω-TA, can be employed for the transamination from 1-aminotetralins and 1-aminoindanes with differentiation of stereochemistry at both the site of reaction and at a remote stereocentre resulting in formation of ketone products with up to 93% ee. While 4-substituents are tolerated on the tetralin core, the presence of 3- or 8-substituents is not tolerated by the transaminase. In general P-ω-TA shows capacity for remote diastereoselectivity, although both the stereoselectivity and efficiency are dependent on the specific substrate structure. Optimum efficiency and selectivity are seen with 4-haloaryl-1-aminotetralins and 3-haloaryl-1-aminoindanes, which may be associated with the marine origin of this enzyme.
Collapse
Affiliation(s)
- Maria Schwarz
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, T12 K8AF, Cork, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
18
|
Orive-Milla N, Delmulle T, de Mey M, Faijes M, Planas A. Metabolic engineering for glycoglycerolipids production in E. coli: Tuning phosphatidic acid and UDP-glucose pathways. Metab Eng 2020; 61:106-119. [PMID: 32492511 DOI: 10.1016/j.ymben.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Glycolipids are target molecules in biotechnology and biomedicine as biosurfactants, biomaterials and bioactive molecules. An engineered E. coli strain for the production of glycoglycerolipids (GGL) used the MG517 glycolipid synthase from M. genitalium for glucosyl transfer from UDPGlc to diacylglycerol acceptor (Mora-Buyé et al., 2012). The intracellular diacylglycerol pool proved to be the limiting factor for GGL production. Here we designed different metabolic engineering strategies to enhance the availability of precursor substrates for the glycolipid synthase by modulating fatty acids, acyl donor and phosphatidic acid biosynthesis. Knockouts of tesA, fadE and fabR genes involved in fatty acids degradation, overexpression of the transcriptional regulator FadR, the acyltransferases PlsB and C, and the pyrophosphatase Cdh for phosphatidic acid biosynthesis, as well as the phosphatase PgpB for conversion to diacylglycerol were explored with the aim of improving GGL titers. Among the different engineered strains, the ΔtesA strain co-expressing MG517 and a fusion PlsCxPgpB protein was the best producer, with a 350% increase of GGL titer compared to the parental strain expressing MG517 alone. Attempts to boost UDPGlc availability by overexpressing the uridyltransferase GalU or knocking out the UDP-sugar diphosphatase encoding gene ushA did not further improve GGL titers. Most of the strains produced GGL containing a variable number of glucosyl units from mono-to tetra-saccharides. Interestingly, the strains co-expressing Cdh showed a shift in the GGL profile towards the diglucosylated lipid (up to 80% of total GGLs) whereas the strains with a fadR knockout presented a higher amount of unsaturated acyl chains. In all cases, GGL production altered the lipidic composition of the E. coli membrane, observing that GGL replace phosphatidylethanolamine to maintain the overall membrane charge balance.
Collapse
Affiliation(s)
- Nuria Orive-Milla
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain
| | - Tom Delmulle
- Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Marjan de Mey
- Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain.
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain.
| |
Collapse
|
19
|
Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MEF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR, Iwasaki A, Suenaga K, Alajlani M, Göransson U, El-Seedi HR. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs 2019; 17:491. [PMID: 31443597 PMCID: PMC6780632 DOI: 10.3390/md17090491] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.
Collapse
Affiliation(s)
- Shaden A M Khalifa
- Clinical Research Centre, Karolinska University Hospital, Novum, 14157 Huddinge, Stockholm, Sweden
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Nizar Elias
- Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222 Dayr Atiyah, Syria
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Aamer Saeed
- Department of Chemitry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622 Giza, Egypt
| | - Moustafa S Moustafa
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Aida Abd El-Wahed
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Saleh M Al-Mousawi
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Muaaz Alajlani
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of HalleWittenberg, Hoher Weg 8, DE 06120 Halle (Saale), Germany
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden.
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt.
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, 42541 Medina, Saudi Arabia.
| |
Collapse
|
20
|
Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MEF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR, Iwasaki A, Suenaga K, Alajlani M, Göransson U, El-Seedi HR. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs 2019; 17:491. [DOI: https:/doi.org/10.3390/md17090491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- Clinical Research Centre, Karolinska University Hospital, Novum, 14157 Huddinge, Stockholm, Sweden
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Nizar Elias
- Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222 Dayr Atiyah, Syria
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Aamer Saeed
- Department of Chemitry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mohamed-Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622 Giza, Egypt
| | - Moustafa S. Moustafa
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Aida Abd El-Wahed
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Saleh M. Al-Mousawi
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Muaaz Alajlani
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of HalleWittenberg, Hoher Weg 8, DE 06120 Halle (Saale), Germany
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, 42541 Medina, Saudi Arabia
| |
Collapse
|
21
|
Gutleben J, Koehorst JJ, McPherson K, Pomponi S, Wijffels RH, Smidt H, Sipkema D. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol Ecol 2019; 95:fiz108. [PMID: 31276591 PMCID: PMC6644159 DOI: 10.1093/femsec/fiz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host.
Collapse
Affiliation(s)
- Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Kyle McPherson
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Shirley Pomponi
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Florida Atlantic University – Harbor Branch, 5600 U.S. 1, Fort Pierce, FL 34946, the United States
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
22
|
Hu X, Cheng B, Du D, Huang Z, Pu Z, Chen G, Peng A, Lu L. Isolation and identification of a marine actinomycete strain and its control efficacy against citrus green and blue moulds. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1613175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Xiurong Hu
- Plant Protection Laboratory, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Baoping Cheng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Danchao Du
- Plant Protection Laboratory, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Zhendong Huang
- Plant Protection Laboratory, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Zhanxu Pu
- Plant Protection Laboratory, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Guoqing Chen
- Plant Protection Laboratory, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Aitian Peng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lianming Lu
- Plant Protection Laboratory, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| |
Collapse
|
23
|
Mathivanan A, Ravikumar S, Selvakumar G. Bioprospecting of sponge and its symbionts: New tool for mosquitocidal & insecticidal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Calderon D, Peña L, Suarez A, Villamil C, Ramirez-Rojas A, Anzola JM, García-Betancur JC, Cepeda ML, Uribe D, Del Portillo P, Mongui A. Recovery and functional validation of hidden soil enzymes in metagenomic libraries. Microbiologyopen 2019; 8:e00572. [PMID: 30851083 PMCID: PMC6460280 DOI: 10.1002/mbo3.572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
The vast microbial diversity on the planet represents an invaluable source for identifying novel activities with potential industrial and therapeutic application. In this regard, metagenomics has emerged as a group of strategies that have significantly facilitated the analysis of DNA from multiple environments and has expanded the limits of known microbial diversity. However, the functional characterization of enzymes, metabolites, and products encoded by diverse microbial genomes is limited by the inefficient heterologous expression of foreign genes. We have implemented a pipeline that combines NGS and Sanger sequencing as a way to identify fosmids within metagenomic libraries. This strategy facilitated the identification of putative proteins, subcloning of targeted genes and preliminary characterization of selected proteins. Overall, the in silico approach followed by the experimental validation allowed us to efficiently recover the activity of previously hidden enzymes derived from agricultural soil samples. Therefore, the methodology workflow described herein can be applied to recover activities encoded by environmental DNA from multiple sources.
Collapse
Affiliation(s)
- Dayana Calderon
- Molecular Biotechnology Research Group, Corporación CorpoGen, Bogotá, Colombia
| | - Luis Peña
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Friedrich-Schiller Universität, Jena, Germany
| | - Angélica Suarez
- Molecular Biotechnology Research Group, Corporación CorpoGen, Bogotá, Colombia
| | - Carolina Villamil
- Molecular Biotechnology Research Group, Corporación CorpoGen, Bogotá, Colombia
| | - Adan Ramirez-Rojas
- Molecular Biotechnology Research Group, Corporación CorpoGen, Bogotá, Colombia
| | - Juan M Anzola
- Computational Biology, Corporación CorpoGen, Bogotá, Colombia
| | | | - Martha L Cepeda
- Molecular Biotechnology Research Group, Corporación CorpoGen, Bogotá, Colombia
| | - Daniel Uribe
- Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Alvaro Mongui
- Molecular Biotechnology Research Group, Corporación CorpoGen, Bogotá, Colombia.,Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
25
|
Gavin DP, Murphy EJ, Foley AM, Castilla IA, Reen FJ, Woods DF, Collins SG, O'Gara F, Maguire AR. Identification of an Esterase Isolated Using Metagenomic Technology which Displays an Unusual Substrate Scope and its Characterisation as an Enantioselective Biocatalyst. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Declan P. Gavin
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| | - Edel J. Murphy
- School of Chemistry; Analytical and Biological Chemistry Research Facility; University College Cork; T12 K8AF Cork Ireland
| | - Aoife M. Foley
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| | - Ignacio Abreu Castilla
- BIOMERIT Research Centre; School of Microbiology; University College Cork; T12 K8AF Cork Ireland
| | - F. Jerry Reen
- School of Microbiology; University College Cork; T12 K8AF Cork Ireland
| | - David F. Woods
- BIOMERIT Research Centre; School of Microbiology; University College Cork; T12 K8AF Cork Ireland
| | - Stuart G. Collins
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre; School of Microbiology; University College Cork; T12 K8AF Cork Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute; Curtin University; Perth WA 6102 Australia
- Telethon Kids Institute; Perth WA 6008 Australia
| | - Anita R. Maguire
- School of Chemistry; School of Pharmacy; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| |
Collapse
|
26
|
Secondary Metabolites from Marine Endophytic Fungi: Emphasis on Recent Advances in Natural Product Research. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-03589-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
27
|
Seppälä S, Wilken SE, Knop D, Solomon KV, O’Malley MA. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab Eng 2017; 44:45-59. [DOI: 10.1016/j.ymben.2017.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
28
|
An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040040] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.
Collapse
|
29
|
Induction of Diverse Bioactive Secondary Metabolites from the Mangrove Endophytic Fungus Trichoderma sp. (Strain 307) by Co-Cultivation with Acinetobacter johnsonii (Strain B2). Mar Drugs 2017; 15:md15020035. [PMID: 28208607 PMCID: PMC5334615 DOI: 10.3390/md15020035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Two new sesquiterpenes, microsphaeropsisin B (1) and C (2), and two new de-O-methyllasiodiplodins, (3R, 7R)-7-hydroxy-de-O-methyllasiodiplodin (4) and (3R)-5-oxo-de-O-methyllasiodiplodin (5), together with one new natural product (6) and twelve known compounds (3, 7-17), were isolated from the co-cultivation of mangrove endophytic fungus Trichoderma sp. 307 and aquatic pathogenic bacterium Acinetobacter johnsonii B2. Their structures, including absolute configurations, were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, Mo₂(AcO)₄-induced circular dichroism, and comparison with reported data. All of the isolated compounds were tested for their α-glucosidase inhibitory activity and cytotoxicity. New compounds 4 and 5 exhibited potent α-glucosidase inhibitory activity with IC50 values of 25.8 and 54.6 µM, respectively, which were more potent than the positive control (acarbose, IC50 = 703.8 µM). The good results of the tested bioactivity allowed us to explore α-glucosidase inhibitors in lasiodiplodins.
Collapse
|
30
|
He F, Mai LH, Gardères J, Hussain A, Erakovic Haber V, Bourguet-Kondracki ML. Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria. BLUE BIOTECHNOLOGY 2017; 55:35-89. [DOI: 10.1007/978-3-319-51284-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger KE. Novel Tools for the Functional Expression of Metagenomic DNA. Methods Mol Biol 2017; 1539:159-196. [PMID: 27900689 DOI: 10.1007/978-1-4939-6691-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Functional expression of genes from metagenomic libraries is limited by various factors including inefficient transcription and/or translation of target genes as well as improper folding and assembly of the corresponding proteins caused by the lack of appropriate chaperones and cofactors. It is now well accepted that the use of different expression hosts of distinct phylogeny and physiology can dramatically increase the rate of success. In the following chapter, we therefore describe tools and protocols allowing for the comparative heterologous expression of genes in five bacterial expression hosts, namely Escherichia coli, Pseudomonas putida, Bacillus subtilis, Burkholderia glumae, and Rhodobacter capsulatus. Different broad-host-range shuttle vectors are described that allow activity-based screening of metagenomic DNA in these bacteria. Furthermore, we describe the newly developed transfer-and-expression system TREX which comprises genetic elements essential to allow for expression of large clusters of functionally coupled genes in different microbial species.
Collapse
Affiliation(s)
- Nadine Katzke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany.
| |
Collapse
|
32
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
33
|
Rakshith D, Santosh P, Pradeep TP, Gurudatt DM, Baker S, Yashavantha Rao HC, Pasha A, Satish S. Application of Bioassay-Guided Fractionation Coupled with a Molecular Approach for the Dereplication of Antimicrobial Metabolites. Chromatographia 2016. [DOI: 10.1007/s10337-016-3188-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Borchert E, Jackson SA, O'Gara F, Dobson ADW. Diversity of Natural Product Biosynthetic Genes in the Microbiome of the Deep Sea Sponges Inflatella pellicula, Poecillastra compressa, and Stelletta normani. Front Microbiol 2016; 7:1027. [PMID: 27446062 PMCID: PMC4925706 DOI: 10.3389/fmicb.2016.01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/16/2016] [Indexed: 11/27/2022] Open
Abstract
Three different deep sea sponge species, Inflatella pellicula, Poecillastra compressa, and Stelletta normani comprising seven individual samples, retrieved from depths of 760–2900 m below sea level, were investigated using 454 pyrosequencing for their secondary metabolomic potential targeting adenylation domain and ketosynthase domain sequences. The data obtained suggest a diverse microbial origin of nonribosomal peptide synthetases and polyketide synthase fragments that in part correlates with their respective microbial community structures that were previously described and reveals an untapped source of potential novelty. The sequences, especially the ketosynthase fragments, display extensive clade formations which are clearly distinct from sequences hosted in public databases, therefore highlighting the potential of the microbiome of these deep sea sponges to produce potentially novel small-molecule chemistry. Furthermore, sequence similarities to gene clusters known to be involved in the production of many classes of antibiotics and toxins including lipopeptides, glycopeptides, macrolides, and hepatotoxins were also identified.
Collapse
Affiliation(s)
- Erik Borchert
- School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - Stephen A Jackson
- School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - Fergal O'Gara
- School of Microbiology, University College Cork, National University of IrelandCork, Ireland; Biomerit Research Centre, University College Cork, National University of IrelandCork, Ireland; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin UniversityPerth, WA, Australia
| | - Alan D W Dobson
- School of Microbiology, University College Cork, National University of IrelandCork, Ireland; Environmental Research Institute, University College Cork, National University of IrelandCork, Ireland
| |
Collapse
|
35
|
King JR, Edgar S, Qiao K, Stephanopoulos G. Accessing Nature's diversity through metabolic engineering and synthetic biology. F1000Res 2016; 5. [PMID: 27081481 PMCID: PMC4813638 DOI: 10.12688/f1000research.7311.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.
Collapse
Affiliation(s)
- Jason R King
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Edgar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kangjian Qiao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
37
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
38
|
Gong JS, Shi JS, Lu ZM, Li H, Zhou ZM, Xu ZH. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol 2015; 37:69-81. [DOI: 10.3109/07388551.2015.1120704] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 2015; 6:890. [PMID: 26379658 PMCID: PMC4552006 DOI: 10.3389/fmicb.2015.00890] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern, and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical development.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - José Navarro-Fernández
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Universidad de Murcia, IMIB-Arrixaca, MurciaSpain
| | - Ahmed Abd Elrazak
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Botany Department, Faculty of Science, Mansoura University, MansouraEgypt
| |
Collapse
|
40
|
Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32:779-810. [PMID: 25850681 DOI: 10.1039/c4np00134f] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
41
|
Reen FJ, Gutiérrez-Barranquero JA, Dobson ADW, Adams C, O’Gara F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 2015; 13:2924-54. [PMID: 25984990 PMCID: PMC4446613 DOI: 10.3390/md13052924] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.
Collapse
Affiliation(s)
- F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - José A. Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mail:
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
42
|
Marine natural products as breast cancer resistance protein inhibitors. Mar Drugs 2015; 13:2010-29. [PMID: 25854646 PMCID: PMC4413197 DOI: 10.3390/md13042010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters.
Collapse
|
43
|
Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2014; 2:85. [PMID: 25340049 PMCID: PMC4189415 DOI: 10.3389/fchem.2014.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/20/2014] [Indexed: 11/13/2022] Open
Abstract
Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.
Collapse
Affiliation(s)
| | - Corinne Sinquin
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Lou Lebellenger
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Agata Zykwinska
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Sylvia Colliec-Jouault
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| |
Collapse
|
44
|
Krishnan K, Mani A, Jasmine S. Cytotoxic Activity of Bioactive Compound 1, 2- Benzene Dicarboxylic Acid, Mono 2- Ethylhexyl Ester Extracted from a Marine Derived Streptomyces sp. VITSJK8. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:246-54. [PMID: 25635251 PMCID: PMC4293612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/01/2014] [Accepted: 11/17/2014] [Indexed: 11/06/2022]
Abstract
Marine Streptomyces are prolific producers of majority of bioactive secondary metabolites which are used in pharmaceutical industry as effective drugs against life threatening diseases. The cytotoxic activity of the pure compound 1, 2- benzene dicarboxylic acid, mono 2- ethylhexyl ester (DMEHE) from marine derived actinomycete Streptomyces sp. VITSJK8 was investigated against mouse embryonic fibroblast (NIH 3T3) and human keratinocyte (HaCaT) normal cell lines, human hepatocellular liver carcinoma (HepG 2) and human breast adenocarcinoma (MCF-7) cell lines by using MTT assay. The compound DMEHE exhibited IC 50 values of 42, 100, 250 and 500 µg/ ml against HepG2, MCF-7, HaCaT and NIH 3T3 cell lines, respectively. The effect of DMEHE on the growth of cancer cell lines was expressed as the % of viability. Cell viability was recorded as 67.7%, 78.14%, 82.23% and 96. 11% in HepG2, MCF-7, HaCaT and NIH 3T3 cells, respectively. The results of the study conclude that the bioactive compound isolated from the potential isolate Streptomyces sp. VITSJK8 exhibited cytotoxic activity against HepG2 and MCF- 7 cancer cell lines and low toxicity against normal HaCaT and NIH 3T3 cell lines.
Collapse
Affiliation(s)
- Kannabiran Krishnan
- Corresponding author: School of Biosciences and Technology, VIT University, Vellore-632 014, Tamilnadu, India.
| | | | | |
Collapse
|