1
|
Raj C. T D, Palaninathan V, Kandaswamy S, Kumar V, James RA. Therapeutic potential of seaweeds and their biofabricated nanoparticles in treating urolithiasis: A review. Heliyon 2025; 11:e41132. [PMID: 39802010 PMCID: PMC11720914 DOI: 10.1016/j.heliyon.2024.e41132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Urolithiasis affects a significant portion of the global population, causing discomfort and pain. Unfortunately, effective drugs to treat this disorder are currently unavailable due to multiple mechanisms and an incomplete understanding of its causes. Consequently, drugs with multiple targets could be a safer and more effective remedy for treating urolithiasis. Moreover, the current treatment options are expensive and come with a risk of complications and stone recurrence. Therefore, an alternative treatment that can prevent stone recurrence and reduce associated symptoms is necessary. Seaweeds are a rich source of beneficial metabolites, like antioxidants, anti-inflammatory, analgesic, and enzyme-inhibitory properties. Advances in nanotechnology hold great promise for improving the therapeutic potential of these metabolites. However, the use of nanoparticles for treating urolithiasis has yet to be explored well, and only a few reports exist on the use of terrestrial plant-based nanoparticles. This review examines the therapeutic properties of seaweed bioactive compounds and their possible applications in treating urolithiasis. We propose that seaweeds could be an excellent source of essential dietary minerals and other bioactive compounds with multiple targets to treat renal calculus naturally. Additionally, the review highlights the potential of nanomedicine in treating urolithiasis, proposing seaweed-based nanoparticles as a promising treatment option.
Collapse
Affiliation(s)
- Dhanya Raj C. T
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | | | - Surabhi Kandaswamy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Vimal Kumar
- Bio-nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, Japan
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| |
Collapse
|
2
|
Wang B, Xie X, Jiang W, Zhan Y, Zhang Y, Guo Y, Wang Z, Guo N, Guo K, Sun J. Osteoinductive micro-nano guided bone regeneration membrane for in situ bone defect repair. Stem Cell Res Ther 2024; 15:135. [PMID: 38715130 PMCID: PMC11077813 DOI: 10.1186/s13287-024-03745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.
Collapse
Affiliation(s)
- Bingqian Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Xinfang Xie
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yaqi Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Ke Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
3
|
Deng JW, Li CY, Huang YP, Liu WF, Zhang Q, Long J, Wu WQ, Huang LH, Zeng GH, Sun XY. Mechanism of Porphyra Yezoensis Polysaccharides in Inhibiting Hyperoxalate-Induced Renal Injury and Crystal Deposition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6372-6388. [PMID: 38471112 DOI: 10.1021/acs.jafc.3c09152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of Porphyra yezoensis polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats. PYP effectively scavenged the overproduction of reactive oxygen species (ROS) in HK-2 cells, inhibited the adhesion of calcium oxalate (CaOx) crystals on the cell surface, unblocked the cell cycle, restored the depolarization of the mitochondrial membrane potential, and inhibited cell death. PYP upregulated the expression of antioxidant proteins, including Nrf2, HO-1, SOD, and CAT, while decreasing the expression of Keap-1, thereby activating the Keap1/Nrf2 signaling pathway. PYP inhibited CaOx deposition in renal tubules in the rat crystallization model, significantly reduced high oxalate-induced renal injury, decreased the levels of the cell surface adhesion proteins, improved renal function in rats, and ultimately inhibited the formation of kidney stones. Therefore, PYP, which has crystallization inhibition and antioxidant properties, may be a therapeutic option for the treatment of kidney stones.
Collapse
Affiliation(s)
- Ji-Wang Deng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Chun-Yao Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Ya-Peng Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Wei-Feng Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Quan Zhang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jun Long
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Wen-Qi Wu
- Department of Urology, Guangdong Key Laboratory of Urology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Ling-Hong Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Guo-Hua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
4
|
Heng BL, Wu FY, Liu JH, Ouyang JM. Antioxidant Activity of Auricularia auricula Polysaccharides with Different Molecular Weights and Cytotoxicity Difference of Polysaccharides Regulated CaOx to HK-2 Cells. Bioinorg Chem Appl 2023; 2023:9968886. [PMID: 38161486 PMCID: PMC10757664 DOI: 10.1155/2023/9968886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Objective This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by Auricularia auricular polysaccharides (AAPs) with different viscosity-average molecular weights (Mv), the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. Methods The scavenging capability and reducing capacity of four kinds of AAPs (Mv of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. Results The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 < AAP1 < AAP2 < AAP3. Thus, AAP3, which had the smallest Mv, had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. Conclusion AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.
Collapse
Affiliation(s)
- Bao-Li Heng
- Yingde Center, Institute of Kidney Surgery, Jinan University, Guangzhou, Guangdong, China
- Department of Urology, People's Hospital of Yingde City, Yingde, China
| | - Fan-Yu Wu
- Yingde Center, Institute of Kidney Surgery, Jinan University, Guangzhou, Guangdong, China
- Department of Urology, People's Hospital of Yingde City, Yingde, China
| | - Jing-Hong Liu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Cheng XY, Ouyang JM. Carboxymethylated Rhizoma alismatis Polysaccharides Regulate Calcium Oxalate Crystals Growth and Reduce the Regulated Crystals' Cytotoxicity. Biomolecules 2023; 13:1044. [PMID: 37509080 PMCID: PMC10377732 DOI: 10.3390/biom13071044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE This study explored the effects of polysaccharides (RAPD) extracted from the traditional anti-stone Chinese medicine Rhizoma alismatis and their carboxymethylated derivatives (RAPs) on the crystal phase, morphology, and size of calcium oxalate (CaOx). It also determined the damaging ability of the regulated crystals on human renal tubular epithelial cells (HK-2). METHODS RAPD carboxymethylation with a carboxyl group (-COOH) content of 3.57% was carried out by the chloroacetic acid solvent method. The effects of -COOH content in RAPs and RAP concentration on the regulation of CaOx crystal growth were studied by controlling the variables. Cell experiments were conducted to explore the differences in the cytotoxicity of RAP-regulated crystals. RESULTS The -COOH contents of RAPD, RAP1, RAP2, and RAP3 were 3.57%, 7.79%, 10.84%, and 15.33%, respectively. RAPs can inhibit the growth of calcium oxalate monohydrate (COM) and induce the formation of calcium oxalate dihydrate (COD). When the -COOH content in RAPs was high, their ability to induce COD formation was enhanced. In the crystals induced by RAPs, a high COD content can lower the damage to cells. In particular, the cytotoxicity of the crystals induced by RAP3 was the lowest. When the concentration of RAP3 increased, the cytotoxicity gradually increased due to the reduced size of the formed COD crystals. An interaction was observed between RAPs and crystals, and the number of RAPs adsorbed in the crystals was positively correlated with the -COOH content in RAPs. CONCLUSIONS RAPs can reduce the damage of CaOx to HK-2 cells by regulating the crystallization of CaOx crystals and effectively reducing the risk of kidney stone formation. RAPs, especially RAP3 with a high carboxyl group content, has the potential to be developed as a novel green anti-stone drug.
Collapse
Affiliation(s)
- Xiao-Yan Cheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Chaves Filho GP, Batista LANC, de Medeiros SRB, Rocha HAO, Moreira SMG. Sulfated Glucan from the Green Seaweed Caulerpa sertularioides Inhibits Adipogenesis through Suppression of Adipogenic and Lipogenic Key Factors. Mar Drugs 2022; 20:md20080470. [PMID: 35892938 PMCID: PMC9331110 DOI: 10.3390/md20080470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/22/2022] Open
Abstract
Sulfated polysaccharides (SPS) from seaweeds have great biochemical and biotechnological potential. This study aimed to investigate the effect of SPS isolated from the seaweed Caulerpa sertularioides on adipogenic differentiation as a possible alternative treatment for obesity. The SPS-rich extract from the seaweed C. sertularioides was fractioned into three SPS-rich fractions (F0.5; F0.9; and F1.8) chemically characterized. Among these four samples, only F0.9 showed a significant inhibitory effect on adipogenesis of 3T3-L1 preadipocytes. Ten SPS-rich fractions were isolated from F0.9 through ion-exchange chromatography. However, only the fraction (CS0.2) containing a sulfated glucan was able to inhibit adipogenesis. CS0.2 reduces lipid accumulation and inhibits the expression of key adipogenic (PPARγ, C/EBPβ, and C/EBPα) and lipogenic markers (SREBP-1c, Fabp4, and CD36). The data points to the potential of sulfated glucan from C. sertularioides for the development of functional approaches in obesity management.
Collapse
Affiliation(s)
- Gildacio Pereira Chaves Filho
- Laboratory of Molecular and Genomic Biology, Department of Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil; (G.P.C.F.); (S.R.B.d.M.)
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Lucas Alighieri Neves Costa Batista
- Laboratory of Biotechnology of Natural Polymers, Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratory of Molecular and Genomic Biology, Department of Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil; (G.P.C.F.); (S.R.B.d.M.)
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
- Laboratory of Biotechnology of Natural Polymers, Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
| | - Susana Margarida Gomes Moreira
- Laboratory of Molecular and Genomic Biology, Department of Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil; (G.P.C.F.); (S.R.B.d.M.)
- The Doctoral Program in Biotechnology—Northeast Biotechnology Network (RENORBIO), Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59072-900, RN, Brazil;
- Correspondence: ; Tel.: +55-84-3211-9209; Fax: +55-84-3215-3346-29
| |
Collapse
|
8
|
Increased Sulfation in Gracilaria fisheri Sulfated Galactans Enhances Antioxidant and Antiurolithiatic Activities and Protects HK-2 Cell Death Induced by Sodium Oxalate. Mar Drugs 2022; 20:md20060382. [PMID: 35736184 PMCID: PMC9230550 DOI: 10.3390/md20060382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Urolithiasis is a common urological disease characterized by the presence of a stone anywhere along the urinary tract. The major component of such stones is calcium oxalate, and reactive oxygen species act as an essential mediator of calcium oxalate crystallization. Previous studies have demonstrated the antioxidant and antiurolithiatic activities of sulfated polysaccharides. In this study, native sulfated galactans (N-SGs) with a molecular weight of 217.4 kDa from Gracilaria fisheri were modified to obtain lower molecular weight SG (L-SG) and also subjected to sulfation SG (S-SG). The in vitro antioxidant and antiurolithiatic activities of the modified substances and their ability to protect against sodium oxalate-induced renal tubular (HK-2) cell death were investigated. The results revealed that S-SG showed more pronounced antioxidant activities (DPPH and O2- scavenging activities) than those of other compounds. S-SG exhibited the highest antiurolithiatic activity in terms of nucleation and aggregation, as well as crystal morphology and size. Moreover, S-SG showed improved cell survival and increased anti-apoptotic BCL-2 protein in HK-2 cells treated with sodium oxalate. Our findings highlight the potential application of S-SG in the functional food and pharmaceutical industries.
Collapse
|
9
|
Huang W, Tan H, Nie S. Beneficial effects of seaweed-derived dietary fiber: Highlights of the sulfated polysaccharides. Food Chem 2022; 373:131608. [PMID: 34815114 DOI: 10.1016/j.foodchem.2021.131608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds and their derivatives are important bioresources of natural bioactive compounds. Nutritional studies indicate that dietary fibers derived from seaweeds have great beneficial potentials in human health and can be developed as functional food. Moreover, sulfated polysaccharides are more likely to be the main bioactive components which are widely distributed in various species of seaweeds including Phaeophyceae, Rhodophyceae and Chlorophyceae. The catabolism by gut microbiota of the seaweeds-derived dietary fibers (DFs) may be one of the pivotal pathways of their physiological functions. Therefore, in this review, we summarized the latest results of the physiological characteristics of seaweed-derived dietary fiber and highlighted the roles of sulfated polysaccharides in the potential regulatory mechanisms against disorders. Meanwhile, the effects of different types of seaweed-derived dietary fiber on gut microbiota were discussed. The analysis of the structure-function correlations and gut microbiota related mechanisms and will contribute to further better applications in food and biotherapeutics.
Collapse
Affiliation(s)
- Wenqi Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Paiva WS, de Souza Neto FE, Queiroz MF, Batista LANC, Rocha HAO, de Lima Batista AC. Oligochitosan Synthesized by Cunninghamella elegans, a Fungus from Caatinga (The Brazilian Savanna) Is a Better Antioxidant than Animal Chitosan. Molecules 2021; 27:molecules27010171. [PMID: 35011403 PMCID: PMC8747077 DOI: 10.3390/molecules27010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Animal chitosan (Chit-A) is gaining more acceptance in daily activities. It is used in a range of products from food supplements for weight loss to even raw materials for producing nanoparticles and hydrogel drug carriers; however, it has low antioxidant activity. Fungal oligochitosan (OChit-F) was identified as a potential substitute for Chit-A. Cunninghamella elegans is a fungus found in the Brazilian savanna (Caatinga) that produces OligoChit-F, which is a relatively poorly studied compound. In this study, 4 kDa OChit-F with a 76% deacetylation degree was extracted from C. elegans. OChit-F showed antioxidant activity similar to that of Chit-A in only one in vitro test (copper chelation) but exhibited higher activity than that of Chit-A in three other tests (reducing power, hydroxyl radical scavenging, and iron chelation). These results indicate that OChit-F is a better antioxidant than Chit-A. In addition, Chit-A significantly increased the formation of calcium oxalate crystals in vitro, particularly those of the monohydrate (COM) type; however, OChit-F had no effect on this process in vitro. In summary, OChit-F had higher antioxidant activity than Chit-A and did not induce the formation of CaOx crystals. Thus, OChit-F can be used as a Chit-A substitute in applications affected by oxidative stress.
Collapse
Affiliation(s)
- Weslley Souza Paiva
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil;
- Laboratório de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil; (M.F.Q.); (L.A.N.C.B.)
- Correspondence:
| | | | - Moacir Fernandes Queiroz
- Laboratório de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil; (M.F.Q.); (L.A.N.C.B.)
- Biomedicine Departament, Universidade Potiguar, Natal 59056-000, Rio Grande do Norte, Brazil
| | - Lucas Alighieri Neves Costa Batista
- Laboratório de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil; (M.F.Q.); (L.A.N.C.B.)
| | - Hugo Alexandre Oliveira Rocha
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil;
- Biomedicine Departament, Universidade Potiguar, Natal 59056-000, Rio Grande do Norte, Brazil
| | | |
Collapse
|
11
|
Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112338. [PMID: 34474889 DOI: 10.1016/j.msec.2021.112338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
The nucleation, growth and aggregation of calcium oxalate (CaOx) crystals and the oxidative damage of renal tubular epithelial cells are the key factors to induce kidney stones. In this study, degraded Porphyra yezoensis polysaccharide (PYP0) with 14.14% sulfate group (-OSO3-) content was modified via the sulfur trioxide-pyridine method to obtain three kinds of sulfated P. yezoensis polysaccharides (PYPs), namely, PYPS1, PYPS2, and PYPS3, with -OSO3- group contents of 17.11%, 20.28%, and 27.14% respectively. Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR analyses showed that the -OSO3- groups replaced the hydroxyl groups at the C2, C4, and C6 positions on (1 → 3)-linked β-D-galactose, the basic structural skeleton unit of PYP0. The antioxidant activity of the PYPSs increased after sulfation, and their scavenging capacity for OH and DPPH free radicals was enhanced with the increase in their -OSO3- group content. Calcium oxalate (CaOx) crystal growth experiments showed that sulfated PYPs promoted the conversion of the thermodynamically stable and sharp CaOx monohydrate (COM) crystals into the thermodynamically unstable and round CaOx dihydrate crystals. With the increase in the -OSO3- group content of the polysaccharides, the concentration of soluble Ca2+ ions in the supernatant increased and the amount of CaOx precipitate decreased. PYPs were nontoxic to human kidney proximal tubular epithelial cells (HK-2) and could protect HK-2 from oxidative damage caused by nano-COM and reduce the level of reactive oxygen species in cells. PYPS3, which had the highest degree of sulfation, had the best protective capability. The results of this work showed that sulfation improved the biological activity of PYPs. This study could provide inspiration for the development of new drugs for the prevention and treatment of kidney stones.
Collapse
|
12
|
Huang WB, Zou GJ, Tang GH, Sun XY, Ouyang JM. Regulation of Laminaria Polysaccharides with Different Degrees of Sulfation during the Growth of Calcium Oxalate Crystals and their Protective Effects on Renal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5555796. [PMID: 34484564 PMCID: PMC8413062 DOI: 10.1155/2021/5555796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The original Laminaria polysaccharide (LP0) was sulfated using the sulfur trioxide-pyridine method, and four sulfated Laminaria polysaccharides (SLPs) were obtained, namely, SLP1, SLP2, SLP3, and SLP4. The sulfated (-OSO3 -) contents were 8.58%, 15.1%, 22.8%, and 31.3%, respectively. The structures of the polysaccharides were characterized using a Fourier transform infrared (FT-IR) spectrometer and nuclear magnetic resonance (NMR) techniques. SLPs showed better antioxidant activity than LP0, increased the concentration of soluble Ca2+ in the solution, reduced the amount of CaOx precipitation and degree of CaOx crystal aggregation, induced COD crystal formation, and protected HK-2 cells from damage caused by nanometer calcium oxalate crystals. These effects can inhibit the formation of CaOx kidney stones. The biological activity of the polysaccharides increased with the content of -OSO3 -, that is, the biological activities of the polysaccharides had the following order: LP0 < SLP1 < SLP2 < SLP3 < SLP4. These results reveal that SLPs with high -OSO3 - contents are potential drugs for effectively inhibiting the formation of CaOx stones.
Collapse
Affiliation(s)
- Wei-Bo Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Guo-Jun Zou
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Gu-Hua Tang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Petrović A, Kizivat T, Bilić Ćurčić I, Smolić R, Smolić M. In Vitro Cell Culture Models of Hyperoxaluric States: Calcium Oxalate and Renal Epithelial Cell Interactions. CRYSTALS 2021; 11:735. [DOI: 10.3390/cryst11070735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Urolithiasis is a multifactorial disease with a high incidence and high recurrence rate, characterized by formation of solid deposits in the urinary tract. The most common type of these stones are calcium oxalate stones. Calcium oxalate crystals can, in hyperoxaluric states, interact with renal epithelial cells, causing injury to the renal epithelia. Pathogenesis of urolithiasis is widely investigated, but underlying mechanisms are still not completely clarified. In vitro models offer insight into molecular processes which lead to renal stone formation and are significant for evaluation of prophylactic and therapeutic management of patients with urolithiasis. In this review, we summarize recently published data from in vitro studies investigating interactions of calcium oxalate crystals with renal epithelial cell lines, anti-urolithiatic mechanisms, and the results from studies exploring possible therapeutic and prophylactic options for calcium oxalate urolithiasis in cell cultures.
Collapse
Affiliation(s)
- Ana Petrović
- Faculty of Dental Medicine and Health Osijek, University of Osijek, HR-31000 Osijek, Croatia
- Faculty of Medicine Osijek, University of Osijek, HR-31000 Osijek, Croatia
| | - Tomislav Kizivat
- Faculty of Medicine Osijek, University of Osijek, HR-31000 Osijek, Croatia
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Ines Bilić Ćurčić
- Faculty of Medicine Osijek, University of Osijek, HR-31000 Osijek, Croatia
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, University of Osijek, HR-31000 Osijek, Croatia
- Faculty of Medicine Osijek, University of Osijek, HR-31000 Osijek, Croatia
| | - Martina Smolić
- Faculty of Dental Medicine and Health Osijek, University of Osijek, HR-31000 Osijek, Croatia
- Faculty of Medicine Osijek, University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
14
|
da Silva Barbosa J, Palhares LCGF, Silva CHF, Sabry DA, Chavante SF, Rocha HAO. In Vitro Antitumor Potential of Sulfated Polysaccharides from Seaweed Caulerpa cupressoides var. flabellata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:77-89. [PMID: 33170369 DOI: 10.1007/s10126-020-10004-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Seaweeds are important source of bioactive compounds, including sulfated polysaccharides (SP). Because of their structural heterogeneity, these compounds are promising sources of anticancer compounds. SP from brown and red seaweeds have shown antimelanoma activity in different in vitro and in vivo models. However, SP from green seaweed are still poorly evaluated. Therefore, SP were extracted from the green alga Caulerpa cupressoides var. flabellata, and their antiproliferative, anti-migratory, and inhibitory effect on melanin production on B16-F10 melanoma cells was evaluated. Cell assays, including flow cytometry, demonstrated that SP (100-1000 μg mL-1) are non-cytotoxic, do not induce apoptosis or necrosis, and do not interfere with cell cycle. However, SP (1000 μg mL-1) were found to significantly inhibit cell colony formation (80-90%), cell migration (40-75%), and melanin production (~ 20%). In summary, these results showed that SP inhibited important melanoma development events without cytotoxicity effects, suggesting that C. cupressoides may be an important source of SP with antitumor properties.
Collapse
Affiliation(s)
- Jefferson da Silva Barbosa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Campus São Gonçalo do Amarante, São Gonçalo do Amarante, Rio Grande do Norte, 59291-727, Brazil.
| | - Laís Cristina Gusmão Ferreira Palhares
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil
| | - Cynthia Haynara Ferreira Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil
| | - Diego Araujo Sabry
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Suely Ferreira Chavante
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil.
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil.
| |
Collapse
|
15
|
Ray B, Schütz M, Mukherjee S, Jana S, Ray S, Marschall M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers (Basel) 2020; 13:E136. [PMID: 33396933 PMCID: PMC7794815 DOI: 10.3390/polym13010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure-activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug-target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Manfred Marschall
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| |
Collapse
|
16
|
Bolda Mariano LN, Boeing T, Cechinel-Filho V, Niero R, Mota da Silva L, de Souza P. The acute diuretic effects with low-doses of natural prenylated xanthones in rats. Eur J Pharmacol 2020; 884:173432. [PMID: 32745607 DOI: 10.1016/j.ejphar.2020.173432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
The diuretic effect of 3-demethyl-2-geranyl-4-prenylbellidypholine xanthone (DGP) and 1,5,8-trihydroxy-4',5'-dimethyl-2H-pyrano(2,3:3,2)-4-(3-methylbut-2-enyl) xanthone (TDP), two natural prenylated xanthones, was investigated in female normotensive (NTR) and spontaneously hypertensive rats (SHR). The rats received a single treatment with DGP, TDP, hydrochlorothiazide (HCTZ), or vehicle (VEH) after an oral load of physiological saline. The effects of DGP and TDP in combination with diuretics of clinical use, as well as with L-NAME, atropine and indomethacin were also explored. The urinary parameters were measured at the end of the 8-h experiment. When orally given to rats, DGP was able to increase the urine volume, at doses of 0.03-0.3 mg/kg, associated with a K+-sparing effect. TDP, in turn, at doses of 0.03-0.3 mg/kg, induced diuresis and saluresis (i.e. augmented urinary levels of Na+ and Cl-) in NTR, while decreased the urinary content of Ca2+ in both NTR and SHR. The combination with HCTZ, but not with furosemide or amiloride, significantly enhanced DGP and TDP induced diuresis, which was accompanied by an increase of the electrolytes content in the urine. Instead, amiloride in combination with DGP or TDP enhanced urinary Na+ and Cl- and decreased K+ elimination. Furthermore, the effect of DGP and TDP were heightened after pretreatment with L-NAME. While atropine was able to prevent DGP-induced diuresis, the pretreatment with indomethacin precluded TDP-induced diuresis. Besides, TDP exerted protective effects against urinary calcium oxalate crystals formation. Taken together, our data revealed the diuretic effect of two xanthones in rats and their possible underlying mode of action.
Collapse
Affiliation(s)
- Luísa Nathália Bolda Mariano
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil.
| |
Collapse
|
17
|
Landi S, Esposito S. Bioinformatic Characterization of Sulfotransferase Provides New Insights for the Exploitation of Sulfated Polysaccharides in Caulerpa. Int J Mol Sci 2020; 21:ijms21186681. [PMID: 32932673 PMCID: PMC7554865 DOI: 10.3390/ijms21186681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Caulerpa is an unusual algal genus from Caulerpaceae (Chlorophyta, Bryopsidales). Species from this family produce a wide range of metabolites suitable for biotechnology applications. Among these, sulfated polysaccharides (SPs) are often highly desirable for pharmaceutical and nutraceutical applications. Here, we provide a classification of sulfotransferases from Caulerpa; these important enzymes catalyze the nodal step for the biosynthesis of SPs. For this, we performed phylogenetic, genomic, expression analyses and prediction of the protein structure on sulfotransferases from Caulerpa. Sequences, domains and structures of sulfotransferases generally shared common characteristics with other plants and algae. However, we found an extensive duplication of sulfotransferase gene family, which is unique among the green algae. Expression analysis revealed specific transcript abundance in the pinnae and rachis of the alga. The unique genomic features could be utilized for the production of complex SPs, which require multiple and specific sulfation reactions. The expansion of this gene family in Caulerpaceae would have resulted in a number of proteins characterizing the unique SPs found in these algae. We provide a putative biosynthetic pathway of SPs, indicating the unique characteristics of this pathway in Caulerpa species. These data may help in the future selection of Caulerpa species for both commercial applications and genetic studies to improve the synthesis of valuable products from Caulerpa.
Collapse
|
18
|
Antioxidant Sulfated Polysaccharide from Edible Red Seaweed Gracilaria birdiae is an Inhibitor of Calcium Oxalate Crystal Formation. Molecules 2020; 25:molecules25092055. [PMID: 32354047 PMCID: PMC7249083 DOI: 10.3390/molecules25092055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
The genus Gracilaria synthesizes sulfated polysaccharides (SPs). Many of these SPs, including those synthesized by the edible seaweed Gracilaria birdiae, have not yet been adequately investigated for their use as potential pharmaceutical compounds. Previous studies have demonstrated the immunomodulatory effects of sulfated galactans from G. birdiae. In this study, a galactan (GB) was extracted from G. birdiae and evaluated by cell proliferation and antioxidant tests. GB showed no radical hydroxyl (OH) and superoxide (O2−) scavenging ability. However, GB was able to donate electrons in two further different assays and presented iron- and copper-chelating activity. Urolithiasis affects approximately 10% of the world’s population and is strongly associated with calcium oxalate (CaOx) crystals. No efficient compound is currently available for the treatment of this disease. GB appeared to interact with and stabilize calcium oxalate dihydrate crystals, leading to the modification of their morphology, size, and surface charge. These crystals then acquired the same characteristics as those found in healthy individuals. In addition, GB showed no cytotoxic effect against human kidney cells (HEK-293). Taken together, our current findings highlight the potential application of GB as an antiurolithic agent.
Collapse
|
19
|
Chen JY, Sun XY, Ouyang JM. Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6982948. [PMID: 32089775 PMCID: PMC7008244 DOI: 10.1155/2020/6982948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Corn silk polysaccharide (CSP0; molecular weight = 124 kDa) was degraded by ultrasonication to obtain five degraded polysaccharides, namely, CSP1, CSP2, CSP3, CSP4, and CSP5, with molecular weights of 26.1, 12.2, 6.0, 3.5, and 2.0 kDa, respectively. The structures of these polysaccharides were characterized by FT-IR, 1H NMR, and 13C NMR analyses. The antioxidant activities, including scavenging ability for hydroxyl radicals and DPPH free radicals, chelation ability for Fe2+ ions, and reducing ability of CSP increased with decreased molecular weight of CSPs within 6.0 to 124 kDa. However, antioxidant activity weakened when the molecular weight of CSPs reached 3.5 and 2 kDa. CSP3 with a molecular weight of 6.0 kDa exhibited the strongest antioxidant activity. After protection with 60 μg/mL CSPs, the viability of human renal proximal tubular epithelial cells (HK-2) damaged by nano-COM crystals increased, the level of reactive oxygen species decreased, and the amount of COM crystal adhered onto the cell surface decreased. The ability of CSPs to protect cells from CaOx crystal damage was consistent with their antioxidant activity. CSPs can specifically combine with CaOx crystal to inhibit the conversion of calcium oxalate dihydrate crystal to calcium oxalate monohydrate crystal. All these results showed that the activity of CSPs was closely correlated with molecular weight. A very high or low molecular weight of CSPs was not conducive to their activity. CSPs, especially CSP3 with a molecular weight of 6.0 kDa, can be used as a potential antistone drug.
Collapse
Affiliation(s)
- Jia-Yun Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar Drugs 2019; 17:md17090487. [PMID: 31438588 PMCID: PMC6780838 DOI: 10.3390/md17090487] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Fucoidan is a polysaccharide largely made up of l-fucose and sulfate groups. Fucoidan is favorable worldwide, especially amongst the food and pharmaceutical industry as a consequence of its promising therapeutic effects. Its applaudable biological functions are ascribed to its unique biological structure. Classical bioactivities associated with fucoidan include anti-oxidant, anti-tumor, anti-coagulant, anti-thrombotic, immunoregulatory, anti-viral and anti-inflammatory effects. More recently, a variety of in vitro and in vivo studies have been carried out to further highlight its therapeutic potentials. This review focuses on the progress towards understanding fucoidan and its biological activities, which may be beneficial as a future therapy. Hence, we have summarized in vitro and in vivo studies that were done within the current decade. We expect this review and a variety of others can contribute as a theoretical basis for understanding and inspire further product development of fucoidan.
Collapse
Affiliation(s)
- Sibusiso Luthuli
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoli Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|