1
|
Zheng D, Cen J, Chen P, Zou L, Zou J, Li Q, Lu S. Exploring potentially synthetic genes related to diarrhetic shellfish toxins production in Prorocentrum sp. via comparative transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117695. [PMID: 39808879 DOI: 10.1016/j.ecoenv.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations. We conducted a comprehensive comparative transcriptomic analysis to identify potential toxin-related genes, focusing on polyketide synthases (PKSs) and fatty acid synthases (FASs). Our research predicted 96 PKSs and 91 FASs genes, with a detailed examination of their sequences to elucidate dinophysistoxins (DTXs) synthesis. Additionally, we analyzed differential gene expression of PKSs in P. arenarium under nitrogen and phosphorus-limited conditions, revealing a correlation between specific PKSs gene expression patterns and okadaic acid (OA) content variations. These findings suggest a potential role of the fatty acid biosynthesis pathway in DSTs synthesis. While not completely uncovering the biosynthetic pathway of DSTs, our study offers crucial insights and genomic resources for future research on dinoflagellate toxin production mechanisms.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jingyi Cen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Peiliang Chen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China.
| |
Collapse
|
2
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Wu SW, Cheng CQ, Huang YT, Tan JZ, Li SL, Yang JX, Huang XL, Huang D, Zou LG, Yang WD, Li HY, Li DW. A study on the mechanism of the impact of phenthoate exposure on Prorocentrum lima. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132624. [PMID: 37801972 DOI: 10.1016/j.jhazmat.2023.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Extensive application of organophosphorus pesticides such as phenthoate results in its abundance in ecosystems, particularly in waterbodies, thereby providing the impetus to assess its role in aquatic organisms. However, the impact of phenthoate on marine algal physiological and proteomic response is yet to be explored despite its biological significance. In this study, we thus ought to investigate the impact of phenthoate in the marine dinoflagellate Prorocentrum lima, which is known for synthesizing okadaic acid (OA), the toxin responsible for diarrhetic shellfish poisoning (DSP). Our results showed that P. lima effectively absorbed phenthoate in seawater, with a reduction efficiency of 90.31% after 48 h. Surprisingly, the provision of phenthoate (100 and 1000 µg/L) substantially reduced the OA content of P. lima by 35.08% and 60.28% after 48 h, respectively. Meanwhile, phenthoate treatment significantly reduced the oxidative stress in P. lima. Proteomic analysis revealed that the expression level of seven crucial proteins involved in endocytosis was upregulated, suggesting that P. lima could absorb phenthoate via the endocytic signaling pathway. Importantly, phenthoate treatment resulted in the downregulation of proteins such as polyketide synthase (PKS)- 2, Cytochrome P450 (CYP450)- 1, and CYP450-2, involved in OA synthesis, thereby decreasing the OA biosynthesis by P. lima. Our results demonstrated the potential role of P. lima in the removal of phenthoate in water and exemplified the crucial proteins and their possible molecular mechanisms underpinning the phenthoate remediation by P. lima and also the regulatory role of phenthoate in restricting the OA metabolism. Collectively, these findings uncovered the synergistic mechanisms of phenthoate and P. lima in remediating phenthoate and reducing the toxic impact of P. lima.
Collapse
Affiliation(s)
- Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cai-Qin Cheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-Zhou Tan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Song-Liang Li
- The First People's Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, China
| | - Jia-Xin Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Wu H, Zhang H, Peng J, Zheng G, Lu S, Tan Z. Adaptive responses of geographically distinct strains of the benthic dinoflagellate, Prorocentrum lima (Dinophyceae), to varying light intensity and photoperiod. HARMFUL ALGAE 2023; 127:102479. [PMID: 37544679 DOI: 10.1016/j.hal.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The toxic Prorocentrum lima complex can potentially cause serious harm to the benthos and entire food chain. Studies have revealed physiological differences in strains from different regions related to local environment, while differences in the adaptive responses of P. lima complex should be urgently assessed. Hence, this study explored the adaptive responses to varying light intensities and photoperiods of two P. lima complex strains SHG101 and 3XS34, isolated from the Bohai Sea and the South China Sea, respectively. We found the highest cell density of 7.49 × 104 cells mL-1 recorded in the 3XS strain in the stationary phase with high light intensity exposure. No significant difference was observed in growth rate among SHG groups, however, significant differences were found among 3XS groups ranging from 0.176 to 0.311 d-1. Three key pigments Chl a, Peri, and Fuco accounted for up to 60% of the total pigments. Production and concentrations of pigments and Fv/Fm values exhibit a significant negative correlation with high light intensity and growth. Conversely, total diarrhetic shellfish toxin content and the proportion of diol esters increased to varying degrees after high intensity light exposure, with 3XS strain under high light intensity and a photoperiod of light and darkness (12L:12D) consistently exhibiting the highest levels, finally reaching a maximum (21.6 pg cell-1) at day 28. A shortened photoperiod of high light intensity (8L:16D) resulted in impaired recovery compared with 12L:12D. Furthermore, 3XS showed more delayed and intense adaptive responses, indicating a stronger tolerance compared to SHG. Collectively, these results directly characterized variation in the adaptive responses of geographically distinct strains of P. lima complex, highlighting the previously ignored potential risk diversity of this species.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 10362, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Berry O, Briand E, Bagot A, Chaigné M, Meslet-Cladière L, Wang J, Grovel O, Jansen JJ, Ruiz N, du Pont TR, Pouchus YF, Hess P, Bertrand S. Deciphering interactions between the marine dinoflagellate Prorocentrum lima and the fungus Aspergillus pseudoglaucus. Environ Microbiol 2023; 25:250-267. [PMID: 36333915 PMCID: PMC10100339 DOI: 10.1111/1462-2920.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The comprehension of microbial interactions is one of the key challenges in marine microbial ecology. This study focused on exploring chemical interactions between the toxic dinoflagellate Prorocentrum lima and a filamentous fungal species, Aspergillus pseudoglaucus, which has been isolated from the microalgal culture. Such interspecies interactions are expected to occur even though they were rarely studied. Here, a co-culture system was designed in a dedicated microscale marine-like condition. This system allowed to explore microalgal-fungal physical and metabolic interactions in presence and absence of the bacterial consortium. Microscopic observation showed an unusual physical contact between the fungal mycelium and dinoflagellate cells. To delineate specialized metabolome alterations during microalgal-fungal co-culture metabolomes were monitored by high-performance liquid chromatography coupled to high-resolution mass spectrometry. In-depth multivariate statistical analysis using dedicated approaches highlighted (1) the metabolic alterations associated with microalgal-fungal co-culture, and (2) the impact of associated bacteria in microalgal metabolome response to fungal interaction. Unfortunately, only a very low number of highlighted features were fully characterized. However, an up-regulation of the dinoflagellate toxins okadaic acid and dinophysistoxin 1 was observed during co-culture in supernatants. Such results highlight the importance to consider microalgal-fungal interactions in the study of parameters regulating toxin production.
Collapse
Affiliation(s)
- Olivier Berry
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | | | - Alizé Bagot
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
- IFREMER, PHYTOX, Nantes, France
| | - Maud Chaigné
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
- IFREMER, PHYTOX, Nantes, France
| | - Laurence Meslet-Cladière
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Julien Wang
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Jeroen J Jansen
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Nicolas Ruiz
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Thibaut Robiou du Pont
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | | | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| |
Collapse
|
6
|
Zhang M, Wang H, Chen F. Time-resolved transcriptome analysis of Scenedesmus obliquus HTB1 under 10% CO 2 condition. Microb Biotechnol 2022; 16:448-462. [PMID: 35914242 PMCID: PMC9871529 DOI: 10.1111/1751-7915.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
Certain microalgal species can grow under high CO2 concentrations providing potential for mitigating CO2 pollution in flue gas produced by power plants. Microalga Scenedesmus obliquus strain HTB1 was isolated from the Chesapeake Bay and grow rapidly in a high level of CO2 . However, little is known about the molecular responses of HTB1 to high CO2 levels. Here, we investigated how HTB1 responds to 10% CO2 using the time-resolved transcriptome analysis. Gene expression profiles indicated that HTB1 responds quickly (in 2 h) and becomes adaptive within 12 h when exposed to 10% CO2 . Interestingly, certain genes of light-harvesting, chlorophyll synthesis and carbon fixation (i.e. rbcS) were up-regulated at 10% CO2 , and these functional responses are consistent with the increased photosynthesis efficiency and algal biomass under 10% CO2 . Nitrate assimilation was strongly enhanced, with amino acid biosynthesis and aminoacyl tRNA biosynthesis genes being markedly up-regulated, indicating that HTB1 actively takes up nitrogen and accelerates protein synthesis at 10% CO2 . Carbon metabolism including fatty acid biosynthesis and TCA cycle was enhanced at 10% CO2 , supporting the earlier observation of increased lipid content of Scenedesmus sp. under high CO2 levels. Interestingly, key genes like RuBisCO (rbcL) and carbonic anhydrase in carboxysomes did not respond actively to 10% CO2 , implying that exposure to 10% CO2 has little impact on the carbon concentrating mechanisms and CO2 fixation of the Calvin cycle. It appears that HTB1 can grow rapidly at 10% CO2 without significant metabolic changes in carbon fixation and ATP synthesis.
Collapse
Affiliation(s)
- Mei Zhang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina,Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMarylandUSA
| | - Hualong Wang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina,Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMarylandUSA
| | - Feng Chen
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMarylandUSA
| |
Collapse
|
7
|
Zheng JW, Mao XT, Ye MH, Li HY, Liu JS, Yang WD. Allelopathy and underlying mechanism of Karenia mikimotoi on the diatom Thalassiosira pseudonana under laboratory condition. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Lauritano C, Ianora A. Chemical Defense in Marine Organisms. Mar Drugs 2020; 18:md18100518. [PMID: 33080956 PMCID: PMC7589352 DOI: 10.3390/md18100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
|