1
|
Abbas MF, Karim DK, Kareem HR, Kamil MM, Al-Musawi MH, Asker MH, Ghanami M, Shahriari-Khalaji M, Sattar M, Mirhaj M, Sharifianjazi F, Tavamaishvili K, Mohabbatkhah M, Soheily A, Noory P, Tavakoli M. Fucoidan and its derivatives: From extraction to cutting-edge biomedical applications. Carbohydr Polym 2025; 357:123468. [PMID: 40158992 DOI: 10.1016/j.carbpol.2025.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Fucoidan, a sulfated polymeric carbohydrate isolated from various marine brown algae, has attracted the interest of biomedical scientists because of its unique structural features and extensive spectrum of biological activity. This review encompasses a comprehensive insight into fucoidan's extraction procedures, cross-linking strategies, chemical modifications, and biomedical applications. Advanced extraction methods, such as microwave-assisted and enzyme-assisted extraction, are emphasized to get high-quality fucoidan that has augmented bioactivity. Moreover, the production and role of fucoidan-based materials in drug delivery systems are investigated, with a focus on their potential for targeted therapies. The study also explores the strategies to improve fucoidan's bioavailability and mechanical properties via structural modifications, such as Sulfation, desulfation, methylation, benzoylation, sulfation, amination, acetylation and phosphorylation, and cross-linking with other polymers to form films, hydrogels, and nanocomposites. In addition, fucoidan's applications in drug delivery systems, tissue engineering, microneedles, and 3D bioprinting are discussed. By summarizing current research findings, this study seeks to comprehend the mechanisms underpinning fucoidan's therapeutic efficacy and its potential to develop robust biomaterials.
Collapse
Affiliation(s)
- Marwa F Abbas
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Dhuha K Karim
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Huda Raad Kareem
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Mohammed Hayder Asker
- Department of pharmacology and toxicology, college of pharmacy, Mustansiriyah University Baghdad, Iraq.
| | - Maral Ghanami
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | | | - Mamoona Sattar
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia; Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia.
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi 0160, Georgia.
| | - Mehdi Mohabbatkhah
- Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ali Soheily
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
2
|
Abraham N, Pandey G, Kolipaka T, Negi M, Srinivasarao DA, Srivastava S. Exploring advancements in polysaccharide-based approaches: The cornerstone of next-generation cartilage regeneration therapeutics. Int J Biol Macromol 2025; 306:141352. [PMID: 39986526 DOI: 10.1016/j.ijbiomac.2025.141352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cartilage regeneration poses a formidable challenge in orthopaedics due to continuous wear and tear exertion and its limited intrinsic healing capacity, which demand exploration beyond current clinical approaches. Polysaccharides emerged as promising agents for cartilage regeneration, offering biocompatibility, biodegradability, bioactivity, and ECM mimicry. This article provides an overview of the pathophysiology of cartilage diseases and current clinical approaches, followed by polysaccharide-based strategies for cartilage repair, delineating the chemical and biological properties of various polysaccharides like alginates, hyaluronic acid, and chondroitin sulfate. The emphasis lies on innovative strategies such as sulphated and cross-linked polysaccharides, with injectable polysaccharide hydrogels offering adjustable mechanical properties and easy administration. Growth factor and cellular incorporation into hydrogels enhance their therapeutic potential. At the same time, biofabrication techniques, such as filamented light biofabrication, cartilage spheroid generation, and 3D printing, offer precise control over cartilage architecture, with bio-inks comprising alginate, gelatin, and hyaluronic acid showing promise. These advancements underscore the potential of polysaccharides to revolutionize cartilage regeneration strategies, offering hope for improved patient outcomes in the future. The article concludes by addressing regulatory hurdles and the future perspective of polysaccharide-based approaches in clinical translation for cartilage regeneration.
Collapse
Affiliation(s)
- Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Wang X, Yang J, Zhao Q, Xie X, Deng F, Wang Z, Jiang K, Li X, Liu H, Shi Z, Zhu X, Chen L, Lv D. A tissue-adhesive, mechanically enhanced, natural Aloe Vera-based injectable hydrogel for wound healing: Macrophage mediation and collagen proliferation. Int J Biol Macromol 2024; 283:137452. [PMID: 39522911 DOI: 10.1016/j.ijbiomac.2024.137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Macromolecule hydrogels made from natural extracts have received much attention because of their favorable biocompatibility and wound healing properties. However, their clinical applications are limited by their insufficient mechanical strength and low adhesion properties. To overcome these limitations, we developed a novel injectable Aloe vera hydrogel (PDMA-GelMA@AV). By integrating gelatin methacrylate (GelMA) and polydopamine methacrylamide (PDMA), we significantly improved the mechanical and adhesion properties of the hydrogel. The PDMA-GelMA@AV hydrogel degraded in a simulated wound environment, which was synchronized with the sustained release of the bioactive components of A. vera. In vitro and in vivo analyses revealed that this hydrogel has good biocompatibility. In vitro studies also revealed that the sustained release of the active ingredients of A. vera promoted fibroblast proliferation and migration and increased the expression of key proteins and mRNAs required for wound healing. In addition, it modulated LPS-stimulated macrophages and decreased the expression of TNF-α, IL-1β and iNOS while increasing the expression of TGF-β and ARG. In vivo experiments further confirmed the efficacy of hydrogels in wound healing applications. These findings offer a novel perspective on the application of natural macromolecules as hydrogel-based delivery vehicles in wound care.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Jing Yang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Qimeng Zhao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Xianchang Xie
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Fuling Deng
- Department of Burn and Plastic Surgery, Wuhu City First People's Hospital, Wuhu 241000, PR China
| | - Ziyi Wang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Kunpeng Jiang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Xiaoming Li
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Hu Liu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Zhenhao Shi
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Xu Zhu
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| | - Lei Chen
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China.
| | - Dalun Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, PR China.
| |
Collapse
|
4
|
Wang R, Xu S, Zhang M, Feng W, Wang C, Qiu X, Li J, Zhao W. Multifunctional chitosan-based hydrogels loaded with iridium nanoenzymes for skin wound repair. Carbohydr Polym 2024; 342:122325. [PMID: 39048214 DOI: 10.1016/j.carbpol.2024.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 07/27/2024]
Abstract
Hemostasis, infection, oxidative stress, and inflammation still severely impede the wound repair process. It is significant to develop multifunctional wound dressings that can function as needed in various stages of wound healing. In this study, iridium nanoparticles (IrNPs) with multi-enzyme mimetic activity were complexed with chitosan (CS) and fucoidan (FD) for the first time to make a multifunctional CS/FD/IrNPs hydrogel with excellent antioxidant effect. The hydrogel has excellent physicochemical properties. In particular, the incorporation of IrNPs imparts excellent antioxidant properties to the hydrogel, which could scavenge reactive oxygen species (ROS). In addition, the hydrogel shows excellent hemostatic and antibacterial properties. The CS/FD/IrNPs hydrogel performs fast and efficient hemostasis in 21 s. Moreover, the blood loss of the CS/FD/IrNPs hydrogel group was approximately 10% of that in the control group and the antibacterial rate of CS/FD/IrNPs hydrogel against E. coli and S. aureus was up to 95 %. In vivo results demonstrate that CS/FD/IrNPs hydrogel promotes wound healing by attenuating ROS levels, reducing oxidative damage, mitigating inflammation, and accelerating angiogenesis. To summarize, the CS/FD/IrNPs hydrogel system, with hemostatic, antibacterial, antioxidant, anti-inflammatory and pro-healing activities, can be a promising and effective strategy for the treatment of clinically difficult-to-heal wounds.
Collapse
Affiliation(s)
- Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jierui Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
5
|
Chuang EY, Lin YC, Huang YM, Chen CH, Yeh YY, Rethi L, Chou YJ, Jheng PR, Lai JM, Chiang CJ, Wong CC. Biofunctionalized hydrogel composed of genipin-crosslinked gelatin/hyaluronic acid incorporated with lyophilized platelet-rich fibrin for segmental bone defect repair. Carbohydr Polym 2024; 339:122174. [PMID: 38823938 DOI: 10.1016/j.carbpol.2024.122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.
Collapse
Affiliation(s)
- Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan; Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Yi-Cheng Lin
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Min Huang
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Taipei Medical University Research Center of Biomedical Devices Prototyping Production, Taipei 11031, Taiwan; School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Yen Yeh
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Yu-Jen Chou
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jen-Ming Lai
- Department of Orthopedic Surgery, Woodlands Health, 768024, Singapore
| | - Chang-Jung Chiang
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University Research Center of Biomedical Devices Prototyping Production, Taipei 11031, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University Research Center of Biomedical Devices Prototyping Production, Taipei 11031, Taiwan; International PhD Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
6
|
Jin J, Xia X, Ruan C, Luo Z, Yang Y, Wang D, Qin Y, Li D, Zhang Y, Hu Y, Lei P. GAPDH-Silence Microsphere via Reprogramming Macrophage Metabolism and eradicating Bacteria for Diabetic infection bone regeneration. J Nanobiotechnology 2024; 22:517. [PMID: 39210435 PMCID: PMC11361104 DOI: 10.1186/s12951-024-02787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophage metabolism dysregulation, which is exacerbated by persistent stimulation in infectious and inflammatory diseases, such as diabetic infectious bone defects (DIBD), eventually leads to the failure of bone repair. Here, we have developed an injectable, macrophage-modulated GAPDH-Silence drug delivery system. This microsphere comprises chondroitin sulfate methacrylate (CM) and methacrylated gelatin (GM), while the dimethyl fumarate (DMF)-loaded liposome (D-lip) is encapsulated within the microsphere (CM@GM), named D-lip/CM@GM. Triggered by the over-expressed collagenase in DIBD, the microspheres degrade and release the encapsulated D-lip. D-lip could modulate metabolism by inhibiting GAPDH, which suppresses the over-activation of glycolysis, thus preventing the inflammatory response of macrophages in vitro. While beneficial for macrophages, D-lip/CM@GM is harmful to bacteria. GAPDH, while crucial for glycolysis of staphylococcal species (S. aureus), can be effectively countered by D-lip/CM@GM. We are utilizing existing drugs in innovative ways to target central metabolism for effective eradication of bacteria. In the DIBD model, our results confirmed that the D-lip/CM@GM enhanced bacteria clearance and reprogrammed dysregulated metabolism, thereby significantly improving bone regeneration. In conclusion, this GAPDH-Silence microsphere system may provide a viable strategy to promote diabetic infection bone regeneration.
Collapse
Affiliation(s)
- Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
| | - Chengxin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqi Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Dongdong Li
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, 200233, China
| | - Yong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Szatmáry Z, Bardet SM, Mounier J, Janot K, Cortese J, Perrin ML, Couquet C, Deniau G, Hauquier F, Migneret R, Guenin E, Maire M, Michel JB, Forestier G, Le Flahec A, Leger-Bretou C, Mounayer C, Chaubet F, Rouchaud A. Fucoidan-coated coils improve healing in a rabbit elastase aneurysm model. J Neurointerv Surg 2024; 16:824-829. [PMID: 37491380 DOI: 10.1136/jnis-2023-020596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Recanalization of coiled aneurysms remains unresolved. To limit aneurysm recanalization after embolization with coils, we propose an innovative approach to optimize aneurysm healing using fucoidan-coated coils. OBJECTIVE To evaluate the short-term efficacy and long-term safety of the new coil system with conventional angiography, histology, and multiphoton microscopy for follow-up of fibrosis and neointima formation. METHODS We conducted a feasibility study on rabbit elastase-induced aneurysms. Embolization was carried out with bare platinum coils, fucoidan-coated coils, or dextran-coated coils. Aneurysms were controlled after 1 month by digital subtraction angiography (DSA). Aneurysm samples were collected and processed for histological analysis. Aneurysm healing and fibrosis were measured by quantifying collagen according to the histological healing score by combining standard light microscopy and multiphoton imaging. We divided 27 rabbits into three groups: bare platinum group, fucoidan group, and dextran group as controls. RESULTS Angiographic grading showed a trend toward less recanalization in the fucoidan group, although there were no significant differences among the three groups (P=0.21). Histological healing was significantly different according to the presence of more collagen in the neck area of aneurysms in the fucoidan group versus the bare platinum group (P=0.011), but not in the dextran group. Histological index was significantly better at the aneurysm neck in the fucoidan group than in the bare platinum group (P=0.004). Collagen organization index was also significantly better in the fucoidan group than in the bare platinum group (P=0.007). CONCLUSION This proof-of-concept study demonstrated the feasibility and efficacy of treatment with fucoidan-coated coils to improve aneurysm healing. The results in this rabbit in vivo model showed that fucoidan-coated coils have the potential to improve healing following endovascular treatment.
Collapse
Affiliation(s)
- Zoltán Szatmáry
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | | | - Jérémy Mounier
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | - Kevin Janot
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
- Department of Interventional Neuroradiology, CHRU Tours CPU, Tours, France
| | - Jonathan Cortese
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
- Department of Interventional Neuroradiology-NEURI Brain Vascular Center APHP, Hospital Bicetre, Le Kremlin-Bicêtre, France
| | | | - Cladue Couquet
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | - Guy Deniau
- UMR CEA, CNRS 3685, NIMBE, LICSEN, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fanny Hauquier
- UMR CEA, CNRS 3685, NIMBE, LICSEN, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Chemistry and Health and Life Sciences, CNAM, Paris, France
| | - Rodolphe Migneret
- INSERM, UMRS 1148, LVTS, Paris, France
- Institut Galilée, Sorbonne North Paris University, Villetaneuse, France
| | - Erwann Guenin
- Laboratoire TIMR, Centre de Recherche Royallieu Rue du Dr Schweitzer - CS 6031960200, Compiègne, France
| | - Murielle Maire
- INSERM, UMRS 1148, LVTS, Paris, France
- Institut Galilée, Sorbonne North Paris University, Villetaneuse, France
| | | | - Géraud Forestier
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | | | | | - Charbel Mounayer
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | - Frederic Chaubet
- INSERM, UMRS 1148, LVTS, Paris, France
- Institut Galilée, Sorbonne North Paris University, Villetaneuse, France
| | - Aymeric Rouchaud
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| |
Collapse
|
8
|
Amin ML, Mawad D, Dokos S, Sorrell CC. Comparative Bioactivities of Chemically Modified Fucoidan and λ-Carrageenan toward Cells Encapsulated in Covalently Cross-Linked Hydrogels. Biomacromolecules 2024; 25:3131-3140. [PMID: 38554085 DOI: 10.1021/acs.biomac.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.
Collapse
Affiliation(s)
- Md Lutful Amin
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Lu HY, Mi FL, Chou CM, Lin C, Chen YY, Chu CY, Liu CY, Lee YLA, Shih CC, Cheng CH. Layer-by-layer assembly of quercetin-loaded zein/γPGA/low-molecular-weight chitosan/fucoidan nanosystem for targeting inflamed blood vessels. Int J Biol Macromol 2024; 267:131369. [PMID: 38580026 DOI: 10.1016/j.ijbiomac.2024.131369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.
Collapse
Affiliation(s)
- Hsin-Ying Lu
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Yu Chen
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Ying Chu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; CRISPR Gene Targeting Core Lab, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Yang Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Lin Amy Lee
- Departments of Medicine and Pediatrics, Hospice and Palliative Medicine, Duke University Hospital, Durham, NC 27710, USA
| | - Chun Che Shih
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
10
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
11
|
Xu J, Cai Z, Chen M, Wang X, Luo X, Wang Y. Global research trends and hotspots in patellofemoral pain syndrome from 2000 to 2023: a bibliometric and visualization study. Front Med (Lausanne) 2024; 11:1370258. [PMID: 38566926 PMCID: PMC10985266 DOI: 10.3389/fmed.2024.1370258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Background Patellofemoral pain syndrome (PFPS) is a prevalent condition in sports medicine, and as sports competitions become more popular, the incidence of sports injuries is on the rise. Despite the increasing research on PFPS, there remains a lack of bibliometric analyses on this topic. The aim of this study was to identify the research hotspots and trends in the field of PFPS by reviewing 23 years of literature in this field. Methods By analyzing the literature on PFPS research from 2000 to 2023 in the core dataset of the Web of Science database and utilizing bibliometric tools like CiteSpace 6.1, VOSviewer 1.6.18, R-bibliometrix 4.6.1, Pajek 5.16, and Scimago Graphica 1.0.26, our aim was to gain insights into the current status and key areas of PFPS research. The study examined various aspects including the number of publications, countries, institutions, journals, authors, collaborative networks, keywords, and more. Through the visualization of relevant data, we also attempted to forecast future trends in the field. Results There were 2,444 publications were included in this visualization study, published in 322 journals by 1,247 authors from 818 institutions in 67 countries. The Journal of Orthopaedic and Sports Physical Therapy had the highest number of publications, with the USA leading in article count. La Trobe University contributed the most articles, while Rathleff MS and Barton CJ emerged as the most prolific authors. Hip and knee strength and core strength, lower extremity kinematics and biomechanics, females (runners), muscle activation, risk factors, gait retraining, clinical practice guidelines, and rehabilitation were research hotspot keywords. Conclusion Current research suggests that there is still significant potential for the development of PFPS research. Key areas of focus include the clinical effectiveness of combined hip and knee strengthening to address PFPS, characterization of lower limb kinematics and biomechanics, gait retraining, risk factors, and clinical practice guidelines. Future research could explore the effectiveness of innovative exercise therapies such as blood flow restricting training, gait retraining, and neuromuscular control training for PFPS improvement. Further investigation into gait retraining for runners, particularly females, and clinical efficacy study of a novel PRP formulation for the treatment of PFPS.
Collapse
Affiliation(s)
- Jie Xu
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Zijuan Cai
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Meng Chen
- Department of Emergency Medicine, Nanchong Hospital of Traditional Chinese Medicine, Nanchong, China
| | - Xin Wang
- Health Science Center, Peking University, Beijing, China
| | - Xiaobing Luo
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Yanjie Wang
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| |
Collapse
|
12
|
Egle K, Dohle E, Hoffmann V, Salma I, Al-Maawi S, Ghanaati S, Dubnika A. Fucoidan/chitosan hydrogels as carrier for sustained delivery of platelet-rich fibrin containing bioactive molecules. Int J Biol Macromol 2024; 262:129651. [PMID: 38280707 DOI: 10.1016/j.ijbiomac.2024.129651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Platelet-rich fibrin (PRF), derived from human blood, rich in wound healing components, has drawbacks in direct injections, such as rapid matrix degradation and growth factor release. Marine polysaccharides, mimicking the human extracellular matrix, show promising potential in tissue engineering. In this study, we impregnated the self-assembled fucoidan/chitosan (FU_CS) hydrogels with PRF obtaining PRF/FU_CS hydrogels. Our objective was to analyze the properties of a hydrogel and the sustained release of growth factors from the hydrogel that incorporates PRF. The results of SEM and BET-BJH demonstrated the relatively porous nature of the FU_CS hydrogels. ELISA data showed that combining FU_CS hydrogel with PRF led to a gradual 7-day sustained release of growth factors (VEGF, EGF, IL-8, PDGF-BB, TGF-β1), compared to pure PRF. Histology confirmed ELISA data, demonstrating uniform PRF fibrin network distribution within the FU_CS hydrogel matrix. Furthermore, the FU_CS hydrogels revealed excellent cell viability. The results revealed that the PRF/FU_CS hydrogel has the potential to promote wound healing and tissue regeneration. This would be the first step in the search for improved growth factor release.
Collapse
Affiliation(s)
- Karina Egle
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia.
| | - Eva Dohle
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Verena Hoffmann
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Ilze Salma
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia; Institute of Stomatology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sarah Al-Maawi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany.
| | - Arita Dubnika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia.
| |
Collapse
|
13
|
Zhao Z, Xia X, Liu J, Hou M, Liu Y, Zhou Z, Xu Y, He F, Yang H, Zhang Y, Ruan C, Zhu X. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging. Bioact Mater 2024; 32:319-332. [PMID: 37869724 PMCID: PMC10589380 DOI: 10.1016/j.bioactmat.2023.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Cartilage injury represents a frequent dilemma in clinical practice owing to its inherently limited self-renewal capacity. Biomimetic strategy-based engineered biomaterial, capable of coordinated regulation for cellular and microenvironmental crosstalk, provides an adequate avenue to boost cartilage regeneration. The level of oxidative stress in microenvironments is verified to be vital for tissue regeneration, yet it is often overlooked in engineered biomaterials for cartilage regeneration. Herein, inspired by natural cartilage architecture, a fibril-network glycopeptide hydrogel (Nap-FFGRGD@FU), composed of marine-derived polysaccharide fucoidan (FU) and naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic peptide (Nap-FFGRGD), was presented through a simple supramolecular self-assembly approach. The Nap-FFGRGD@FU hydrogels exhibit a native cartilage-like architecture, characterized by interwoven collagen fibers and attached proteoglycans. Beyond structural simulation, fucoidan-exerted robust biological effects and Arg-Gly-Asp (RGD) sequence-provided cell attachment sites realized functional reinforcement, synergistically promoted extracellular matrix (ECM) production and reactive oxygen species (ROS) elimination, thus contributing to chondrocytes-ECM harmony. In vitro co-culture with glycopeptide hydrogels not only facilitated cartilage ECM anabolic metabolism but also scavenged ROS accumulation in chondrocytes. Mechanistically, the chondro-protective effects induced by glycopeptide hydrogels rely on the activation of endogenous antioxidant pathways associated with nuclear factor erythroid 2-related factor 2 (NRF2). In vivo implantation of glycopeptide hydrogels successfully improved the de novo cartilage generation by 1.65-fold, concomitant with coordinately restructured subchondral bone structure. Collectively, our ingeniously crafted bionic glycopeptide hydrogels simultaneously rewired chondrocytes' function by augmenting anabolic metabolism and rebuilt ECM microenvironment via preserving redox equilibrium, holding great potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| |
Collapse
|
14
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
15
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
16
|
Lu HT, Lin C, Wang YJ, Hsu FY, Hsu JT, Tsai ML, Mi FL. Sequential deacetylation/self-gelling chitin hydrogels and scaffolds functionalized with fucoidan for enhanced BMP-2 loading and sustained release. Carbohydr Polym 2023; 315:121002. [PMID: 37230625 DOI: 10.1016/j.carbpol.2023.121002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive factor that promotes bone formation. A major obstacle to the clinical application of BMP-2 is its inherent instability and complications caused by its rapid release from implants. Chitin based materials have excellent biocompatibility and mechanical properties, making them ideal for bone tissue engineering applications. In this study, a simple and easy method was developed to spontaneously form deacetylated β-chitin (DAC-β-chitin) gels at room temperature through a sequential deacetylation/self-gelation process. The structural transformation of β-chitin to DAC-β-chitin leads to the formation of self-gelling DAC-β-chitin, from which hydrogels and scaffolds were prepared. Gelatin (GLT) accelerated the self-gelation of DAC-β-chitin and increased the pore size and porosity of the DAC-β-chitin scaffold. The DAC-β-chitin scaffolds were then functionalized with a BMP-2-binding sulfate polysaccharide, fucoidan (FD). Compared with β-chitin scaffolds, FD-functionalized DAC-β-chitin scaffolds showed higher BMP-2 loading capacity and more sustainable release of BMP-2, and thus had better osteogenic activity for bone regeneration.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan, ROC
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Yi-Ju Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Fang-Yu Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Ju-Ting Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, ROC.
| |
Collapse
|
17
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Chen CH, Chen SH, Chen SH, Chuang ADC, T G D, Chen JP. Hyaluronic acid/platelet rich plasma-infused core-shell nanofiber membrane to prevent postoperative tendon adhesion and promote tendon healing. Int J Biol Macromol 2023; 231:123312. [PMID: 36669628 DOI: 10.1016/j.ijbiomac.2023.123312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
An anti-adhesive barrier membrane incorporating hyaluronic acid (HA) can reduce fibroblasts attachment and impart lubrication effect for smooth tendon gliding during management of post-surgical tendon adhesion. On the other hand, as numerous growth factors are required during tendon recovery, growth factors released by platelets in platelet-rich plasma (PRP) can provide beneficial therapeutic effects to facilitate tendon recovery post tendon injury. Furthermore, PRP is reported to be associated with anti-inflammatory properties for suppressing postoperative adhesion. Toward this end, we fabricate core-shell nanofiber membranes (NFM) with HA/PRP-infused core and polycaprolactone shell in this study. Different NFM with 100 % (H-P), 75 % (HP31-P), 50 % (HP11-P) and 25 % (H31-P) HA in the core was fabricated through coaxial electrospinning and analyzed through microscopic, pore size, mechanical, as well as HA and growth factor release studies. In vitro study with fibroblasts indicates the NFM can act as a barrier to prevent cell penetration and reduce cell attachment/focal adhesion, in addition to promoting tenocyte migration in tendon healing. In vivo studies in a rabbit flexor tendon rupture model indicates the HP11-P NFM shows improved efficacy over H-P NFM and control in reducing tendon adhesion formation and inflammation, while promoting tendon healing, from functional assays and histological analysis.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Shih-Hsien Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Andy Deng-Chi Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
| | - Darshan T G
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan; Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
19
|
Kuang S, Liu L, Hu Z, Luo M, Fu X, Lin C, He Q. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis. Int J Biol Macromol 2023; 228:582-593. [PMID: 36563826 DOI: 10.1016/j.ijbiomac.2022.12.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degeneration, which imposes a heavy physical and financial burden on the middle-aged and elderly population. As the pathogenesis of OA has not been fully elucidated, it is of great importance to develop targeted therapeutic or preventive medications. Traditional therapeutic drugs, such as non-steroidal anti-inflammatory drugs, steroids and opioids, have significant side effects, making the exploration for safe and effective alternative therapeutic drugs urgent. In recent years, many studies have reported the role of plant-derived polysaccharides in anti-inflammation, anti-oxidation, regulation of chondrocyte metabolism and proliferation, and cartilage protection, and have demonstrated their great potential in the treatment of OA. Therefore, by focusing on studies related to the intervention of plant-derived polysaccharides in OA, including in vivo and in vitro experiments, this review aimed to classify and summarize the existing research findings according to different mechanisms of action. In addition, reports on plant-derived polysaccharides as nanoparticles were also explored. Then, candidate monomers and theoretical bases were provided for the further development and application of novel drugs in the treatment of OA.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Min Luo
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
20
|
Xu J, Du W, Xue X, Chen M, Zhou W, Luo X. Global research trends on platelet-rich plasma for tendon and ligament injuries from the past two decades: A bibliometric and visualized study. Front Surg 2023; 10:1113491. [PMID: 36843990 PMCID: PMC9950278 DOI: 10.3389/fsurg.2023.1113491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Background In sports medicine, tendon and ligament injuries are the most prevalent conditions, and with the booming of sports competition, the incidence of sports injuries is gradually increasing, investigating more potent therapeutic options is therefore becoming increasingly crucial. Platelet-rich plasma therapy has gained popularity as an effective and secure treatment in recent years. Currently, a faceted systematic and clear visual analysis is lacking in this research area. Methods The literature related to using platelet-rich plasma to treat ligament and tendon injuries from 2003 to 2022 in the core dataset of the Web of Science database was collected and analyzed visually using Citespace 6.1 software. Research hotspots and development trends were analyzed in terms of high-impact countries or regions, authors, research institutions, keywords, and cited literature. Results The literature comprised a total of 1,827 articles. The annual publication volume of relevant literature has demonstrated a significant development tendency as the field of platelet-rich plasma research for tendon and ligament injuries has heated up in recent years. With 678 papers, the United States came in top place, followed by China with 187 papers. Hosp Special Surg ranked first with 56 papers. The hot research topics analyzed by keywords were tennis elbow, anterior cruciate ligament, rotator cuff repair, achilles tendon, mesenchymal stem cells, guided tissue regeneration, network meta analysis, chronic patellar tendinopathy, and follow up. Conclusion Analysis of the research literature over the past 20 years shows that the United States and China will continue to dominate in terms of volume of publications based on annual volume and trends, with some collaboration among high-impact authors and further collaboration still needed in different countries and institutions. Platelet-rich plasma is widely used in the treatment of tendon ligament injuries. Its clinical efficacy is influenced by a number of factors, the main ones being the inconsistency in the preparation and composition of platelet-rich plasma and its related preparations, and the differences in efficacy due to different activation methods of platelet-rich plasma, as well as factors such as injection time, injection site, administration method, number of administrations, acidity and evaluation methods, In addition, the applicability to different injury diseases remains controversial. In recent years, the molecular biology of platelet-rich plasma for tendon ligament therapy has received increasing attention.
Collapse
Affiliation(s)
- Jie Xu
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Wanli Du
- Department of Cervicodynia/Omalgia/Lumbago/Sciatica 2, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Xiali Xue
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Meng Chen
- Department of Emergency Medicine, Nanchong Hospital of Traditional Chinese Medicine, Nanchong, China
| | - Wenqi Zhou
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Xiaobing Luo
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China,Correspondence: Xiaobing Luo
| |
Collapse
|
21
|
Haggag YA, Abd Elrahman AA, Ulber R, Zayed A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar Drugs 2023; 21:112. [PMID: 36827153 PMCID: PMC9965894 DOI: 10.3390/md21020112] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Fucoidan is a heterogeneous group of polysaccharides isolated from marine organisms, including brown algae and marine invertebrates. The physicochemical characteristics and potential bioactivities of fucoidan have attracted substantial interest in pharmaceutical industries in the past few decades. These polysaccharides are characterized by possessing sulfate ester groups that impart negatively charged surfaces, low/high molecular weight, and water solubility. In addition, various promising bioactivities have been reported, such as antitumor, immunomodulatory, and antiviral effects. Hence, the formulation of fucoidan has been investigated in the past few years in diverse pharmaceutical dosage forms to be able to reach their site of action effectively. Moreover, they can act as carriers for various drugs in value-added drug delivery systems. The current work highlights the attractive biopharmaceutical properties of fucoidan being formulated in oral, inhalable, topical, injectable, and other advanced formulations treating life-quality-affecting diseases. Therefore, the present work points out the current status of fucoidan pharmaceutical formulations for future research transferring their application from in vitro and in vivo studies to clinical application and market availability.
Collapse
Affiliation(s)
- Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta 31527, Egypt
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abeer A. Abd Elrahman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Street 49, 67663 Kaiserslautern, Germany
| | - Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Street 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, El-Guish Street, Tanta 31527, Egypt
| |
Collapse
|
22
|
Li W, Zhou P, Yan B, Qi M, Chen Y, Shang L, Guan J, Zhang L, Mao Y. Disc regeneration by injectable fucoidan-methacrylated dextran hydrogels through mechanical transduction and macrophage immunomodulation. J Tissue Eng 2023; 14:20417314231180050. [PMID: 37427012 PMCID: PMC10328174 DOI: 10.1177/20417314231180050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Modulating a favorable inflammatory microenvironment that facilitates the recovery of degenerated discs is a key strategy in the treatment of intervertebral disc (IVD) degeneration (IDD). More interestingly, well-mechanized tissue-engineered scaffolds have been proven in recent years to be capable of sensing mechanical transduction to enhance the proliferation and activation of nucleus pulposus cells (NPC) and have demonstrated an increased potential in the treatment and recovery of degenerative discs. Additionally, existing surgical procedures may not be suitable for IDD treatment, warranting the requirement of new regenerative therapies for the restoration of disc structure and function. In this study, a light-sensitive injectable polysaccharide composite hydrogel with excellent mechanical properties was prepared using dextrose methacrylate (DexMA) and fucoidan with inflammation-modulating properties. Through numerous in vivo experiments, it was shown that the co-culture of this composite hydrogel with interleukin-1β-stimulated NPCs was able to promote cell proliferation whilst preventing inflammation. Additionally, activation of the caveolin1-yes-associated protein (CAV1-YAP) mechanotransduction axis promoted extracellular matrix (ECM) metabolism and thus jointly promoted IVD regeneration. After injection into an IDD rat model, the composite hydrogel inhibited the local inflammatory response by inducing macrophage M2 polarization and gradually reducing the ECM degradation. In this study, we propose a fucoidan-DexMA composite hydrogel, which provides an attractive approach for IVD regeneration.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- Department of Orthopedics, Lixin County
People’s Hospital, Bozhou, China
| | - Pinghui Zhou
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Bomin Yan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Meiyao Qi
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yedan Chen
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| |
Collapse
|
23
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
24
|
Structural and bioactive roles of fucoidan in nanogel delivery systems. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Ohmes J, Saure LM, Schütt F, Trenkel M, Seekamp A, Scherließ R, Adelung R, Fuchs S. Injectable Thermosensitive Chitosan-Collagen Hydrogel as A Delivery System for Marine Polysaccharide Fucoidan. Mar Drugs 2022; 20:402. [PMID: 35736205 PMCID: PMC9229026 DOI: 10.3390/md20060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and β-glycerophosphate (β-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.
Collapse
Affiliation(s)
- Julia Ohmes
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| | - Lena Marie Saure
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; (M.T.); (R.S.)
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; (M.T.); (R.S.)
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| |
Collapse
|
26
|
Di Francesco M, Fragassi A, Pannuzzo M, Ferreira M, Brahmachari S, Decuzzi P. Management of osteoarthritis: From drug molecules to nano/micromedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1780. [PMID: 35253405 PMCID: PMC9285805 DOI: 10.1002/wnan.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerging as a major medical burden globally. OA is a chronic inflammatory and degenerative disease initially manifesting with joint pain and eventually leading to permanent disability. To date, there are no drugs available for the definitive treatment of osteoarthritis and most therapies have been palliative in nature by alleviating symptoms rather than curing the disease. This coupled with the vague understanding of the early symptoms and methods of diagnosis so that the disease continues as a global problem and calls for concerted research efforts. A cascade of events regulates the onset and progression of osteoarthritis starting with the production of proinflammatory cytokines, including interleukin (IL)‐1β, IL‐6, tumor necrosis factor (TNF)‐α; catabolic enzymes, such as matrix metalloproteinases (MMPs)‐1, ‐3, and ‐13, culminating into cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although intra‐articular injections of small and macromolecules are often prescribed to alleviate symptoms, low residence times within the synovial cavity severely impair their efficacy. This review will briefly describe the factors dictating the onset and progression of the disease, present the current clinically approved methods for its treatment and diagnosis, and finally elaborate on the main challenges and opportunities for the application of nano/micromedicines in the treatment of osteoarthritis. Thus, future treatment regimens will benefit from simultaneous consideration of the mechanobiological, the inflammatory, and tissue degradation aspects of the disease. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Collapse
Affiliation(s)
- Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Agnese Fragassi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
27
|
Zhao T, Wei Z, Zhu W, Weng X. Recent Developments and Current Applications of Hydrogels in Osteoarthritis. Bioengineering (Basel) 2022; 9:132. [PMID: 35447692 PMCID: PMC9024926 DOI: 10.3390/bioengineering9040132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that causes disability if left untreated. The treatment of OA currently requires a proper delivery system that avoids the loss of therapeutic ingredients. Hydrogels are widely used in tissue engineering as a platform for carrying drugs and stem cells, and the anatomical environment of the limited joint cavity is suitable for hydrogel therapy. This review begins with a brief introduction to OA and hydrogels and illustrates the effects, including the analgesic effects, of hydrogel viscosupplementation on OA. Then, considering recent studies of hydrogels and OA, three main aspects, including drug delivery systems, mesenchymal stem cell entrapment, and cartilage regeneration, are described. Hydrogel delivery improves drug retention in the joint cavity, making it possible to deliver some drugs that are not suitable for traditional injection; hydrogels with characteristics similar to those of the extracellular matrix facilitate cell loading, proliferation, and migration; hydrogels can promote bone regeneration, depending on their own biochemical properties or on loaded proregenerative factors. These applications are interlinked and are often researched together.
Collapse
Affiliation(s)
- Tianhao Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.Z.); (Z.W.); (W.Z.)
| | - Zhanqi Wei
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.Z.); (Z.W.); (W.Z.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.Z.); (Z.W.); (W.Z.)
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.Z.); (Z.W.); (W.Z.)
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
28
|
Zhang X, Wei Z, Xue C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr 2022; 62:8935-8953. [PMID: 34132606 DOI: 10.1080/10408398.2021.1937042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many bioactive ingredients with health effects such as antioxidant, anti-inflammatory and neuroprotective possess low bioavailability due to poor solubility and sensitivity. Fucoidan is an ideal material for encapsulating bioactive ingredients because of its unique physicochemical and biological properties, which can improve the function and application of bioactive ingredients. Nevertheless, there is still a lack of review about the physicochemical properties as well as functionalities of fucoidan and the application of fucoidan-based delivery systems in functional food. Hence, in this review, recent advances on the structure, chemical modification, physicochemical properties and biological activity of fucoidan are summarized. This review systematacially describes the recent update on the fucoidan as a wall material for delivering nutraceuticals with a broad discussion on various types of delivery systems ranging from nanoparticles, nanoparticle/bead complexes, emulsions, edible films, nanocapsules and hydrogels. Futhermore, the technical scientific issues of the application of fucoidan in the field of food are emphasized. On the basis of more comprehensive and deeper understandings, the review ends with a concluding remark on future directions of fucoidan-based delivery systems for purposes. Novel fucoidan-based delivery systems such as aerogels, Pickering emulsions, emulsion-filled-hydrogels, liposomes-in-fucoidan, co-delivery systems of bioactive igredients can be designed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Peng Y, Li J, Lin H, Tian S, Liu S, Pu F, Zhao L, Ma K, Qing X, Shao Z. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review. BIOMATERIALS TRANSLATIONAL 2021; 2:343-360. [PMID: 35837417 PMCID: PMC9255795 DOI: 10.12336/biomatertransl.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
The development of tissue engineering has led to new strategies for mitigating clinical problems; however, the design of the tissue engineering materials remains a challenge. The limited sources and inadequate function, potential risk of microbial or pathogen contamination, and high cost of cell expansion impair the efficacy and limit the application of exogenous cells in tissue engineering. However, endogenous cells in native tissues have been reported to be capable of spontaneous repair of the damaged tissue. These cells exhibit remarkable plasticity, and thus can differentiate or be reprogrammed to alter their phenotype and function after stimulation. After a comprehensive review, we found that the plasticity of these cells plays a major role in establishing the cell source in the mechanism involved in tissue regeneration. Tissue engineering materials that focus on assisting and promoting the natural self-repair function of endogenous cells may break through the limitations of exogenous seed cells and further expand the applications of tissue engineering materials in tissue repair. This review discusses the effects of endogenous cells, especially stem cells, on injured tissue repairing, and highlights the potential utilisation of endogenous repair in orthopaedic biomaterial constructions for bone, cartilage, and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Hao Y, Zheng W, Sun Z, Zhang D, Sui K, Shen P, Li P, Zhou Q. Marine polysaccharide-based composite hydrogels containing fucoidan: Preparation, physicochemical characterization, and biocompatible evaluation. Int J Biol Macromol 2021; 183:1978-1986. [PMID: 34087304 DOI: 10.1016/j.ijbiomac.2021.05.190] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Marine polysaccharide-based hydrogels have drawn much attention for diversified biomedical applications owing to their excellent (bio)physicochemical properties. In the present work, a series of marine polysaccharide-based hydrogels composed of chitosan, alginate, or fucoidan are prepared via a facile chemical cross-linking approach in an alkali/urea aqueous system. The prepared hydrogels possess tunable microporous architecture, swelling, and biodegradable properties by changing the components and proportions of marine polysaccharides. Importantly, the developed hydrogels are mechanically robust and the maximum compressive stress is up to 28.37 ± 4.63 kPa. Furthermore, the composite hydrogels exhibit excellent cytocompatibility, blood compatibility, and histocompatibility. When implanted subcutaneously in rats, the hydrogels containing fucoidan inhibit the inflammatory response of surrounding tissue. Thus, the designed composite hydrogels are promising bio-scaffolds in biomedical applications.
Collapse
Affiliation(s)
- Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Weiping Zheng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Demeng Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Peili Shen
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Peifeng Li
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
31
|
Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, Krishnakumar GS. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol 2021; 183:564-588. [PMID: 33933542 DOI: 10.1016/j.ijbiomac.2021.04.179] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Shalini Muthusamy
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Ketul C Popat
- Biomaterial Surface Micro/Nanoengineering Laboratory, Department of Mechanical Engineering/School of Biomedical Engineering/School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado-80523, USA
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | | |
Collapse
|
32
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Vaamonde-García C, Flórez-Fernández N, Torres MD, Lamas-Vázquez MJ, Blanco FJ, Domínguez H, Meijide-Faílde R. Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis. Carbohydr Polym 2021; 258:117692. [PMID: 33593565 DOI: 10.1016/j.carbpol.2021.117692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most prevalent articular chronic disease. Although, to date there is no cure for OA. Fucoidans, one of the main therapeutic components of brown algae, have emerged as promising molecules in OA treatment. However, the variability between fucoidans makes difficult the pursuit of the most suitable candidate to target specific pathological processes. By an in vitro experimental approach in chondrocytes and fibroblast-like synoviocytes, we observed that chemical composition of fucoidan, and specifically the phlorotannin content and the ratio sulfate:fucose, seems critically relevant for its biological activity. Nonetheless, other factors like concentration and molecular weight of the fucoidan may influence on its beneficial effects. Additionally, a cell-type dependent response was also detected. Thus, our results shed light on the potential use of fucoidans as natural molecules in the treatment of key pathological processes in the joint that favor the development of rheumatic disorders as OA.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Tissue Engineering and Cellular Therapy Group, Department of Physiotherapy, Medicine and Biological Sciences, University of A Coruña, A Coruña, Spain; Unidad de Medicina Regenerativa, Grupo de Investigación de Reumatología (GIR), Instituto de InvestigaciónBiomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/ As Xubias de Arriba 84, 15006, A Coruña, España; Centro de Investigaciones Científicas Avanzadas (CICA), As Carballeiras S/N, Campus de Elviña, 15071, A Coruña, España.
| | - Noelia Flórez-Fernández
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, Ourense, Spain; CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, Ourense, Spain; CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - María J Lamas-Vázquez
- Tissue Engineering and Cellular Therapy Group, Department of Physiotherapy, Medicine and Biological Sciences, University of A Coruña, A Coruña, Spain.
| | - Francisco J Blanco
- Unidad de Medicina Regenerativa, Grupo de Investigación de Reumatología (GIR), Instituto de InvestigaciónBiomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/ As Xubias de Arriba 84, 15006, A Coruña, España; Centro de Investigaciones Científicas Avanzadas (CICA), As Carballeiras S/N, Campus de Elviña, 15071, A Coruña, España.
| | - Herminia Domínguez
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, Ourense, Spain; CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Rosa Meijide-Faílde
- Tissue Engineering and Cellular Therapy Group, Department of Physiotherapy, Medicine and Biological Sciences, University of A Coruña, A Coruña, Spain; Centro de Investigaciones Científicas Avanzadas (CICA), As Carballeiras S/N, Campus de Elviña, 15071, A Coruña, España.
| |
Collapse
|
34
|
Effects of crude fucoidan on physicochemical properties, antioxidation and bacteriostasis of surimi products. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
DeJulius CR, Gulati S, Hasty KA, Crofford LJ, Duvall CL. Recent Advances in Clinical Translation of Intra-Articular Osteoarthritis Drug Delivery Systems. ADVANCED THERAPEUTICS 2021; 4:2000088. [PMID: 33709019 PMCID: PMC7941755 DOI: 10.1002/adtp.202000088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints and a leading cause of physical disability in adults. Intra-articular (IA) therapy is a popular treatment strategy for localized, single-joint OA; however, small-molecule drugs such as corticosteroids do not provide prolonged relief. One possible reason for their lack of efficacy is high clearance rates from the joint through constant lymphatic drainage of the synovial tissues and synovial fluid and also by their exchange via the synovial vasculature. Advanced drug delivery strategies for extended release of therapeutic agents in the joint space is a promising approach to improve outcomes for OA patients. Broadly, the basic principle behind this strategy is to encapsulate therapeutic agents in a polymeric drug delivery system (DDS) for diffusion- and/or degradation-controlled release, whereby degradation can occur by hydrolysis or tied to relevant microenvironmental cues such as pH, reactive oxygen species (ROS), and protease activity. In this review, we highlight the development of clinically tested IA therapies for OA and highlight recent systems which have been investigated preclinically. DDS strategies including hydrogels, liposomes, polymeric microparticles (MPs) and nanoparticles (NPs), drug conjugates, and combination systems are introduced and evaluated for clinical translational potential.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Karen A Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, 1211 Union Ave. Suite 520, Memphis, TN 38104, United States
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, 1161 21 Ave. S., Nashville, TN 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| |
Collapse
|
36
|
Intra-articular injection of anti-inflammatory peptide-loaded glycol chitosan/fucoidan nanogels to inhibit inflammation and attenuate osteoarthritis progression. Int J Biol Macromol 2020; 170:469-478. [PMID: 33359610 DOI: 10.1016/j.ijbiomac.2020.12.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 01/20/2023]
Abstract
Glycol chitosan/fucoidan nanogels loaded with anti-inflammatory peptide KAFAK (GC/Fu@KAFAK NGs) were fabricated based on the electrostatic interaction and genipin cross-linking methods. The prepared NGs had an average size of 286.3 ± 5.0 nm and positive surface charge of 14.0 ± 0.2 mV. The anti-inflammatory and chondro-protective effects of GC/Fu@KAFAK NGs were evaluated on interlecukin-1β (IL-1β)-stimulated rat chondrocytes. We found that GC/Fu@KAFAK NGs not only inhibited the expression of inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), but also enhanced the expression of chondrogenic markers type II collagen, aggrecan, and Sox9. More importantly, in rat osteoarthritis (OA) model, the intra-articular (IA) injection of GC/Fu@KAFAK NGs reduced glycosaminoglycan loss and diminished inflammatory cytokine release. In addition, GC/Fu@KAFAK NGs showed good biocompatibility both in vitro and in vivo. In conclusion, IA inject-able GC/Fu@KAFAK NGs might have great potential in OA treatment.
Collapse
|
37
|
Choi MH, Blanco A, Stealey S, Duan X, Case N, Sell SA, Rai MF, Zustiak SP. Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation. Polymers (Basel) 2020; 12:E1712. [PMID: 32751604 PMCID: PMC7464943 DOI: 10.3390/polym12081712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Platelet-rich plasma (PRP) is an autologous blood product that contains a variety of growth factors (GFs) that are released upon platelet activation. Despite some therapeutic potential of PRP in vitro, in vivo data are not convincing. Bolus injection of PRP is cleared rapidly from the body diminishing its therapeutic efficacy. This highlights a need for a delivery vehicle for a sustained release of PRP to improve its therapeutic effect. In this study, we used microfluidics to fabricate biodegradable PRP-loaded polyethylene glycol (PEG) microspheres. PRP was incorporated into the microspheres as a lyophilized PRP powder either as is (powder PRP) or first solubilized and pre-clotted to remove clots (liquid PRP). A high PRP loading of 10% w/v was achieved for both PRP preparations. We characterized the properties of the resulting PRP-loaded PEG microspheres including swelling, modulus, degradation, and protein release as a function of PRP loading and preparation. Overall, loading powder PRP into the PEG microspheres significantly affected the properties of microspheres, with the most pronounced effect noted in degradation. We further determined that microsphere degradation in the presence of powder PRP was affected by platelet aggregation and clotting. Platelet aggregation did not prevent but prolonged sustained PRP release from the microspheres. The delivery system developed and characterized herein could be useful for the loading and releasing of PRP to promote tissue regeneration and wound healing or to suppress tissue degeneration in osteoarthritis, and intervertebral disc degeneration.
Collapse
Affiliation(s)
- Miran Hannah Choi
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (M.H.C.); (A.B.); (S.S.); (N.C.); (S.A.S.)
| | - Alexandra Blanco
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (M.H.C.); (A.B.); (S.S.); (N.C.); (S.A.S.)
| | - Samuel Stealey
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (M.H.C.); (A.B.); (S.S.); (N.C.); (S.A.S.)
| | - Xin Duan
- Department of Orthopedic Surgery, Washington University in St. Louis, School of Medicine, Saint Louis, MO 63110, USA; (X.D.); (M.F.R.)
| | - Natasha Case
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (M.H.C.); (A.B.); (S.S.); (N.C.); (S.A.S.)
| | - Scott Allen Sell
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (M.H.C.); (A.B.); (S.S.); (N.C.); (S.A.S.)
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Washington University in St. Louis, School of Medicine, Saint Louis, MO 63110, USA; (X.D.); (M.F.R.)
- Department of Cell Biology & Physiology, Washington University in St. Louis, School of Medicine, Saint Louis, MO 63110, USA
| | - Silviya Petrova Zustiak
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (M.H.C.); (A.B.); (S.S.); (N.C.); (S.A.S.)
| |
Collapse
|
38
|
Ilkar Erdagi S, Asabuwa Ngwabebhoh F, Yildiz U. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int J Biol Macromol 2020; 149:651-663. [DOI: 10.1016/j.ijbiomac.2020.01.279] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
|
39
|
Alinejad Y, Bitar CME, Martinez Villegas K, Perignon S, Hoesli CA, Lerouge S. Chitosan Microbeads Produced by One-Step Scalable Stirred Emulsification: A Promising Process for Cell Therapy Applications. ACS Biomater Sci Eng 2019; 6:288-297. [PMID: 33463194 DOI: 10.1021/acsbiomaterials.9b01638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell microencapsulation is a promising approach to improve cell therapy outcomes by protecting injected cells from rapid dispersion and allowing bidirectional diffusion of nutrients, oxygen, and waste that promote cell survival in the target tissues. Here, we describe a simple and scalable emulsification method to encapsulate animal cells in chitosan microbeads using thermosensitive gel formulations without any chemical modification and cross-linker. The process consists of a water-in-oil emulsion where the aqueous phase droplets contain cells (L929 fibroblasts or human mesenchymal stromal cells), chitosan acidic solution and gelling agents (sodium hydrogen carbonate and phosphate buffer or beta-glycerophosphate). The oil temperature is maintained at 37 °C, allowing rapid physical gelation of the microbeads. Alginate beads prepared with the same method were used as a control. Microbeads with a diameter of 300-450 μm were successfully produced. Chitosan and alginate (2% w/v) microbeads presented similar rigidity in compression, but chitosan microbeads endured >80% strain without rupture, while alginate microbeads presented fragile breakage at <50% strain. High cell viability and metabolic activity were observed after up to 7 days in culture for encapsulated cells. Mesenchymal stromal cells encapsulated in chitosan microbeads released higher amounts of the vascular endothelial growth factor after 24 h compared to the cells encapsulated in manually cast macrogels. Moreover, microbeads were injectable through 23G needles without significant deformation or rupture. The emulsion-generated chitosan microbeads are a promising delivery vehicle for therapeutic cells because of their cytocompatibility, biodegradation, mechanical strength, and injectability. Clinical-scale encapsulation of therapeutic cells such as mesenchymal stromal cells in chitosan microbeads can readily be achieved using this simple and scalable emulsion-based process.
Collapse
Affiliation(s)
- Yasaman Alinejad
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Christina M E Bitar
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street #3060, Montreal, Quebec H3A 0C5, Canada
| | - Karina Martinez Villegas
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Sarah Perignon
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street #3060, Montreal, Quebec H3A 0C5, Canada
| | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| |
Collapse
|
40
|
do Amaral RJFC, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F, Simpson CR, Murphy CM, Sridharan R, González-Vázquez A, O'Sullivan B, O'Brien FJ, Kearney CJ. Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front Bioeng Biotechnol 2019; 7:371. [PMID: 31921799 PMCID: PMC6915093 DOI: 10.3389/fbioe.2019.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Porous collagen-glycosaminoglycan (collagen-GAG) scaffolds have shown promising clinical results for wound healing; however, these scaffolds do not replace the dermal and epidermal layer simultaneously and rely on local endogenous signaling to direct healing. Functionalizing collagen-GAG scaffolds with signaling factors, and/or additional matrix molecules, could help overcome these challenges. An ideal candidate for this is platelet-rich plasma (PRP) as it is a natural reservoir of growth factors, can be activated to form a fibrin gel, and is available intraoperatively. We tested the factors released from PRP (PRPr) and found that at specific concentrations, PRPr enhanced cell proliferation and migration and induced angiogenesis to a greater extent than fetal bovine serum (FBS) controls. This motivated us to develop a strategy to successfully incorporate PRP homogeneously within the pores of the collagen-GAG scaffolds. The composite scaffold released key growth factors for wound healing (FGF, TGFβ) and vascularization (VEGF, PDGF) for up to 14 days. In addition, the composite scaffold had enhanced mechanical properties (when compared to PRP gel alone), while providing a continuous upper surface of extracellular matrix (ECM) for keratinocyte seeding. The levels of the factors released from the composite scaffold were sufficient to sustain proliferation of key cells involved in wound healing, including human endothelial cells, mesenchymal stromal cells, fibroblasts, and keratinocytes; even in the absence of FBS supplementation. In functional in vitro and in vivo vascularization assays, our composite scaffold demonstrated increased angiogenic and vascularization potential, which is known to lead to enhanced wound healing. Upon pro-inflammatory induction, macrophages released lower levels of the pro-inflammatory marker MIP-1α when treated with PRPr; and released higher levels of the anti-inflammatory marker IL1-ra upon both pro- and anti-inflammatory induction when treated with the composite scaffold. Finally, our composite scaffold supported a co-culture system of human fibroblasts and keratinocytes that resulted in an epidermal-like layer, with keratinocytes constrained to the surface of the scaffold; by contrast, keratinocytes were observed infiltrating the PRP-free scaffold. This novel composite scaffold has the potential for rapid translation to the clinic by isolating PRP from a patient intraoperatively and combining it with regulatory approved scaffolds to enhance wound repair.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Noora M. A. Zayed
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Elena I. Pascu
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Chris Hobbs
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin (TCD), Dublin, Ireland
| | - Francesco Santarella
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Christopher R. Simpson
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Rukmani Sridharan
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Barry O'Sullivan
- Beaumont Hospital, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Cathal J. Kearney
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Fitton HJ, Stringer DS, Park AY, Karpiniec SN. Therapies from Fucoidan: New Developments. Mar Drugs 2019; 17:E571. [PMID: 31601041 PMCID: PMC6836154 DOI: 10.3390/md17100571] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Since our last review in 2015, the study and use of fucoidan has extended in several research areas. Clinical use of fucoidan for the treatment of renal disease has become available and human safety studies have been undertaken on radiolabeled fucoidan for the purpose of imaging thrombi. Fucoidan has been incorporated into an increasing number of commercially available supplements and topical treatments. In addition, new measuring techniques are now available to assess the biologically relevant uptake of fucoidans and to assist in production. Microbiome modulation and anti-pathogenic effects are increasingly promising applications for fucoidans, due to the need for alternative approaches to antibiotic use in the food chain. This review outlines promising new developments in fucoidan research, including potential future therapeutic use.
Collapse
Affiliation(s)
- Helen J Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien S Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Ah Young Park
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Samuel N Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| |
Collapse
|