1
|
Nakatani Y, Kimura R, Kimata T, Kotoku N. Oxidative Cyclization at ortho-Position of Phenol: Improved Total Synthesis of 3-(Phenethylamino)demethyl(oxy)aaptamine. Mar Drugs 2023; 21:311. [PMID: 37233505 PMCID: PMC10221624 DOI: 10.3390/md21050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
A shorter synthesis of the demethyl(oxy)aaptamine skeleton was developed via oxidative intramolecular cyclization of 1-(2-azidoethyl)-6-methoxyisoquinolin-7-ol followed by dehydrogenation with a hypervalent iodine reagent. This is the first example of oxidative cyclization at the ortho-position of phenol that does not involve spiro-cyclization, resulting in the improved total synthesis of 3-(phenethylamino)demethyl(oxy)aaptamine, a potent anti-dormant mycobacterial agent.
Collapse
Affiliation(s)
| | | | | | - Naoyuki Kotoku
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan; (Y.N.); (R.K.); (T.K.)
| |
Collapse
|
2
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
3
|
Voser TM, Hayton JB, Prebble DW, Jin J, Grant G, Ekins MG, Carroll AR. Amphiphilic Polyamine α-Synuclein Aggregation Inhibitors from the Sponge Aaptos lobata. JOURNAL OF NATURAL PRODUCTS 2023; 86:475-481. [PMID: 36795859 DOI: 10.1021/acs.jnatprod.2c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioassay-guided investigation of the sponge Aaptos lobata resulted in the isolation and identification of two new amphiphilic polyamines, aaptolobamines A (1) and B (2). Their structures were determined through analysis of NMR and MS data. MS analysis also indicated that A. lobata contained a complex mixture of aaptolobamine homologues. Both aaptolobamines A (1) and B (2) show broad bioactivity, including cytotoxicity against cancer cell lines, moderate antimicrobial activity against a methicillin-resistant strain of Staphylococcus aureus, and weak activity against a Pseudomonas aeruginosa strain. The mixtures of aaptolobamine homologues were shown to contain compounds that bind to the Parkinson's disease associated amyloid protein α-synuclein and inhibit its aggregation.
Collapse
Affiliation(s)
- Tanja M Voser
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Ju Jin
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Gary Grant
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | | | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Sung CS, Cheng HJ, Chen NF, Tang SH, Kuo HM, Sung PJ, Chen WF, Wen ZH. Antinociceptive Effects of Aaptamine, a Sponge Component, on Peripheral Neuropathy in Rats. Mar Drugs 2023; 21:md21020113. [PMID: 36827154 PMCID: PMC9963100 DOI: 10.3390/md21020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aaptamine, a natural marine compound isolated from the sea sponge, has various biological activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced peripheral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration. We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence. The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord. Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results indicate aaptamine's potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Jung Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Shih-Hsuan Tang
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| |
Collapse
|
5
|
Tang S, Wu Z, Gao M, Li G, Yao Z. Total Synthesis of Suberitines A–D Featuring Tunable Biomimetic Late‐Stage Oxidative Dearomatization and Acetalization. Chemistry 2022; 28:e202200644. [DOI: 10.1002/chem.202200644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Shunjiang Tang
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road 266003 Qingdao Shandong P. R. China
- Laboratory of Marine Drugs and Biological Products Pilot National Laboratory for Marine Science and Technology School of Medicine and Pharmacy Ocean University of China 168 Middle Wenhai Road 266235 Qingdao Shandong P. R. China
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing Jiangsu P. R. China
| | - Zhihui Wu
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road 266003 Qingdao Shandong P. R. China
- Laboratory of Marine Drugs and Biological Products Pilot National Laboratory for Marine Science and Technology School of Medicine and Pharmacy Ocean University of China 168 Middle Wenhai Road 266235 Qingdao Shandong P. R. China
| | - Ming Gao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing Jiangsu P. R. China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road 266003 Qingdao Shandong P. R. China
- Laboratory of Marine Drugs and Biological Products Pilot National Laboratory for Marine Science and Technology School of Medicine and Pharmacy Ocean University of China 168 Middle Wenhai Road 266235 Qingdao Shandong P. R. China
| | - Zhu‐Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing Jiangsu P. R. China
| |
Collapse
|
6
|
He QQ, Man YQ, Sun KL, Yang LJ, Wu Y, Du J, Chen WW, Dai JJ, Ni N, Miao S, Gong KK. Aaptamine derivatives with CDK2 inhibitory activities from the South China Sea sponge Aaptos suberitoides. Nat Prod Res 2022; 36:6215-6223. [PMID: 35007168 DOI: 10.1080/14786419.2021.2024533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Three new aaptamines (1-3) together with two known derivatives (4-5) were isolated from the South China Sea sponge Aaptos suberitoides. The structures of all compounds were unambiguously elucidated by spectroscopic analyses as well as the comparison with literature data. All the compounds were evaluated for their cytotoxic activities against five human cancer cell lines including H1299, H520, SCG7901, CNE-2 and SW680 cells. As a result, compounds 3-5 showed moderate cytotoxicities against H1299 and H520 cells with IC50 values ranging from 12.9 to 20.6 μg/mL. Besides, compounds 3-5 also showed potent inhibitory activities toward cyclin-dependent kinase-2 (CDK2) with IC50 values of 14.3, 3.0 and 6.0 μg/mL, respectively. In addition, compounds 3-5 significantly induced G1 arrests of H1299 cells at low concentrations. Drug affinity responsive target stability (DARTS) experiments were carried out and further demonstrated that compound 3 could effectively bind with CDK2 protein and protect it from the degradation by pronase.
Collapse
Affiliation(s)
- Qian-Qian He
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China.,Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, China
| | - Yu-Qing Man
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China.,Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, China
| | - Kun-Lai Sun
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Li-Juan Yang
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Du
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Wei-Wei Chen
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Juan-Juan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Na Ni
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Shuang Miao
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Kai-Kai Gong
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
7
|
Chabowska G, Barg E, Wójcicka A. Biological Activity of Naturally Derived Naphthyridines. Molecules 2021; 26:4324. [PMID: 34299599 PMCID: PMC8306249 DOI: 10.3390/molecules26144324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Marine and terrestrial environments are rich sources of various bioactive substances, which have been used by humans since prehistoric times. Nowadays, due to advances in chemical sciences, new substances are still discovered, and their chemical structures and biological properties are constantly explored. Drugs obtained from natural sources are used commonly in medicine, particularly in cancer and infectious diseases treatment. Naphthyridines, isolated mainly from marine organisms and terrestrial plants, represent prominent examples of naturally derived agents. They are a class of heterocyclic compounds containing a fused system of two pyridine rings, possessing six isomers depending on the nitrogen atom's location. In this review, biological activity of naphthyridines obtained from various natural sources was summarized. According to previous studies, the naphthyridine alkaloids displayed multiple activities, i.a., antiinfectious, anticancer, neurological, psychotropic, affecting cardiovascular system, and immune response. Their wide range of activity makes them a fascinating object of research with prospects for use in therapeutic purposes.
Collapse
Affiliation(s)
- Gabriela Chabowska
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Anna Wójcicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
8
|
Nguyen TLA, Doan THN, Truong DH, Ai Nhung NT, Quang DT, Khiri D, Taamalli S, Louis F, El Bakali A, Dao DQ. Antioxidant and UV-radiation absorption activity of aaptamine derivatives - potential application for natural organic sunscreens. RSC Adv 2021; 11:21433-21446. [PMID: 35478841 PMCID: PMC9034140 DOI: 10.1039/d1ra04146k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antioxidant and UV absorption activities of three aaptamine derivatives including piperidine[3,2-b]demethyl(oxy)aaptamine (C1), 9-amino-2-ethoxy-8-methoxy-3H-benzo[de][1,6]naphthyridine-3-one (C2), and 2-(sec-butyl)-7,8-dimethoxybenzo[de]imidazo[4,5,1-ij][1,6]-naphthyridin-10(9H)-one (C3) were theoretically studied by density functional theory (DFT). Direct antioxidant activities of C1-C3 were firstly evaluated via their intrinsic thermochemical properties and the radical scavenging activity of the potential antioxidants with the HOO˙/HO˙ radicals via four mechanisms, including: hydrogen atom transfer (HAT), single electron transfer (SET), proton loss (PL) and radical adduct formation (RAF). Kinetic calculation reveals that HOO˙ scavenging in water occurs via HAT mechanism with C1 (k app, 7.13 × 106 M-1 s-1) while RAF is more dominant with C2 (k app, 1.40 × 105 M-1 s-1) and C3 (k app, 2.90 × 105 M-1 s-1). Antioxidant activity of aaptamine derivatives can be classified as C1 > C3 > C2. Indirect antioxidant properties based on Cu(i) and Cu(ii) ions chelating activity were also investigated in aqueous phase. All three studied compounds show spontaneous and favorable Cu(i) ion chelating activity with ΔG 0 being -15.4, -13.7, and -15.7 kcal mol-1, whereas ΔG 0 for Cu(ii) chelation are -10.4, -10.8, and -2.2 kcal mol-1 for C1, C2 and C3, respectively. In addition, all compounds show UVA and UVB absorption; in which the excitations are determined mostly as π-π* transition. Overall, the results suggest the potential applications of the aaptamines in pharmaceutics and cosmetics, i.e. as a sunscreen and antioxidant ingredient.
Collapse
Affiliation(s)
- Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Hoai Nam Doan
- Department of Chemistry, Danang University of Science and Technology, The University of Danang Da Nang 550000 Vietnam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Dorra Khiri
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Abderrahman El Bakali
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
9
|
Trang DT, Tai BH, Hang DTT, Yen PH, Nhiem NX, Kiem PV. Four new aaptamine alkaloids from marine sponge Aaptos aaptos. Nat Prod Res 2021; 36:5022-5031. [PMID: 33908314 DOI: 10.1080/14786419.2021.1917572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Four new aaptamine alkaloids, named as 9-methoxy-N-demethylaaptanone (1), 3,5-dicarbomethoxy-1,6-naphthyridine (2), aaptosvanphongs A and B (3 and 4), and three known aaptamine alkaloids as 2-methoxy-3-oxoaaptamine (5), 8,9,9-trimethoxy-9H-benzo[de][1,6]-naphthyridine (6), and demethyl(oxy)aaptamine (7) were isolated from the sponge Aaptos by various chromatographic methods. Their structures were established by extensive spectroscopic analyses (HR-ESI-MS, 1 D and 2 D NMR) and by comparison of the spectral data with those reported in the literature. Compounds 1-7 significantly showed cytotoxic effects against SK-LU-1, MCF-7, HepG2, and SK-Mel-2 cell lines with IC50 values in range from 7.7 ± 0.8 to 51.4 ± 1.8 µM. Among them, compound 7 exhibited the most cytotoxic activity with corresponding IC50 values of 9.2 ± 1.0, 7.8 ± 0.6, 8.4 ± 0.8, and 7.7 ± 0.8 µM.
Collapse
Affiliation(s)
- Do Thi Trang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, VAST, Cau Giay, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, VAST, Cau Giay, Hanoi, Vietnam
| | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, VAST, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, VAST, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
10
|
He Q, Miao S, Ni N, Man Y, Gong K. A Review of the Secondary Metabolites From the Marine Sponges of the Genus Aaptos. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Marine sponges, which belong to the phylum Porifera (Metazoa), are considered the single best source of marine natural products. Among them, members of the genus Aaptos are attractive targets for marine natural product research owing to their abundant biogenetic ability to produce aaptamine derivatives. Apart from aaptamine alkaloids, there are also reports of other compounds from Aaptos sponges. This work reviews the secondary metabolites isolated from Aaptos species from 1982 to 2020, with 46 citations referring to 62 compounds (47 for aaptamines and 15 for others). The emphasis is placed on the structure of the organic molecules, relevant biological activities, chemical ecology aspects, and biosynthesis studies, which are described in the classifications of aaptamines and other compounds in the order of the published year.
Collapse
Affiliation(s)
- Qianqian He
- Cancer Research Institute, Binzhou Medical University Hospital, Shandong, P. R. China
- Department of Pharmacy, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Shuang Miao
- Cancer Research Institute, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Na Ni
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Yuqing Man
- Department of Pharmacy, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Kaikai Gong
- Cancer Research Institute, Binzhou Medical University Hospital, Shandong, P. R. China
| |
Collapse
|
11
|
Giraldes BW, Goodwin C, Al-Fardi NAA, Engmann A, Leitão A, Ahmed AA, Ahmed KO, Abdulkader HA, Al-Korbi HA, Al Easa HSS, Ahmed Eltai NO, Hanifi-Moghaddam P. Two new sponge species (Demospongiae: Chalinidae and Suberitidae) isolated from hyperarid mangroves of Qatar with notes on their potential antibacterial bioactivity. PLoS One 2020; 15:e0232205. [PMID: 32401792 PMCID: PMC7219822 DOI: 10.1371/journal.pone.0232205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/08/2020] [Indexed: 11/23/2022] Open
Abstract
This study presents the taxonomic description of two new sponge species that are intimately associated with the hyperarid mangrove ecosystem of Qatar. The study includes a preliminary evaluation of the sponges' potential bioactivity against pathogens. Chalinula qatari sp. nov. is a fragile thinly encrusting sponge with a vivid maroon colour in life, often with oscular chimneys and commonly recorded on pneumatophores in the intertidal and shallow subtidal zone. Suberites luna sp. nov. is a massive globular-lobate sponge with a greenish-black colour externally and a yellowish orange colour internally, recorded on pneumatophores in the shallow subtidal zone, with large specimens near the seagrass ecosystem that surrounds the mangrove. For both species, a drug extraction protocol and an antibacterial experiment was performed. The extract of Suberites luna sp. nov. was found to be bioactive against recognized pathogens such as Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis, but no bioactive activity was recorded for Chalinula qatari sp. nov. This study highlights the importance of increasing bioprospecting effort in hyperarid conditions and the importance of combining bioprospecting with taxonomic studies for the identification of novel marine drugs.
Collapse
Affiliation(s)
| | - Claire Goodwin
- Huntsman Marine Science Centre, St. Andrews, New Brunswick,
Canada
- University of New Brunswick, Saint John, New Brunswick,
Canada
| | | | - Amanda Engmann
- Environmental Science Centre, Qatar University, Doha,
Qatar
| | | | - Asma A. Ahmed
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Kamelia O. Ahmed
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Hadil A. Abdulkader
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Halah A. Al-Korbi
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Hala Sultan Saif Al Easa
- Department of Chemistry and Earth Sciences, College of Arts and Sciences,
Qatar University, Doha, Qatar
| | | | | |
Collapse
|
12
|
Sumii Y, Kotoku N, Han C, Kamiya K, Setiawan A, Vilchèze C, Jacobs WR, Arai M. 3-(Phenethylamino)demethyl(oxy)aaptamine as an anti-dormant mycobacterial substance: Isolation, evaluation and total synthesis. Tetrahedron Lett 2020; 61. [PMID: 32577043 DOI: 10.1016/j.tetlet.2020.151924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
3-(Phenethylamino)demethyl(oxy)aaptamine (1) was re-discovered from the marine sponge of Aaptos sp. as an anti-dormant mycobacterial substance through the bioassay-guided separation. Compound 1 showed potent anti-microbial activity against Mycobacterium bovis BCG with a minimum inhibitory concentration of 0.75 µg/mL under both aerobic conditions and hypoxic conditions inducing dormant state. Compound 1 was also effective against pathogenic M. tuberculosis strains including clinical multidrug-resistant strains. Furthermore, the successful total syntheses of 1 and its analog 3-aminodemethyl(oxy)aaptamine (2) afford sufficient quantities for further biological studies.
Collapse
Affiliation(s)
- Yuji Sumii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.,Present affiliation: Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Naoyuki Kotoku
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.,Present affiliation: College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Chisu Han
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kentaro Kamiya
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Jl. Prof. Dr. Sumantri Brodjonegoro No. 1, Bandar Lampung 35145, Indonesia
| | - Catherine Vilchèze
- Albert Einstein College of Medicine; 1301 Morris Park Avenue, Bronx, New York 10461, U.S.A
| | - William R Jacobs
- Albert Einstein College of Medicine; 1301 Morris Park Avenue, Bronx, New York 10461, U.S.A
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
|
14
|
Meenakshisundaram S, Manickam M, Pillaiyar T. Exploration of imidazole and imidazopyridine dimers as anticancer agents: Design, synthesis, and structure-activity relationship study. Arch Pharm (Weinheim) 2019; 352:e1900011. [PMID: 31596021 DOI: 10.1002/ardp.201900011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 11/07/2022]
Abstract
Dimerization of proteins/receptors plays a critical role in various cellular processes, including cell proliferation and differentiation. Therefore, targeting such dimeric proteins/receptors by dimeric small molecules could be a potential therapeutic approach to treating various diseases, including inflammation-associated diseases like cancer. A novel series of bis-imidazoles (13-18) and bis-imidazo[1,2-a]pyridines (19-28) were designed and synthesized from Schiff base dimers (1-12) for their anticancer activities. All the synthesized compounds were screened for anticancer activities against three cancer cell lines, including cervical (HeLa), breast (MDA-MB-231), and renal cancer (ACHN). From structure-activity relationship studies, imidazo[1,2-a]pyridines (19-28) showed remarkable cytotoxic activities, with compounds 19 and 24 showing the best inhibitory activities against all three cell lines. Especially, both 19 and 24 were very effective against the breast cancer cell line (19, GI50 = 0.43 µM; 24, GI50 = 0.3 µM), exceeding the activity of the control adriamycin (GI50 = 0.51 µM). The in vivo anticancer activity results of compounds 19 and 24 were comparable with those of the animals treated with the standard drug tamoxifen. Therefore, the dimeric imidazo[1,2-a]pyridine scaffold could serve as a potential lead for the development of novel anticancer agents.
Collapse
Affiliation(s)
| | - Manoj Manickam
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Gao Y, Yang F, Sun F, Liu L, Liu B, Wang SP, Cheng CW, Liao H, Lin HW. Total Synthesis of Aaptamine, Demethyloxyaaptamine, and Their 3-Alkylamino Derivatives. Org Lett 2019; 21:1430-1433. [PMID: 30775923 DOI: 10.1021/acs.orglett.9b00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Gao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wei Cheng
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
16
|
Isoaaptamine Induces T-47D Cells Apoptosis and Autophagy via Oxidative Stress. Mar Drugs 2018; 16:md16010018. [PMID: 29315210 PMCID: PMC5793066 DOI: 10.3390/md16010018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Aaptos is a genus of marine sponge which belongs to Suberitidae and is distributed in tropical and subtropical oceans. Bioactivity-guided fractionation of Aaptos sp. methanolic extract resulted in the isolation of aaptamine, demethyloxyaaptamine, and isoaaptamine. The cytotoxic activity of the isolated compounds was evaluated revealing that isoaaptamine exhibited potent cytotoxic activity against breast cancer T-47D cells. In a concentration-dependent manner, isoaaptamine inhibited the growth of T-47D cells as indicated by short-(MTT) and long-term (colony formation) anti-proliferative assays. The cytotoxic effect of isoaaptamine was mediated through apoptosis as indicated by DNA ladder formation, caspase-7 activation, XIAP inhibition and PARP cleavage. Transmission electron microscopy and flow cytometric analysis using acridine orange dye indicated that isoaaptamine treatment could induce T-47D cells autophagy. Immunoblot assays demonstrated that isoaaptamine treatment significantly activated autophagy marker proteins such as type II LC-3. In addition, isoaaptamine treatment enhanced the activation of DNA damage (γH2AX) and ER stress-related proteins (IRE1 α and BiP). Moreover, the use of isoaaptamine resulted in a significant increase in the generation of reactive oxygen species (ROS) as well as in the disruption of mitochondrial membrane potential (MMP). The pretreatment of T-47D cells with an ROS scavenger, N-acetyl-l-cysteine (NAC), attenuated the apoptosis and MMP disruption induced by isoaaptamine up to 90%, and these effects were mediated by the disruption of nuclear factor erythroid 2-related factor 2 (Nrf 2)/p62 pathway. Taken together, these findings suggested that the cytotoxic effect of isoaaptamine is associated with the induction of apoptosis and autophagy through oxidative stress. Our data indicated that isoaaptamine represents an interesting drug lead in the war against breast cancer.
Collapse
|
17
|
Utkina NK, Denisenko VA. N-Demethylaaptanone, A new Congener of Aaptamine Alkaloids from the Vietnamese Marine Sponge Aaptos aaptos. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new compound, N-demethylaaptanone (5), having an oxygenated 1,6-naphthyridine core, has been isolated from the Vietnamese marine sponge Aaptos aaptos, along with the known metabolites, aaptamine (1), isoaaptamine (2), 9-demethylaaptamine (3), and aaptanone (4). The structure of N-demethylaaptanone was determined as 9-hydroxy-8-methoxy-4 H-benzo[ de][1,6]-naphthyridine-5,6-dione from spectroscopic data.
Collapse
Affiliation(s)
- Natalia K. Utkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect StoletiaVladivostoka 159, Vladivostok 690022, Russian Federation
| | - Vladimir A. Denisenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect StoletiaVladivostoka 159, Vladivostok 690022, Russian Federation
| |
Collapse
|
18
|
Heredia DA, Larghi EL, Kaufman TS. A Straightforward Synthesis of 5-Methylaaptamine from Eugenol, Employing a 6π-Electrocyclization Reaction of a 1-Azatriene. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Gan JH, Hu WZ, Yu HB, Yang F, Cao MX, Shi HJ, Kang YF, Han BN. Three new aaptamine derivatives from the South China Sea sponge Aaptos aaptos. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:1231-1238. [PMID: 26699877 DOI: 10.1080/10286020.2015.1118465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Three new aaptamine derivatives (1-3), together with six known related compounds (4-9), have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated on the basis of spectroscopic analyses. Compounds 1, 4, 5, 7, and 9 showed cytotoxic activities against HeLa, K562, MCF-7, and U937 cell lines with IC50 values in the range of 0.90-12.32 μM.
Collapse
Affiliation(s)
- Jian-Hong Gan
- a Key Laboratory for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
- b College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Wen-Zhen Hu
- b College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Hao-Bing Yu
- a Key Laboratory for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
- c Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences , Second Military Medical University , Shanghai 200433 , China
| | - Fan Yang
- a Key Laboratory for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Meng-Xue Cao
- a Key Laboratory for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Hua-Jin Shi
- b College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Yong-Feng Kang
- b College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Bing-Nan Han
- a Key Laboratory for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| |
Collapse
|
20
|
Pereira DM, Valentão P, Correia-da-Silva G, Teixeira N, Andrade PB. Translating endoplasmic reticulum biology into the clinic: a role for ER-targeted natural products? Nat Prod Rep 2015; 32:705-22. [PMID: 25703279 DOI: 10.1039/c4np00102h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ER stress has been identified as a hallmark, and sometimes trigger, of several pathologies, notably cancer, inflammation and neurodegenerative diseases like Alzheimer's and Parkinson's. Among the molecules described in literature known to affect ER function, the majority are natural products, suggesting that natural molecules may constitute a significant arsenal of chemical entities for modulating this cellular target. In this review, we will start by presenting the current knowledge of ER biology and the hallmarks of ER stress, thus paving the way for presenting the natural products that have been described as being ER modulators, either stress inducers or ER protectors. The chemistry, distribution and mechanism of action of these compounds will be presented and discussed.
Collapse
Affiliation(s)
- David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | | | | | | | | |
Collapse
|
21
|
Aaptamine derivatives with antifungal and anti-HIV-1 activities from the South China Sea sponge Aaptos aaptos. Mar Drugs 2014; 12:6003-13. [PMID: 25532563 PMCID: PMC4278215 DOI: 10.3390/md12126003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 11/17/2022] Open
Abstract
Five new alkaloids of aaptamine family, compounds (1–5) and three known derivatives (6–8), have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM.
Collapse
|
22
|
Yu HB, Yang F, Sun F, Ma GY, Gan JH, Hu WZ, Han BN, Jiao WH, Lin HW. Cytotoxic aaptamine derivatives from the South China Sea sponge Aaptos aaptos. JOURNAL OF NATURAL PRODUCTS 2014; 77:2124-2129. [PMID: 25211032 DOI: 10.1021/np500583z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nine new aaptamine derivatives (1-9), together with three known related compounds (10-12), have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated on the basis of spectroscopic analyses. Structurally, compound 1 possesses a piperidinyl group fused to a demethyl(oxy)aaptamine moiety, whereas compounds 3-6 share an imidazole-fused 1H-benzo[de][1,6]naphthyridin-2(4H)-one skeleton. The cytotoxic activities of the compounds were evaluated against various human cancer cell lines, and compounds 2, 8, 11, and 12 showed potent cytotoxicities against HL60, K562, MCF-7, KB, HepG2, and HT-29 cells, with IC50 values in the range of 0.03 to 8.5 μM.
Collapse
Affiliation(s)
- Hao-Bing Yu
- Laboratory of Marine Drugs, Department of Pharmacy, Changzheng Hospital, Second Military Medical University , 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Verma AK, Kotla SKR, Choudhary D, Patel M, Tiwari RK. Silver-Catalyzed Tandem Synthesis of Naphthyridines and Thienopyridines via Three-Component Reaction. J Org Chem 2013; 78:4386-401. [DOI: 10.1021/jo400400c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Akhilesh K. Verma
- Synthetic Organic
Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Siva K. Reddy Kotla
- Synthetic Organic
Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Deepak Choudhary
- Synthetic Organic
Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Monika Patel
- Synthetic Organic
Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rakesh K. Tiwari
- Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
24
|
Recent advances in marine drug research. Biotechnol Adv 2013; 31:1826-45. [PMID: 23500952 DOI: 10.1016/j.biotechadv.2013.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 02/04/2023]
Abstract
Structures and properties of promising marine anti-cancer, anti-inflammation and anti-infectious (HIV, HSV, malaria, leishmania) compounds reported during 2008-2011 are discussed. Wherever possible, attempts have also been made to highlight their possible biogenesis or structure-activity relationships (SAR). Since the stress is on identifying and short-listing potential drug molecules, this review is restricted to only those compounds exhibiting promising in vitro activity, the arbitrary cut off being IC50<15 μM, reported during the above period.
Collapse
|
25
|
Pham CD, Hartmann R, Müller WEG, de Voogd N, Lai D, Proksch P. Aaptamine derivatives from the Indonesian sponge Aaptos suberitoides. JOURNAL OF NATURAL PRODUCTS 2013; 76:103-106. [PMID: 23282083 DOI: 10.1021/np300794b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Four new aaptamine derivatives (1-4) along with aaptamine (5) and three related compounds (6-8) were isolated from the ethanol extract of the sponge Aaptos suberitoides collected in Indonesia. The structures of the new compounds were unambiguously determined by one- and two-dimensional NMR and by HRESIMS measurements. Compounds 3, 5, and 6 showed cytotoxic activity against the murine lymphoma L5178Y cell line, with IC(50) values ranging from 0.9 to 8.3 μM.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Tian C, Jiao X, Liu X, Li R, Dong L, Liu X, Zhang Z, Xu J, Xu M, Xie P. First total synthesis and determination of the absolute configuration of 1-N-methyl-3-methylamino-[N-butanoicacid-3-(9-methyl-8-propen-7-one)-amide]-benzo[f][1,7]naphthyridine-2-one, a novel benzonaphthyridine alkaloid. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Liu C, Tang X, Li P, Li G. Suberitine A-D, four new cytotoxic dimeric aaptamine alkaloids from the marine sponge Aaptos suberitoides. Org Lett 2012; 14:1994-7. [PMID: 22472093 DOI: 10.1021/ol3004589] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suberitine A-D (1-4), four new bis-aaptamine alkaloids with two aaptamine skeleton units, 8,9,9-trimethoxy-9H-benzo[de][1,6]-naphthyridine and demethyl(oxy)-aaptamine, linked through a rare C-3-C-3' or C-3-C-6' σ-bond between the 1,6-naphthyridine rings, together with two known monomers 5 and 6, were isolated from the marine sponge Aaptos suberitoides. Their structures were elucidated using NMR spectroscopy. Compounds 2 and 4 showed potent cytotoxicity against P388 cell lines, with IC(50) values of 1.8 and 3.5 μM, respectively.
Collapse
Affiliation(s)
- Caixia Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii. World J Microbiol Biotechnol 2011; 28:1237-44. [PMID: 22805843 DOI: 10.1007/s11274-011-0927-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/29/2011] [Indexed: 11/27/2022]
Abstract
Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
Collapse
|
29
|
Takahashi Y, Kubota T, Shibazaki A, Gonoi T, Fromont J, Kobayashi J. Nakijinamines C-E, new heteroaromatic alkaloids from the sponge Suberites species. Org Lett 2011; 13:3016-9. [PMID: 21574567 DOI: 10.1021/ol2008473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three new heteroaromatic alkaloids, nakijinamines C-E (1-3), which are a hybrid of the aaptamine-type and bromoindole alkaloids possessing a taurine- or histidine-derived residue, have been isolated from an Okinawan marine sponge Suberites species. The structures of 1-3 were elucidated on the basis of spectroscopic data and chemical conversions. Nakijinamines C (1) and E (3) are the first natural products possessing a 1H-oxazolo[4',5':4,5]benzo[1,2,3-de][1,6]naphthyridine ring system.
Collapse
Affiliation(s)
- Yohei Takahashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
30
|
A novel benzo[f][1,7]naphthyridine produced by Streptomyces albogriseolus from mangrove sediments. Molecules 2010; 15:9298-307. [PMID: 21160454 PMCID: PMC6259242 DOI: 10.3390/molecules15129298] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022] Open
Abstract
Mangrove Streptomyces represent a rich source of novel bioactive compounds in medicinal research. A novel alkaloid, named 1-N-methyl-3-methylamino-[N-butanoic acid-3′-(9′-methyl-8′-propen-7′-one)-amide]-benzo[f][1,7]naphthyridine-2-one (1) was isolated from Streptomyces albogriseolus originating from mangrove sediments. The structure of compound 1 was elucidated by extensive spectroscopic data analyses and verified by the 13C-NMR calculation at the B3LYP/6-311+G(2d,p) level of theory.
Collapse
|
31
|
Shubina LK, Makarieva TN, Dyshlovoy SA, Fedorov SN, Dmitrenok PS, Stonik VA. Three New Aaptamines from the Marine Sponge Aaptos sp. and Their Proapoptotic Properties. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000501208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three new aaptamine-type alkaloids, 2,3-dihydro-2,3-dioxoaaptamine (1), 6 -( N-morpholinyl)-4,5-dihydro-5-oxo-demethyl(oxy)aaptamine (2) and 3-(methylamino)demethyl(oxy)aaptamine (3), along with known aaptamines were isolated from the sponge Aaptos sp. Their structures were determined on the basis of detailed analysis of their 1D and 2D NMR spectroscopic and mass spectral data. The isolated compounds induced apoptosis in human leukemia THP-1 cells.
Collapse
Affiliation(s)
- Larisa K. Shubina
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Tatyana N. Makarieva
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey A. Dyshlovoy
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey N. Fedorov
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Pavel S. Dmitrenok
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
32
|
The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 2009; 7:689-704. [PMID: 20098607 PMCID: PMC2810220 DOI: 10.3390/md7040689] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/04/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022] Open
Abstract
The antinociceptive and anti-inflammatory activity of caulerpin was investigated. This bisindole alkaloid was isolated from the lipoid extract of Caulerpa racemosa and its structure was identified by spectroscopic methods, including IR and NMR techniques. The pharmacological assays used were the writhing and the hot plate tests, the formalin-induced pain, the capsaicin-induced ear edema and the carrageenan-induced peritonitis. Caulerpin was given orally at a concentration of 100 micromol/kg. In the abdominal constriction test caulerpin showed reduction in the acetic acid-induced nociception at 0.0945 micromol (0.0103-1.0984) and for dypirone it was 0.0426 micromol (0.0092-0.1972). In the hot plate test in vivo the inhibition of nociception by caulerpin (100 micromol/kg, p.o.) was also favorable. This result suggests that this compound exhibits a central activity, without changing the motor activity (seen in the rotarod test). Caulerpin (100 micromol/kg, p.o.) reduced the formalin effects in both phases by 35.4% and 45.6%, respectively. The possible anti-inflammatory activity observed in the second phase in the formalin test of caulerpin (100 micromol/kg, p.o.) was confirmed on the capsaicin-induced ear edema model, where an inhibition of 55.8% was presented. Indeed, it was also observed in the carrageenan-induced peritonitis that caulerpin (100 micromol/kg, p.o.) exhibited anti-inflammatory activity, reducing significantly the number of recruit cells by 48.3%. Pharmacological studies are continuing in order to characterize the mechanism(s) responsible for the antinociceptive and anti-inflammatory actions and also to identify other active principles present in Caulerpa racemosa.
Collapse
|
33
|
Shubina LK, Kalinovsky AI, Fedorov SN, Radchenko OS, Denisenko VA, Dmitrenok PS, Dyshlovoy SA, Krasokhin VB, Stonik VA. Aaptamine Alkaloids from the Vietnamese Sponge Aaptos sp. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of aaptamines, including one new alkaloid (1), were isolated from the marine sponge Aaptos sp. collected in Vietnamese waters. The structure of 1 was elucidated using NMR and HRESIMS, as well as by chemical transformation of 1 to the previously known aaptamine and established as 3-N-morpholinyl-9-demethyl(oxy)aaptamine. The isolated compounds showed a potential cancer preventive activity.
Collapse
Affiliation(s)
- Larisa K. Shubina
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anatoly I. Kalinovsky
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey N. Fedorov
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Oleg S. Radchenko
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Vladimir A. Denisenko
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Pavel S. Dmitrenok
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey A. Dyshlovoy
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Vladimir B. Krasokhin
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
34
|
Larghi EL, Bohn ML, Kaufman TS. Aaptamine and related products. Their isolation, chemical syntheses, and biological activity. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.03.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|