1
|
Ma XY, Wang HN, Sun LX, Sun J, Jin SH, Dai FX, Sai CM, Zhang Z. Bioactive steroids from marine-derived fungi: a review (2015-2023). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-27. [PMID: 39989344 DOI: 10.1080/10286020.2025.2464690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Marine fungi, rich in unique secondary metabolites with diverse activities, are a valuable source for novel lead compounds. Steroids, a prominent class of bioactive compounds from marine fungi, have been extensively studied for their diverse pharmacological properties. This review describes the structural diversity, bioactivities, and sources of 175 marine fungal steroids (2015-2023), mainly from Aspergillus, Penicillium, Talaromyces, etc., in seaweed, mangroves, sediments, and marine animals like sponges and corals. Among them, 74 steroids exhibit antibacterial, antitumor, enzyme inhibitory, antiviral, and other activities, providing valuable leads for steroid drug development and advancing marine pharmaceutical research.
Collapse
Affiliation(s)
- Xue-Yang Ma
- School of Pharmacy, Binzhou Medical University, Yantai264003, China
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Huan-Nan Wang
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Li-Xiang Sun
- School of Pharmacy, Binzhou Medical University, Yantai264003, China
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Jin Sun
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Shi-Hao Jin
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Fang-Xu Dai
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Chun-Mei Sai
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| |
Collapse
|
2
|
El-Seedi HR, Refaey MS, Elias N, El-Mallah MF, Albaqami FMK, Dergaa I, Du M, Salem MF, Tahir HE, Dagliaa M, Yosri N, Zhang H, El-Seedi AH, Guo Z, Khalifa SAM. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023). NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:13. [PMID: 39853457 PMCID: PMC11759743 DOI: 10.1007/s13659-024-00493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025]
Abstract
Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications, particularly in oncology. This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023. With a focus on recent research findings, the review explores the rich biodiversity of marine organisms, including sponges, corals, algae, and microorganisms, which have yielded numerous compounds exhibiting promising anticancer properties. Emphasizing the multifaceted mechanisms of action, the review discusses the molecular targets and pathways targeted by these compounds, such as cell cycle regulation, apoptosis induction, angiogenesis inhibition, and modulation of signaling pathways. Additionally, the review highlights the innovative strategies employed in the isolation, structural elucidation, and chemical modification of marine natural products to enhance their potency, selectivity, and pharmacological properties. Furthermore, it addresses the challenges and opportunities associated with the development of marine-derived anticancer drugs, including issues related to supply, sustainability, synthesis, and clinical translation. Finally, the review underscores the immense potential of marine natural products as a valuable reservoir of novel anticancer agents and advocates for continued exploration and exploitation of the marine environment to address the unmet medical needs in cancer therapy.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, 210024, China.
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 31100107, Egypt.
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nizar Elias
- Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222, Dayr Atiyah, Syria
| | - Mohamed F El-Mallah
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 31100107, Egypt
| | - Faisal M K Albaqami
- Biology Department, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | | | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Mohamed F Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, P.O.Box:79, Sadat City, Egypt
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maria Dagliaa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Naples, NA, Italy
| | - Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Awg H El-Seedi
- International IT College of Sweden Stockholm, Arena Academy, Hälsobrunnsgatan 6, 11361, Stockholm, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
3
|
Evidente A. Advances on anticancer fungal metabolites: sources, chemical and biological activities in the last decade (2012-2023). NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:31. [PMID: 38743184 PMCID: PMC11093966 DOI: 10.1007/s13659-024-00452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Among microorganisms, fungi are the ones that have the most imagination in producing secondary metabolites with the most varied structural differences, which are produced through different biosynthetic pathways. Therefore, they synthesize secondary metabolites classifiable into numerous families of natural compounds such as amino acids, alkaloids, anthraquinones, aromatic compounds, cyclohexene epoxides, furanones, macrolides, naphthoquinones, polyketides, pyrones, terpenes, etc. They also produced metabolites with very complex structures that can not be classified in the known families of natural compounds. Many fungal metabolites show different biological activities with potential applications in agriculture, food chemistry, cosmetics, pharmacology and medicine. This review is focused on the fungal secondary metabolites with anticancer activity isolated in the last ten years. For some metabolites, when described, their biosynthetic origin, the mode of action and the results of structure activity relationships studies are also reported.
Collapse
Affiliation(s)
- Antonio Evidente
- Institute Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 70125, Pozzuoli, NA, Italy.
| |
Collapse
|
4
|
El-Shall H, Abu-Serie M, Abu-Elreesh G, Eltarahony M. Unveiling the anticancer potentiality of single cell oils produced by marine oleaginous Paradendryphiella sp. under optimized economic growth conditions. Sci Rep 2023; 13:20773. [PMID: 38008815 PMCID: PMC10679151 DOI: 10.1038/s41598-023-47656-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023] Open
Abstract
Bioprospecting about new marine oleaginous fungi that produce advantageous bioproducts in a green sustainable process is the key of blue bioeconomy. Herein, the marine Paradendryphiella sp. was utilized for single cell oils (SCOs) production economically, via central composite design, the lipid content enhanced 2.2-fold by 5.5 g/L lipid yeild on seawater-based media supplemented with molasses concentration 50 g/L, yeast extract, 2.25 g/L at initial pH value (5.3) and 8 days of static incubation. Subsequently, the fatty acid methyl esters profiles of SCOs produced on optimized media under different abiotic conditions were determined; signifying qualitative and quantitative variations. Interestingly, the psychrophilic-prolonged incubation increased the unsaturation level of fatty acids to 59.34%, while ω-6 and ω-3 contents representing 23.53% and 0.67% respectively. Remarkably, it exhibited the highest EC100 dose by 677.03 µg/mL on normal human lung fibroblast Wi-38 cells. Meanwhile, it showed the highest inhibiting proliferation potential on cancer cell lines of A549, MDA-MB 231 and HepG-2 cells by 372.37, 417.48 and 365.00 µg/mL, respectively. Besides, it elevated the oxidative stress, the expression of key apoptotic genes and suppressed the expression of key oncogenes (NF-κB, BCL2 and cyclin D); implying its promising efficacy in cancer treatment as adjuvant drug. This study denoted the lipogenesis capacity of Paradendryphiella sp. under acidic/alkaline and psychrophilic/mesophilic conditions. Hereby attaining efficient and economic process under seasonal variation with different Egyptian marine sources to fill the gap of freshwater crisis and simultaneously preserve energy.
Collapse
Affiliation(s)
- Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Gadallah Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
5
|
Wang L, Jiang Q, Chen S, Wang S, Lu J, Gao X, Zhang D, Jin X. Natural epidithiodiketopiperazine alkaloids as potential anticancer agents: Recent mechanisms of action, structural modification, and synthetic strategies. Bioorg Chem 2023; 137:106642. [PMID: 37276722 DOI: 10.1016/j.bioorg.2023.106642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Cancer has become a grave health crisis that threatens the lives of millions of people worldwide. Because of the drawbacks of the available anticancer drugs, the development of novel and efficient anticancer agents should be encouraged. Epidithiodiketopiperazine (ETP) alkaloids with a 2,5-diketopiperazine (DKP) ring equipped with transannular disulfide or polysulfide bridges or S-methyl moieties constitute a special subclass of fungal natural products. Owing to their privileged sulfur units and intriguing architectural structures, ETP alkaloids exhibit excellent anticancer activities by regulating multiple cancer proteins/signaling pathways, including HIF-1, NF-κB, NOTCH, Wnt, and PI3K/AKT/mTOR, or by inducing cell-cycle arrest, apoptosis, and autophagy. Furthermore, a series of ETP alkaloid derivatives obtained via structural modification showed more potent anticancer activity than natural ETP alkaloids. To solve supply difficulties from natural resources, the total synthetic routes for several ETP alkaloids have been designed. In this review, we summarized several ETP alkaloids with anticancer properties with particular emphasis on their underlying mechanisms of action, structural modifications, and synthetic strategies, which will offer guidance to design and innovate potential anticancer drugs.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Siyu Chen
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Siyi Wang
- The 1st Clinical Department, China Medical University, Shenyang 110122, China
| | - Jingyi Lu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xun Gao
- Jiangsu Institute Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dongfang Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Luque C, Cepero A, Perazzoli G, Mesas C, Quiñonero F, Cabeza L, Prados J, Melguizo C. In Vitro Efficacy of Extracts and Isolated Bioactive Compounds from Ascomycota Fungi in the Treatment of Colorectal Cancer: A Systematic Review. Pharmaceuticals (Basel) 2022; 16:22. [PMID: 36678519 PMCID: PMC9864996 DOI: 10.3390/ph16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite the advances and success of current treatments (e.g., chemotherapy), there are multiple serious side effects which require the development of new treatment strategies. In recent years, fungi have gained considerable attention as a source of extracts and bioactive compounds with antitumor capabilities because of their antimicrobial and antioxidant properties and even their anti-inflammatory and antiviral activities. In the present review, a systematic search of the existing literature in four electronic databases was carried out in which the antitumor activity against CRC cells of Ascomycota fungi extracts or compounds was tested. The systematical research in the four databases resulted in a total of 883 articles. After applying exclusion and inclusion criteria, a total of 75 articles were finally studied. The order Eurotiales was the most studied (46% of the articles), and the ethyl acetate extraction was the most used method (49% of the papers). Penicillium extracts and gliotoxin and acetylgliotoxin G bioactive compounds showed the highest cytotoxic activity. This review also focuses on the action mechanisms of the extracts and bioactive compounds of fungi against CRC, which were mediated by apoptosis induction and the arrest of the cell cycle, which induces a notable reduction in the CRC cell proliferation capacity, and by the reduction in cell migration that limits their ability to produce metastasis. Thus, the ability of fungi to induce the death of cancer cells through different mechanisms may be the basis for the development of new therapies that improve the current results, especially in the more advanced stages of the CCR.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
7
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
8
|
Secondary Metabolites from Marine-Derived Fungi and Actinobacteria as Potential Sources of Novel Colorectal Cancer Drugs. Mar Drugs 2022; 20:md20010067. [PMID: 35049922 PMCID: PMC8777761 DOI: 10.3390/md20010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer is one of the most common cancers diagnosed in the world. Chemotheraphy is one of the most common methods used for the pharmacological treatment of this cancer patients. Nevertheless, the adverse effect of chemotherapy is not optimized for improving the quality of life of people who are older, who are the most vulnerable subpopulation. This review presents recent updates regarding secondary metabolites derived from marine fungi and actinobacteria as novel alternatives for cytotoxic agents against colorectal cancer cell lines HCT116, HT29, HCT15, RKO, Caco-2, and SW480. The observed marine-derived fungi were from the species Aspergillus sp., Penicillium sp., Neosartorya sp., Dichotomomyces sp., Paradendryphiella sp., and Westerdykella sp. Additionally, Streptomyces sp. and Nocardiopsis sp. are actinobacteria discussed in this study. Seventy one compounds reviewed in this study were grouped on the basis of their chemical structures. Indole alkaloids and diketopiperazines made up most compounds with higher potencies when compared with other groups. The potency of indole alkaloids and diketopiperazines was most probably due to halogen-based functional groups and sulfide groups, respectively.
Collapse
|
9
|
Potential of Anti-Cancer Activity of Secondary Metabolic Products from Marine Fungi. J Fungi (Basel) 2021; 7:jof7060436. [PMID: 34070936 PMCID: PMC8229146 DOI: 10.3390/jof7060436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/15/2023] Open
Abstract
The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillus niger, A. fumigatus A. oryzae, A. flavus, A. versicolor, A. terreus, Penicillium citrinum, P. chrysogenum, and P. polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
Collapse
|