1
|
Chen Y, Pei P, Aslam M, Syaifudin M, Bi R, Li P, Du H. Microorganisms in Macroalgae Cultivation Ecosystems: A Systematic Review and Future Prospects Based on Bibliometric Analysis. Microorganisms 2025; 13:1110. [PMID: 40431284 PMCID: PMC12114298 DOI: 10.3390/microorganisms13051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Microorganisms play an essential role in the biogeochemical processes of macroalgal cultivation ecosystems by participating in a complex network of interactions, significantly influencing the growth and development of macroalgae. This study used bibliometric analysis and VOSviewer based on Web of Science data to provide an overview by tracing the developmental footprint of the technology. Countries, institutions, authors, keywords, and key phrases were tracked and mapped accordingly. From 1 January 2003 to 31 December 2023, 619 documents by 2516 authors from 716 institutions in 51 countries were analyzed. Keyword co-occurrence network analysis revealed five main areas of research on microbes in macroalgal cultivation ecosystems: (1) identification of microbial species and functional genes, (2) biogeochemical cycling of carbon in microbial communities, (3) microbial influences on macroalgae growth and development, (4) bioactivities, and (5) studies based on database. Thematic evolution and map research emphasized the centrality of microbial diversity research in this direction. Over time, the research hotspots and the core scientific questions of the microorganisms in the macroalgal cultivation ecosystems have evolved from single-organism interactions to the complex dynamics of microbial communities. The application of high-throughput techniques had become a hotspot, and the adoption of systems biology approaches had further facilitated the integrated analysis of microbial community composition and function. Our results provide valuable guidance and information for future researches on algal-bacterial interactions and microbe-driven carbon cycling in coastal ecosystems.
Collapse
Affiliation(s)
- Yinglong Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
| | - Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
- Faculty of Basic Sciences, Bolan University of Medical and Health Sciences, Quetta 87300, Pakistan
| | - Muhamad Syaifudin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
- Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (P.P.); (M.A.); (M.S.); (R.B.); (P.L.)
- Shantou University-Università Politecnica Delle Marche (STU-UNIVPM) Joint Algal Research Center, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
2
|
Xu X, Li G, Fu R, Lou H, Peng X. A new anthraquinone derivative from the marine fish-derived fungus Alternaria sp. X112. Nat Prod Res 2025; 39:151-156. [PMID: 37732591 DOI: 10.1080/14786419.2023.2258540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
A new anthraquinone, altermodinacid A (1), and five known derivatives, pachybasic acid (2), emodic acid (3), emodin (4), phomarin (5), and 1,7-dihydroxy-3-methylanthracene-9,10-dione (6), were discovered from a halotolerant fungus Alternaria sp. X112 isolated from a marine fish Gadus macrocephalus. Their structures were determined by analysing MS and NMR data. The cytotoxic effect, antiagricultural pathogens activity, antibacterial activity and quorum sensing inhibitory potential of new compound 1 were evaluated.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Rao Fu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
3
|
Zhang D, Feng F, Chen Y, Sui J, Ding L. The potential of marine natural products and their synthetic derivatives as drugs targeting ion channels. Eur J Med Chem 2024; 276:116644. [PMID: 38971051 DOI: 10.1016/j.ejmech.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Ion channels are a type of protein channel that play a vital role in numerous physiological functions by facilitating the passage of ions through cell membranes, thereby enabling ion and electrical signal transmission. As a crucial target for drug action, ion channels have been implicated in various diseases. Many natural products from marine organisms, such as fungi, algae, sponges, and sea cucumber, etc. have been found to have activities related to ion channels for decades. These interesting natural product molecules undoubtedly bring good news for the treatment of neurological and cardiovascular diseases. In this review, 92 marine natural products and their synthetic derivatives with ion channel-related activities that were identified during the period 2000-2024 were systematically reviewed. The synthesis and mechanisms of action of selected compounds were also discussed, aiming to offer insights for the development of drugs targeting ion channels.
Collapse
Affiliation(s)
- Dashuai Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyao Sui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
5
|
Rekadwad BN, Shouche YS, Jangid K. A culture-independent approach, supervised machine learning, and the characterization of the microbial community composition of coastal areas across the Bay of Bengal and the Arabian Sea. BMC Microbiol 2024; 24:162. [PMID: 38730339 PMCID: PMC11084130 DOI: 10.1186/s12866-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- National Centre for Microbial Resource, DBT - National Centre for Cell Science (DBT-NCCS), NCCS-Complex, Savitribai Phule Pune University (SPPU) Campus, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| | - Yogesh Shreepad Shouche
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India
- Gut Microbiology Research Division, SKAN Research Trust, Bangalore, Karnataka, 560034, India
| | - Kamlesh Jangid
- Bioenergy Group, DST-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, Maharashtra, 411 004, India
| |
Collapse
|
6
|
Zhang X, Hua J, Song Z, Li K. A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiol 2024; 10:239-254. [PMID: 38919720 PMCID: PMC11194620 DOI: 10.3934/microbiol.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.
Collapse
Affiliation(s)
| | | | | | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Imran M, Iqbal A, Badshah SL, Ahmad I, Shami A, Ali B, Alatawi FS, Alatawi MS, Mostafa YS, Alamri SA, Alalwiat AA, Bajaber MA. Exploring the hidden treasures of Nitella hyalina: a comprehensive study on its biological compounds, nutritional profile, and unveiling its antimicrobial, antioxidative, and hypoglycemic properties. World J Microbiol Biotechnol 2023; 39:345. [PMID: 37843704 DOI: 10.1007/s11274-023-03795-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Botany, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
- Department of Civil and Environmental Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Imtiaz Ahmad
- Department of Botany, Bacha Khan University, Charsadda, KP, 24460, Pakistan
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fatema Suliman Alatawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohsen Suliman Alatawi
- Department of Pediatrics, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahlam A Alalwiat
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
8
|
Seaweed-associated heterotrophic Bacillus altitudinis MTCC13046: a promising marine bacterium for use against human hepatocellular adenocarcinoma. Arch Microbiol 2022; 205:10. [PMID: 36459289 DOI: 10.1007/s00203-022-03346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Since the report of the antibiotic with anticancer properties, scientists have been focusing to isolate and characterize novel anti-microbial natural products possessing anticancer activities. The current study describes the production of seaweed-associated heterotrophic Bacillus altitudinis MTCC13046 with potential anticancer properties. The bacterium was screened for its capacity to diminish the cell proliferation of the human hepatocellular adenocarcinoma (HepG2) cell line, without upsetting the normal cells. The bacterial extract showed anticancer properties in a dose-reactive form against HepG2 (IC50, half maximal inhibitory concentration ~ 29.5 µg/ml) on tetrazolium bromide analysis with less significant cytotoxicity on common fibroblast (HDF) cells (IC50 ~ 77 µg/ml). The potential antioxidant ability of the organic extract of B. altitudinis MTCC13046 (IC90 133 µg/ml) could corroborate its capacity to attenuate the pathophysiology leading to carcinogenesis. The results of the apoptosis assay showed that the crude extracts of B. altitudinis maintained 68% viability in normal cells compared to 11% in the cancer cells (IC50 76.9 µg/ml). According to the findings, B. altitudinis MTCC13046 could be used to develop prospective anticancer agents.
Collapse
|
9
|
Varghese C, Chakraborty K, Asharaf S. Pharmacological potential of seaweed-associated heterotrophic bacterium Bacillus atrophaeus. Arch Microbiol 2022; 205:6. [PMID: 36449106 DOI: 10.1007/s00203-022-03338-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Extremities in marine environmental conditions led the marine macroalga-associated bacteria to adapt and biosynthesize potential bioactive agents. The myriad of marine macroalgae and the bacterial flora they are associated with constitute a potential source of bioactive components with significant biotechnological and pharmacological applications. Heterotrophic bacteria associated with the intertidal macroalgae were isolated and assessed for their pharmacological properties. Subsequently, Firmicutes dominated more than half of the 152 cultivable isolates from macroalgae-associated bacteria collected from the Gulf of Mannar (9°17'0'' N, 79°7'0'' E), on Peninsular India's southern coast. A total of 43 of those demonstrated steady antibacterial activities against a wide range of nosocomial pathogens. Among the bacteria isolated from marine macroalgae, Bacillus atrophaeus SHB2097 (MW821482) exhibited significant antimicrobial activities against clinically important pathogens. Organic extract of B. atrophaeus SHB2097 showed potential antimicrobial activities against test pathogens (minimum inhibitory concentration 6.25 µg/mL). Organic extract of B. atrophaeus SHB2097 revealed promising inhibition potential against cyclooxygenase-2 (IC90 53.26 µg/mL) and 5-lipoxygenase (IC90 9.74 µg/mL). The carbolytic enzyme α-glucosidase inhibition potential of the organic extract of the studied heterotrophic bacterium was significantly greater than (IC90 118 µg/mL) than that displayed by acarbose (IC90 645 µg/mL, p < 0.05). The significance of nuclear magnetic resonance-centered analyses of distinguishing signals in the organic extract and correlating those with bioactive potential was accentuated. The utilities of nuclear magnetic resonance-based fingerprinting emphasized the assessment of the distinctive signals in the solvent extracts and their correlation with the pharmacological properties. Thus, the heterotrophic B. atrophaeus SHB2097 could be used to develop potential therapeutic and biomedical agents.
Collapse
Affiliation(s)
- Chesvin Varghese
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Vallikavu PO, Amritapuri, Kollam, Kerala, 690525, India
| | - Kajal Chakraborty
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.
| | - Sumayya Asharaf
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
10
|
Abd El Hafez MSM, Aziz Okbah MAE, Ibrahim HAH, Hussein AAER, El Moneim NAA, Ata A. First report of steroid derivatives isolated from starfish Acanthaster planci with anti-bacterial, anti-cancer and anti-diabetic activities. Nat Prod Res 2022; 36:5545-5552. [PMID: 34969331 DOI: 10.1080/14786419.2021.2021200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Chemical studies on Acanthaster planci have afforded two steroids, 5α-cholesta-24-en-3β,20β-diol-23-one (1) and 5α-cholesta-9(11)-en-3β, 20β-diol (2). Structures compounds 1 and 2 were determined with the help of spectroscopic studies. Compound 1 showed strong antibacterial activity (21.0 ± 0.06 mm) against P. aeruginosa. Compounds 1 and 2 were also active against human breast carcinoma cells (MCF-7) with LC50 values of 49 ± 1.6 and 57.5 ± 1.5 μg/ml, respectively. This bioactivity was comparable to the currently used anticancer agent, cisplatin (LC50 46 ± 1.1 µg/ml). Compounds 1 and 2 exhibited anti-α-glucosidase activity with IC50 values of 58 ± 0.8 and 55 ± 0.5 µg/ml, respectively, whereas IC50 of Acarbose as a positive control was found to be 36 ± 0.4 µg/ml in our bioassay.
Collapse
Affiliation(s)
- Mohamed S M Abd El Hafez
- Marine Biotechnology Lab, National Institute of Oceanography and Fisheries, NIOF, Egypt
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Egypt
| | | | - Hassan A H Ibrahim
- Marine Microbiology Lab, National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Ahmed Abd El Rahim Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nadia Ahmed Abd El Moneim
- Department of Cancer Management and Research, Medical Research Institute, Alexandria University, Egypt
| | - Athar Ata
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Evaluation of the Marine Bacterial Population in the Great Bitter Lake, Egypt, as a Source of Antimicrobial Secondary Metabolites. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ecological uniqueness of the Great Bitter Lake ecosystem makes its bacterial population interesting for investigation. Here, we present the first trial to evaluate the biosynthetic capacity of the bacterial population at the lake as a source of novel antimicrobials. We collected different samples from various locations throughout the lake including the oxic sediment, anoxic sediment, shore water, and off-shore water. We modified a molecular approach to compare and choose the samples with the highest bacterial biosynthetic capacity by quantifying the polyketide synthase gene clusters in their total community DNA. Furthermore, we screened the bacterial isolates recovered from these samples and their metabolic extracts for antimicrobial activity. We tried to tentatively investigate the identity of the active metabolites by PCR screening and LC–MS. The bacterial population in the oxic sediment had the highest biosynthetic capacity compared to other sample types. Four active Bacillus isolates were identified. The isolated Bacillus species were expected to produce numerous probable bioactive metabolites encoded by biosynthetic gene clusters related to the polyketide synthases (either individual or hybrid with non-ribosomal peptide synthetase), such as Bacillomycin D, Iturin A, Bacilosarcin B, Bacillcoumacin G and Macrolactin (N and G). These results suggest that the under-explored bacterial community of the Great Bitter Lake has a prospective biosynthetic capacity and can be a promising source for novel antibiotics.
Collapse
|
12
|
Asharaf S, Chakraborty K. Pharmacological potential of seaweed-associated heterotrophic Firmicutes. Lett Appl Microbiol 2022; 75:1042-1054. [PMID: 35771159 DOI: 10.1111/lam.13780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Seaweed-associated bacterial symbionts are sources of potential pharmacological properties. The present study resulted in the culture-dependent isolation of bioactive heterotrophs belonging to the bacterial phylum Firmicutes, which were dominated more than 30% of the 127 cultivable isolates, among which 23 of them showed potential antimicrobial activities against a wide range of pathogens. The symbionts isolated from the seaweed Sargassum wightii showed significant bioactivity. Those were characterised as Bacillus safensis MTCC13040, B. valismortis MTCC13041, B. velezensis MTCC13044, B. methylotrophicus MTCC13042, Oceanobacillus profundus MTCC13045, B. tequilensis MTCC13043, and B. altitudinis MTCC13046. The organic extracts of the studied isolates showed potential antimicrobial properties against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci (minimum inhibitory concentration 6.25-12.5 μg ml-1 ). The organic extract of B. altitudinis MTCC13046 displayed significantly greater radical quenching ability (IC90 133 μg ml-1 , p < 0.05) other than attenuating hydroxymethyl glutaryl coenzyme A reductase (IC90 10.21 μg ml-1 , p < 0.05) and angiotensin converting enzyme-1 (IC90 498 μg ml-1 , p < 0.05) relative to other studied heterotrophs. The organic extract of B. tequilensis MTCC13043 displayed significantly greater attenuation potential against pro-inflammatory 5-lipooxygenase (IC90 5.94 μg ml-1 , p < 0.05) and dipeptidyl peptidase-4 (IC90 271 μg ml-1 , p < 0.05). The seaweed-associated B. altitudinis MTCC13046 and B. tequilensis MTCC13043 could be used to develop promising pharmacological leads.
Collapse
Affiliation(s)
- Sumayya Asharaf
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No, 1603, Cochin, -682018, Kerala State, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No, 1603, Cochin, -682018, Kerala State, India
| |
Collapse
|
13
|
Zhu J, Xie Y, Li Y, Yang Y, Li C, Huang D, Wu W, Xu Y, Xia W, Huang X, Zhou S. Complete genome sequence of Streptomyces malaysiensis HNM0561, a marine sponge-associated actinomycete producing malaymycin and mccrearamycin E. Mar Genomics 2022; 63:100947. [DOI: 10.1016/j.margen.2022.100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
14
|
Placha I, Bacova K, Plachy L. Current Knowledge on the Bioavailability of Thymol as a Feed Additive in Humans and Animals with a Focus on Rabbit Metabolic Processes. Animals (Basel) 2022; 12:ani12091131. [PMID: 35565557 PMCID: PMC9104011 DOI: 10.3390/ani12091131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/26/2023] Open
Abstract
Simple Summary This review provides general information on the possible health benefits in animals and humans of herbal additives, particularly thymol, whose phenolic group is responsible for the neutralisation of free radicals, and information concerning its detection through body action, bioavailability and mechanisms in rabbits. Plants containing thymol have been used in traditional medicine for the treatment of various diseases, such as cardiovascular diseases, cancer and diabetes. Although a great number of in vitro studies of cardiovascular and cancer diseases are available, in vivo studies that confirm these findings have not been sufficiently reported. To determine the beneficial dose, further clinical studies are necessary, with preclinical comprehensive research on animal models. Abstract The aim of this review is to describe the therapeutic effect of thymol on various human diseases, followed by its bioavailability in humans and animals. Based on our knowledge from the current literature, after thymol addition, thymol metabolites—mostly thymol sulphate and glucuronide—are detected in the plasma and urine of humans and in the plasma, intestinal content, faeces and tissues in rats, pigs, chickens, horses and rabbits after enzymatic cleavage. In rabbits, thymol absorption from the gastrointestinal tract, its distribution within the organism, its accumulation in tissues and its excretion from the organism have been described in detail. It is necessary and important for these studies to suggest the appropriate dose needed to achieve the required health benefits not only for animals but also for humans. Information from this review concerning the mode of action of thymol in animal organisms could also be applied to human medicine and may help in the utilisation of herbal medicine in humans and in veterinary healthcare. This review summarises the important aspects of thymol’s effects on health and its bioavailability in organisms, particularly in rabbits. In future, herbal-based drugs must be extensively investigated in terms of their mode of action, efficiency of administration and clinical effect.
Collapse
Affiliation(s)
- Iveta Placha
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Soltesovej 4-6, 040 01 Kosice, Slovakia;
- Correspondence: ; Tel.: +421-55-792-2969
| | - Kristina Bacova
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Soltesovej 4-6, 040 01 Kosice, Slovakia;
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Lukas Plachy
- 1st Department of Cardiology, East Slovak Institute of Cardiovascular Diseases, Ondavska 8, 040 11 Kosice, Slovakia;
- Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 457/1, 040 11 Kosice, Slovakia
| |
Collapse
|
15
|
Moubayed NM, Al Houri HJ, Bukhari SI. Turbinaria ornata and its associated epiphytic Bacillus sp. A promising molecule supplier to discover new natural product approaches. Saudi J Biol Sci 2022; 29:2532-2540. [PMID: 35531156 PMCID: PMC9072896 DOI: 10.1016/j.sjbs.2021.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Marine ecosystems are highly dependent on macroalgea in providing food and shelter for aquatic organisms, interacting with many bacteria and mostly producing secondary metabolites of potent therapeutic antibacterial property. Screening of marine microbial secondary metabolites of valuable biotechnological and therapeutical applications are now extensively studied. In this study, Bacillus spp. identified by DNA sequencing and found associated with Turbinaria ornata, was screened and characterized for its cell free supernatant (CFS) possible antimicrobial and antibiofilm applications. Among the 7 microbial isolates tested, CFS greatly affected Bacillus subitilis (12 mm) and inhibited equally the yeast isolates Candida albicans, Candida tropicalis and Candida glabrata (10 mm) and had no or negligible effect on S.aureus, E.coli, P. aeruginosa. As for the CFS antibiofilm activity, no difference was revealed from the positive control. Algal crude extracts (methanol, acetone and aqueous), on the other hand, were similarly tested for their antimicrobial activity against the seven microbial isolates, where highest activity was observed with the aqueous crude extract against Staphylococcus aureus(10 mm) and Pseudomonas aeruginosa (9 mm) compared to the negligible effects of methanol and acetone crude extracts. Chemical analysis was performed to reveal the major constituents of both crude algal extracts and Bacillus spp. CFS. FTIR spectrum of the bacterial CFS indicated the presence of bacteriocin as the major lipopeptide responsible for its biological activity. Whereas, methanol and water crude algal extract GC-MS spectra revealed different chemical groups of various combined therapeutical activity mainly Naphthalene, amino ethane-sulfonic acid, pyrlene, Biotin and mercury chloromethyl correspondingly. Thus, the present study, demonstrated the moderate activity of both crude algal extract and the bacterial CFS, however, further investigations are needed for a better biological activity.
Collapse
Affiliation(s)
- Nadine M.S. Moubayed
- Botany and Microbiology Department, Science College, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hadeel J. Al Houri
- Botany and Microbiology Department, Science College, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Alimenti C, Buonanno F, Di Giuseppe G, Guella G, Luporini P, Ortenzi C, Vallesi A. Bioactive Molecules from Ciliates: Structure, Activity, and Applicative Potential. J Eukaryot Microbiol 2022; 69:e12887. [PMID: 35014102 PMCID: PMC9542385 DOI: 10.1111/jeu.12887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
Ciliates are a rich source of molecules synthesized to socialize, compete ecologically, and interact with prey and predators. Their isolation from laboratory cultures is often straightforward, permitting the study of their mechanisms of action and their assessment for applied research. This review focuses on three classes of these bioactive molecules: (i) water‐borne, cysteine‐rich proteins that are used as signaling pheromones in self/nonself recognition phenomena; (ii) cell membrane‐associated lipophilic terpenoids that are used in interspecies competitions for habitat colonization; (iii) cortical granule‐associated molecules of various chemical nature that primarily serve offence/defense functions.
Collapse
Affiliation(s)
- C Alimenti
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, (MC), Italy
| | - F Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100, Macerata, Italy
| | - G Di Giuseppe
- Unit of Protistology, Department of Biology, University of Pisa, 56126 Pisa, Italy; MARinePHARMA Center, University of Pisa, Italy
| | - G Guella
- Bioorganic Chemistry Lab, Department of Physics, University of Trento, 38123, Povo, Trento, Italy
| | - P Luporini
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, (MC), Italy
| | - C Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100, Macerata, Italy
| | - A Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, (MC), Italy
| |
Collapse
|
17
|
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9:microorganisms9102041. [PMID: 34683362 PMCID: PMC8541629 DOI: 10.3390/microorganisms9102041] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence of drug- resistant pathogens raises an urgent need to identify and isolate new bioactive compounds from medicinal plants using standardized modern analytical procedures. Medicinal plant-derived compounds could provide novel straightforward approaches against pathogenic bacteria. This review explores the antimicrobial activity of plant-derived components, their possible mechanisms of action, as well as their chemical potential. The focus is put on the current challenges and future perspectives surrounding medicinal plants antimicrobial activity. There are some inherent challenges regarding medicinal plant extracts and their antimicrobial efficacy. Appropriate and optimized extraction methodology plant species dependent leads to upgraded and selective extracted compounds. Antimicrobial susceptibility tests for the determination of the antimicrobial activity of plant extracts may show variations in obtained results. Moreover, there are several difficulties and problems that need to be overcome for the development of new antimicrobials from plant extracts, while efforts have been made to enhance the antimicrobial activity of chemical compounds. Research on the mechanisms of action, interplay with other substances, and the pharmacokinetic and/or pharmacodynamic profile of the medicinal plant extracts should be given high priority to characterize them as potential antimicrobial agents.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); (E.S.)
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 1011 Lausanne, Switzerland
- Correspondence: (N.V.); (E.S.)
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece;
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
18
|
Kizhakkekalam VK, Chakraborty K. Marine Macroalga-associated Bacillus amyloliquefaciens as Prospective Probiotic. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vinaya Kizhakkepatt Kizhakkekalam
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, India
| | - Kajal Chakraborty
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, India
| |
Collapse
|
19
|
Zhang S, Liang X, Gadd GM, Zhao Q. Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Mar Drugs 2021; 19:255. [PMID: 33946845 PMCID: PMC8145997 DOI: 10.3390/md19050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK;
| | - Xinjin Liang
- The Bryden Center, School of Chemical and Chemistry Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | | | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
20
|
Thamer BM, Esmail GA, Al-Dhabi NA, Moydeen A. M, Arasu MV, Al-Enizi AM, El-Newehy MH. Fabrication of biohybrid electrospun nanofibers for the eradication of wound infection and drug-resistant pathogens. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
22
|
Yuan J, Wen T, Zhang H, Zhao M, Penton CR, Thomashow LS, Shen Q. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. THE ISME JOURNAL 2020; 14:2936-2950. [PMID: 32681158 PMCID: PMC7784920 DOI: 10.1038/s41396-020-0720-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.
Collapse
Affiliation(s)
- Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengli Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - C Ryan Penton
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Linda S Thomashow
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, USA
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Vitale GA, Coppola D, Palma Esposito F, Buonocore C, Ausuri J, Tortorella E, de Pascale D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives. Antioxidants (Basel) 2020; 9:E1183. [PMID: 33256101 PMCID: PMC7760651 DOI: 10.3390/antiox9121183] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| | - Carmine Buonocore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Janardhan Ausuri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Emiliana Tortorella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| |
Collapse
|
24
|
|
25
|
Kizhakkekalam VK, Chakraborty K. Seaweed-associated heterotrophic bacteria: new paradigm of prospective anti-infective and anticancer agents. Arch Microbiol 2020; 203:1241-1250. [PMID: 33140140 DOI: 10.1007/s00203-020-02106-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Ever since the development of the first antibiotic compound with anticancer potential, researchers focused on isolation and characterization of prospective microbial natural products with potential anti-infective and anticancer activities. The present work describes the production of bioactive metabolites by heterotrophic bacteria associated with intertidal seaweeds with potential anti-infective and anticancer activities. The bacteria were isolated in a culture-dependent method and were identified as Shewanella algae MTCC 12715 (KX272635) and Bacillus amyloliquefaciens MTCC 12716 (KX272634) based on combined phenotypic and genotypic methods. Further, the bacteria were screened for their ability to inhibit drug-resistant infectious pathogens and prevent cell proliferation of human liver carcinoma (HepG2) and breast cancer (MCF7) cell lines, without affecting the normal cells. Significant anti-infective activity was observed with bacterial cells and their organic extracts against broad-spectrum multidrug-resistant pathogens, such as vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa with minimum inhibitory concentration ≤ 3.0 µg mL-1 as compared to the antibiotic agents' chloramphenicol and ampicillin, which were active at ≥ 6.25 mg mL-1. The extracts also exhibited anticancer activity in a dose-responsive pattern against HepG2 (with IC50, half maximal inhibitory concentration ~ 78-83 µg mL-1) and MCF7 (IC50 ~ 45-48 µg mL-1) on tetrazolium bromide screening assay with lesser cytotoxic effects on normal fibroblast (L929) cell lines (IC50 > 100 µg mL-1). The results revealed that seaweed-associated heterotrophic bacteria could occupy a predominant role for a paradigm shift towards the development of prospective anti-infective and anticancer agents.
Collapse
Affiliation(s)
- Vinaya Kizhakkepatt Kizhakkekalam
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
26
|
Saha S, Paul D, Goswami RK. Cyclodepsipeptide alveolaride C: total synthesis and structural assignment. Chem Sci 2020; 11:11259-11265. [PMID: 34094366 PMCID: PMC8162944 DOI: 10.1039/d0sc04478d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
First stereoselective total synthesis of naturally occurring bioactive cyclodepsipeptide alveolaride C has been achieved using a convergent approach. This synthetic study enabled us to establish unambiguously the stereochemistry of three unassigned chiral centres embedded in the nonpeptidic segment as well as revised the stereochemistry of the proposed β-phenylalanine counterpart of the molecule. The key strategic features of this synthesis include Sharpless asymmetric dihydroxylation for installing the vicinal diol moiety, Julia–Kocienski olefination for constructing the aliphatic side chain, the Shiina protocol for intermolecular esterification, amide coupling and macrolactamization for the ring formation. First total synthesis of natural cyclodepsipeptide alveolaride C has been accomplished with an unambiguous solution to its structural riddle.![]()
Collapse
Affiliation(s)
- Sanu Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| |
Collapse
|
27
|
Choi BK, Jo SH, Choi DK, Trinh PTH, Lee HS, Anh CV, Van TTT, Shin HJ. Anti-Neuroinflammatory Agent, Restricticin B, from the Marine-Derived Fungus Penicillium janthinellum and Its Inhibitory Activity on the NO Production in BV-2 Microglia Cells. Mar Drugs 2020; 18:md18090465. [PMID: 32937930 PMCID: PMC7551942 DOI: 10.3390/md18090465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
A new compound containing a triene, a tetrahydropyran ring and glycine ester functionalities, restricticin B (1), together with four known compounds (2–5) were obtained from the EtOAc extract of the marine-derived fungus Penicillium janthinellum. The planar structure of 1 was determined by detailed analyses of MS, 1D and 2D NMR data. The relative and absolute configurations of 1 were established via the analyses of NOESY spectroscopy data, the comparison of optical rotation values with those of reported restricticin derivatives and electronic circular dichroism (ECD). All the compounds were screened for their anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglia cells. Restricticin B (1) and N-acetyl restricticin (2) exhibited anti-neuroinflammatory effects by suppressing the production of pro-inflammatory mediators in activated microglial cells.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
| | - Song-Hee Jo
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju 27478, Korea; (S.-H.J.); (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju 27478, Korea; (S.-H.J.); (D.-K.C.)
| | - Phan Thi Hoai Trinh
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam; (P.T.H.T.); (T.T.T.V.)
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
| | - Cao Van Anh
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Tran Thi Thanh Van
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam; (P.T.H.T.); (T.T.T.V.)
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-51-664-3341; Fax: +82-51-664-3340
| |
Collapse
|
28
|
Hossain TJ, Chowdhury SI, Mozumder HA, Chowdhury MNA, Ali F, Rahman N, Dey S. Hydrolytic Exoenzymes Produced by Bacteria Isolated and Identified From the Gastrointestinal Tract of Bombay Duck. Front Microbiol 2020; 11:2097. [PMID: 32983064 PMCID: PMC7479992 DOI: 10.3389/fmicb.2020.02097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria producing hydrolytic exoenzymes are of great importance considering their contribution to the host metabolism as well as for their various applications in industrial bioprocesses. In this work hydrolytic capacity of bacteria isolated from the gastrointestinal tract of Bombay duck (Harpadon nehereus) was analyzed and the enzyme-producing bacteria were genetically characterized. A total of twenty gut-associated bacteria, classified into seventeen different species, were isolated and screened for the production of protease, lipase, pectinase, cellulase and amylase enzymes. It was found that thirteen of the isolates could produce at least one of these hydrolytic enzymes among which protease was the most common enzyme detected in ten isolates; lipase in nine, pectinase in four, and cellulase and amylase in one isolate each. This enzymatic array strongly correlated to the previously reported eating behavior of Bombay duck. 16S rRNA gene sequence-based taxonomic classification of the enzyme-producing isolates revealed that the thirteen isolates were grouped into three different classes of bacteria consisting of eight different genera. Staphylococcus, representing ∼46% of the isolates, was the most dominant genus. Measurement of enzyme-production via agar diffusion technique revealed that one of the isolates which belonged to the genus Exiguobacterium, secreted the highest amount of lipolytic and pectinolytic enzymes, whereas a Staphylococcus species produced highest proteolytic activity. The Exiguobacterium sp. expressing a maximum of four hydrolases, appeared to be the most promising isolate of all.
Collapse
Affiliation(s)
- Tanim J. Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Sumaiya I. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Halima A. Mozumder
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad N. A. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Nabila Rahman
- Department of Biology, Chittagong Sunshine College, Chattogram, Bangladesh
| | - Sujan Dey
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
29
|
Pharmacological properties of some mangrove sediment-associated bacillus isolates. Arch Microbiol 2020; 203:67-76. [PMID: 32749660 DOI: 10.1007/s00203-020-01999-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Mangrove sediment-associated bacteria are of significantly important in the field of medicine and pharmaceuticals as new promising sources of biologically active pharmacophores due to the extreme conditions, such as high salt concentration and soil anoxia. The sediment bacteria associated with Acanthus ilicifolius and Avicennia officinalis collected from the Mangalavanam mangrove ecosystem of the Kerala State of India were evaluated using various in vitro models for the assessment of their pharmacological properties. The bacteria exhibiting significant antioxidant and antimicrobial activities were isolated, identified, and characterized by the integrated microbiological, biochemical, and 16S rRNA sequencing. Among the varied bacteria isolated from mangrove sediments, Bacillus amyloliquefaciens MBMS5 (GenBank accession number MK765025) exhibited significant antimicrobial activities against various pathogenic bacteria, such as Aeromonas caviae, Vibrio parahemolyticus, and methicillin-resistant Staphylococcus aureus. The extracellular extracts of B. amyloliquefaciens MBMS5 exhibited potential antioxidant activity against free radical species coupled with anti-inflammatory property as displayed by the attenuation activity against pro-inflammatory 5-lipoxygenase.
Collapse
|
30
|
Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydr Polym 2020; 239:116131. [PMID: 32414455 DOI: 10.1016/j.carbpol.2020.116131] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Due to the severe side-effects and the toxicity to healthy tissues, cancer treatments based in chemotherapy have not fully achieved the desire outcomes so far. The use of natural compound may be of great value to develop better tolerated therapies. Fucoidan is a marine sulfated polysaccharide extracted from brown algae that, besides other biological activities, has been reported to present interesting anti-cancer potential. This review briefly introduces fucoidan chemical structure, physicochemical properties and the above-mentioned biological feature. Fucoidan usage as soluble agent presents promising results herein described for different types of cancer. Trying to enhance and optimize fucoidan usage in the cancer field, different systems, namely drug delivery, have been recently developed to target different types of cancers. This aspect will be presented in detail, highlighting the role of fucoidan on their reported or envisaged performance.
Collapse
Affiliation(s)
- Catarina Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Giraldes BW, Goodwin C, Al-Fardi NAA, Engmann A, Leitão A, Ahmed AA, Ahmed KO, Abdulkader HA, Al-Korbi HA, Al Easa HSS, Ahmed Eltai NO, Hanifi-Moghaddam P. Two new sponge species (Demospongiae: Chalinidae and Suberitidae) isolated from hyperarid mangroves of Qatar with notes on their potential antibacterial bioactivity. PLoS One 2020; 15:e0232205. [PMID: 32401792 PMCID: PMC7219822 DOI: 10.1371/journal.pone.0232205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/08/2020] [Indexed: 11/23/2022] Open
Abstract
This study presents the taxonomic description of two new sponge species that are intimately associated with the hyperarid mangrove ecosystem of Qatar. The study includes a preliminary evaluation of the sponges' potential bioactivity against pathogens. Chalinula qatari sp. nov. is a fragile thinly encrusting sponge with a vivid maroon colour in life, often with oscular chimneys and commonly recorded on pneumatophores in the intertidal and shallow subtidal zone. Suberites luna sp. nov. is a massive globular-lobate sponge with a greenish-black colour externally and a yellowish orange colour internally, recorded on pneumatophores in the shallow subtidal zone, with large specimens near the seagrass ecosystem that surrounds the mangrove. For both species, a drug extraction protocol and an antibacterial experiment was performed. The extract of Suberites luna sp. nov. was found to be bioactive against recognized pathogens such as Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis, but no bioactive activity was recorded for Chalinula qatari sp. nov. This study highlights the importance of increasing bioprospecting effort in hyperarid conditions and the importance of combining bioprospecting with taxonomic studies for the identification of novel marine drugs.
Collapse
Affiliation(s)
| | - Claire Goodwin
- Huntsman Marine Science Centre, St. Andrews, New Brunswick,
Canada
- University of New Brunswick, Saint John, New Brunswick,
Canada
| | | | - Amanda Engmann
- Environmental Science Centre, Qatar University, Doha,
Qatar
| | | | - Asma A. Ahmed
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Kamelia O. Ahmed
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Hadil A. Abdulkader
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Halah A. Al-Korbi
- Biomedical Science Department, College of Health Science, Qatar
University, Doha, Qatar
| | - Hala Sultan Saif Al Easa
- Department of Chemistry and Earth Sciences, College of Arts and Sciences,
Qatar University, Doha, Qatar
| | | | | |
Collapse
|
32
|
Abstract
Total synthesis of marine secondary metabolite nafuredin B has been achieved for the first time using a convergent strategy. Sharpless epoxidation followed by acid catalyzed epoxide opening were adopted to install the tetrasubstituted hydroxy center, whereas the iterative Julia-Kocienski olefination, Wittig olefination and HWE olefination afforded the olefin bonds. Ring closing metathesis in the presence of a free tetrasubstituted hydroxy group provided the unsaturated δ-lactone moiety. This synthetic study provided unambiguous structural confirmation of the isolated nafuredin B.
Collapse
Affiliation(s)
- Gour Hari Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
33
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
34
|
Manikkam R, Imchen M, Kaari M, Angamuthu V, Venugopal G, Thangavel S, Joseph J, Ramasamy B, Kumavath R. Metagenomic insights unveil the dominance of undescribed Actinobacteria in pond ecosystem of an Indian shrine. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Wu JS, Yao GS, Shi XH, Rehman SU, Xu Y, Fu XM, Zhang XL, Liu Y, Wang CY. Epigenetic Agents Trigger the Production of Bioactive Nucleoside Derivatives and Bisabolane Sesquiterpenes From the Marine-Derived Fungus Aspergillus versicolor. Front Microbiol 2020; 11:85. [PMID: 32082294 PMCID: PMC7002437 DOI: 10.3389/fmicb.2020.00085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic agents, histone deacetylase inhibitor (SAHA) and DNA methyltransferase inhibitor (5-Aza), were added to Czapek-Dox medium to trigger the chemical diversity of marine-derived fungus Aspergillus versicolor XS-20090066. By HPLC and 1H NMR analysis, the diversity of fungal secondary metabolites was significantly increased compared with the control. With the aid of MS/MS-based molecular networking, two new nucleoside derivatives, kipukasins K (1) and L (2) were obtained. Meanwhile, the yields of four known nucleoside derivatives were significantly enhanced. In addition, one new bisabolane sesquiterpene, aspergillusene E (7), along with ten known derivatives were also isolated. The structures were elucidated by comprehensive spectroscopic methods of NMR and HRESIMS analysis. Compounds 1 and 7 displayed antibacterial activities against Staphylococcus epidermidis and Staphylococcus aureus with the MIC values of 8-16 μg/mL. Our study revealed that the fungus A. versicolor XS-20090066 has been effectively induced by chemical epigenetic manipulation with a combination of SAHA and 5-Aza to produce new metabolites.
Collapse
Affiliation(s)
- Jing-Shuai Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guang-Shan Yao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xiao-Hui Shi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Saif Ur Rehman
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Li Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yang Liu
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|
37
|
Saha D, Guchhait S, Goswami RK. Total Synthesis and Stereochemical Assignment of Penicitide A. Org Lett 2020; 22:745-749. [DOI: 10.1021/acs.orglett.9b04585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sandip Guchhait
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
38
|
Xu W, Klumbys E, Ang EL, Zhao H. Emerging molecular biology tools and strategies for engineering natural product biosynthesis. Metab Eng Commun 2019; 10:e00108. [PMID: 32547925 PMCID: PMC7283510 DOI: 10.1016/j.mec.2019.e00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products and their related derivatives play a significant role in drug discovery and have been the inspiration for the design of numerous synthetic bioactive compounds. With recent advances in molecular biology, numerous engineering tools and strategies were established to accelerate natural product synthesis in both academic and industrial settings. However, many obstacles in natural product biosynthesis still exist. For example, the native pathways are not appropriate for research or production; the key enzymes do not have enough activity; the native hosts are not suitable for high-level production. Emerging molecular biology tools and strategies have been developed to not only improve natural product titers but also generate novel bioactive compounds. In this review, we will discuss these emerging molecular biology tools and strategies at three main levels: enzyme level, pathway level, and genome level, and highlight their applications in natural product discovery and development.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Evaldas Klumbys
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Ee Lui Ang
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Huimin Zhao
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
39
|
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019; 9:E258. [PMID: 31683833 PMCID: PMC6918160 DOI: 10.3390/metabo9110258] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
The war on multidrug resistance (MDR) has resulted in the greatest loss to the world's economy. Antibiotics, the bedrock, and wonder drug of the 20th century have played a central role in treating infectious diseases. However, the inappropriate, irregular, and irrational uses of antibiotics have resulted in the emergence of antimicrobial resistance. This has resulted in an increased interest in medicinal plants since 30-50% of current pharmaceuticals and nutraceuticals are plant-derived. The question we address in this review is whether plants, which produce a rich diversity of secondary metabolites, may provide novel antibiotics to tackle MDR microbes and novel chemosensitizers to reclaim currently used antibiotics that have been rendered ineffective by the MDR microbes. Plants synthesize secondary metabolites and phytochemicals and have great potential to act as therapeutics. The main focus of this mini-review is to highlight the potential benefits of plant derived multiple compounds and the importance of phytochemicals for the development of biocompatible therapeutics. In addition, this review focuses on the diverse effects and efficacy of herbal compounds in controlling the development of MDR in microbes and hopes to inspire research into unexplored plants with a view to identify novel antibiotics for global health benefits.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Molecular and Cellular Engineering (MCE), Jacob Institute of Biotechnology and Bioengineering (JIBB), Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007, India.
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Av. Vasco de Quiroga 15. Col. Belisario Domínguez Sección XVI. C.P. Tlalpan, Ciudad de México 14080, Mexico.
| | - Ammar Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq.
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
40
|
Patel NP, Raju M, Haldar S, Chatterjee PB. Characterization of phenazine-1-carboxylic acid by Klebsiella sp. NP-C49 from the coral environment in Gulf of Kutch, India. Arch Microbiol 2019; 202:351-359. [PMID: 31667534 DOI: 10.1007/s00203-019-01742-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Coral-associated microbes from Marine National Park (MNP), Gulf of Kutch (GoK), Gujarat, India, were screened for siderophore production. Maximum siderophore-producing isolate NP-C49 and its compound were identified and characterized. The isolate was identified as Klebsiella sp. through 16S rRNA genes sequencing (GenBank accession nos. KY412519 and MTCC 25160). Antibiotic susceptibility profile against 20 commercial antibiotics showed its more sensitivity compared to human pathogenic strain, i.e., Klebsiella pneumonia. The compound was identified as phenazine-1-carboxylic acid (PCA) using the multinuclear ID (1H and 13C) and 2D (1H-1H COSY and 1H-13C HETCOR) NMR along with high-resolution mass spectrometry. No significant difference in the bacterial growth in the presence of PCA, FeCl3 and Fe(OH)3 indicated involvement of factors other than PCA in bacterial growth. The study first reports the identification and characterization of PCA from Klebsiella sp. both from terrestrial and marine sources.
Collapse
Affiliation(s)
- Neha P Patel
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - M Raju
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Soumya Haldar
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
41
|
A horizon scan of priorities for coastal marine microbiome research. Nat Ecol Evol 2019; 3:1509-1520. [PMID: 31636428 DOI: 10.1038/s41559-019-0999-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microorganisms in ecosystem function. This is particularly relevant in ocean environments, where microorganisms constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (for example, fisheries and water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the 'microbiome') and the environment or their hosts - termed the 'holobiont'. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here, we evaluate the current state of knowledge on coastal marine microbiome research and identify key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research.
Collapse
|
42
|
Liang Z, Liu F, Wang W, Zhang P, Sun X, Wang F, Kell H. High-throughput sequencing revealed differences of microbial community structure and diversity between healthy and diseased Caulerpa lentillifera. BMC Microbiol 2019; 19:225. [PMID: 31615401 PMCID: PMC6794861 DOI: 10.1186/s12866-019-1605-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/29/2019] [Indexed: 01/07/2023] Open
Abstract
Background Caulerpa lentillifera is one of the most important economic green macroalgae in the world. Increasing demand for consumption has led to the commercial cultivation of C. lentillifera in Japan and Vietnam in recent decades. Concomitant with the increase of C. lentillifera cultivation is a rise in disease. We hypothesise that epiphytes or other microorganisms outbreak at the C. lentillifera farm may be an important factor contributing to disease in C. lentillifera. The main aims are obtaining differences in the microbial community structure and diversity between healthy and diseased C. lentillifera and key epiphytes and other microorganisms affecting the differences through the results of high-throughput sequencing and bioinformatics analysis in the present study. Results A total of 14,050, 2479, and 941 operational taxonomic units (OTUs) were obtained from all samples using 16S rDNA, 18S rDNA, and internal transcribed spacer (ITS) high-throughput sequencing, respectively. 16S rDNA sequencing and 18S rDNA sequencing showed that microbial community diversity was higher in diseased C. lentillifera than in healthy C. lentillifera. Both PCoA results and UPGMA results indicated that the healthy and diseased algae samples have characteristically different microbial communities. The predominant prokaryotic phyla were Proteobacteria, Planctomycetes, Bacteroidetes, Cyanobacteria, Acidobacteria, Acidobacteria and Parcubacteria in all sequences. Chlorophyta was the most abundant eukaryotic phylum followed by Bacillariophyta based on 18S rDNA sequencing. Ascomycota was the dominant fungal phylum detected in healthy C. lentillifera based on ITS sequencing, whereas fungi was rare in diseased C. lentillifera, suggesting that Ascomycota was probably fungal endosymbiont in healthy C. lentillifera. There was a significantly higher abundance of Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis in diseased C. lentillifera than in healthy C. lentillifera. Disease outbreaks significantly change carbohydrate metabolism, environmental information processing and genetic information processing of prokaryotic communities in C. lentillifera through predicted functional analyses using the Tax4Fun tool. Conclusions Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis outbreak at the C. lentillifera farm sites was an important factor contributing to disease in C. lentillifera.
Collapse
Affiliation(s)
- Zhourui Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuli Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Wenjun Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiutao Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feijiu Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heather Kell
- College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
43
|
Xie CL, Chen R, Yang S, Xia JM, Zhang GY, Chen CH, Zhang Y, Yang XW. Nesteretal A, A Novel Class of Cage-Like Polyketide from Marine-Derived Actinomycete Nesterenkonia halobia. Org Lett 2019; 21:8174-8177. [DOI: 10.1021/acs.orglett.9b02634] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Renzhi Chen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sihan Yang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin-Mei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Gai-Yun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Chao-Hong Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| |
Collapse
|
44
|
Ritzmann NH, Mährlein A, Ernst S, Hennecke U, Drees SL, Fetzner S. Bromination of alkyl quinolones by Microbulbifer sp. HZ11, a marine Gammaproteobacterium, modulates their antibacterial activity. Environ Microbiol 2019; 21:2595-2609. [PMID: 31087606 DOI: 10.1111/1462-2920.14654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
Abstract
Alkyl quinolones (AQs) are multifunctional bacterial secondary metabolites generally known for their antibacterial and algicidal properties. Certain representatives are also employed as signalling molecules of Burkholderia strains and Pseudomonas aeruginosa. The marine Gammaproteobacterium Microbulbifer sp. HZ11 harbours an AQ biosynthetic gene cluster with unusual topology but does not produce any AQ-type metabolites under laboratory conditions. In this study, we demonstrate the potential of strain HZ11 for AQ production by analysing intermediates and key enzymes of the pathway. Moreover, we demonstrate that exogenously added AQs such as 2-heptyl-1(H)-quinolin-4-one (referred to as HHQ) or 2-heptyl-1-hydroxyquinolin-4-one (referred to as HQNO) are brominated by a vanadium-dependent haloperoxidase (V-HPOHZ11 ), which preferably is active towards AQs with C5-C9 alkyl side chains. Bromination was specific for the third position and led to 3-bromo-2-heptyl-1(H)-quinolin-4-one (BrHHQ) and 3-bromo-2-heptyl-1-hydroxyquinolin-4-one (BrHQNO), both of which were less toxic for strain HZ11 than the respective parental compounds. In contrast, BrHQNO showed increased antibiotic activity against Staphylococcus aureus and marine isolates. Therefore, bromination of AQs by V-HPOHZ11 can have divergent consequences, eliciting a detoxifying effect for strain HZ11 while simultaneously enhancing antibiotic activity against other bacteria.
Collapse
Affiliation(s)
- Niklas H Ritzmann
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Almuth Mährlein
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Simon Ernst
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Ulrich Hennecke
- Organic Chemistry Institute, University of Münster, Münster, Germany.,Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Steffen L Drees
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Horta A, Alves C, Pinteus S, Lopes C, Fino N, Silva J, Ribeiro J, Rodrigues D, Francisco J, Rodrigues A, Pedrosa R. Identification of Asparagopsis armata-associated bacteria and characterization of their bioactive potential. Microbiologyopen 2019; 8:e00824. [PMID: 31033207 PMCID: PMC6854849 DOI: 10.1002/mbo3.824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Macroalgae‐associated bacteria have already proved to be an interesting source of compounds with therapeutic potential. Accordingly, the main aim of this study was to characterize Asparagopsis armata‐associated bacteria community and evaluate their capacity to produce substances with antitumor and antimicrobial potential. Bacteria were selected according to their phenotype and isolated by the streak plate technique. The identification was carried out by the RNA ribosomal 16s gene amplification through PCR techniques. The antimicrobial activities were evaluated against seven microorganisms (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae, Candida albicans) by following their growth through spectrophotometric readings. Antitumor activities were evaluated in vitro on human cell lines derived from hepatocellular (HepG‐2) and breast carcinoma (MCF‐7) using the MTT method. The present work identified a total of 21 bacteria belonging to the genus Vibrio, Staphylococcus, Shewanella, Alteromonadaceae, Bacillus, Cobetia, and Photobacterium, with Vibrio being the most abundant (42.86%). The extract of Shewanella sp. ASP 26 bacterial strain induced the highest antimicrobial activity, namely against Bacillus subtilis and Staphylococcus aureus with an IC50 of 151.1 and 346.8 μg/mL, respectively. These bacteria (Shewanella sp.) were also the ones with highest antitumor potential, demonstrating antiproliferative activity on HepG‐2 cells. Asparagopsis armata‐associated bacteria revealed to be a potential source of compounds with antitumor and antibacterial activity.
Collapse
Affiliation(s)
- André Horta
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Cláudia Lopes
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Nádia Fino
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Joana Ribeiro
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Daniel Rodrigues
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - João Francisco
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Américo Rodrigues
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
46
|
Lotfy MM, Hassan HM, Mohammed R, Hetta M, El-Gendy AO, Rateb ME, Zaki MA, Gamaleldin NM. Chemical Profiling and Biological Screening of Some River Nile Derived-Microorganisms. Front Microbiol 2019; 10:787. [PMID: 31037069 PMCID: PMC6476301 DOI: 10.3389/fmicb.2019.00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/27/2019] [Indexed: 12/03/2022] Open
Abstract
AIMS Chemical and biological studies of the River Nile derived-microorganisms are limited. Hence, this work was carried out to screen the River Nile habitat. Identification of the isolated organisms, chemical profiling of their ethyl acetate extracts as well as screening of their antimicrobial, antileishmanial, antitrypanosomal, and antimalarial activities were investigated. METHODS Identification of the microbial isolates were carried out using bacterial 16S rRNA and fungal 18S rRNA gene sequencing. Chemical profiling of the EtOAc extracts using LC-HRESIMS spectroscopy was carried out. The in vitro antimicrobial screening using the modified version of the CLSI method, antileishmanial and antitrypanosomal activities were screened using Leishmania donovani promastigote assay, L. donovani axenic amastigote assay, Trypanosoma brucei trypamastigotes assay and THP1 toxicity assay. The in vitro antimalarial activities against D6 (chloroquine sensitive) and W2 (chloroquine-resistant) strains of Plasmodium falciparum were evaluated. RESULTS Seven isolated microorganisms were identified as Streptomyces indiaensis, Bacillus safensis, B. anthracis, Bacillus sp., and Aspergillus awamori. Chemical investigation of different extracts showed several bioactive compounds, identified as; nigragillin, 5-caboxybenzofuran and dyramide B from A. awamori and actinopolysporin B from S. indiaensis. On the other hand many nitrogenous compounds with high molecular weights showed no hits that may correspond to new long chain and/or cyclic peptides. The EtOAc extract of B. safensis fermentation broth showed the highest activity against P. falciparum D6 and P. falciparum W2 (IC50 = 25.94 and 27.28 μg/mL, respectively), while two isolates S. indiaensis and Bacillus sp. RN-011 extracts showed the highest antitrypanosomal activity (IC50 = 0.8 and 0.96 μg/mL). CONCLUSION The River Nile could be a new source for production of promising bioactive leading compound where antimicrobial and antiparasitic activities may be correlated.
Collapse
Affiliation(s)
- Momen M. Lotfy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mona Hetta
- Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ahmed O. El-Gendy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni- Suef University, Beni-Suef, Egypt
| | - Mostafa E. Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Mohamed A. Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk, Egypt
- The Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), El-Sherouk, Egypt
| |
Collapse
|
47
|
Zhou S, Xiao K, Huang D, Wu W, Xu Y, Xia W, Huang X. Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Tinta T, Kogovšek T, Klun K, Malej A, Herndl GJ, Turk V. Jellyfish-Associated Microbiome in the Marine Environment: Exploring Its Biotechnological Potential. Mar Drugs 2019; 17:E94. [PMID: 30717239 PMCID: PMC6410321 DOI: 10.3390/md17020094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Despite accumulating evidence of the importance of the jellyfish-associated microbiome to jellyfish, its potential relevance to blue biotechnology has only recently been recognized. In this review, we emphasize the biotechnological potential of host⁻microorganism systems and focus on gelatinous zooplankton as a host for the microbiome with biotechnological potential. The basic characteristics of jellyfish-associated microbial communities, the mechanisms underlying the jellyfish-microbe relationship, and the role/function of the jellyfish-associated microbiome and its biotechnological potential are reviewed. It appears that the jellyfish-associated microbiome is discrete from the microbial community in the ambient seawater, exhibiting a certain degree of specialization with some preferences for specific jellyfish taxa and for specific jellyfish populations, life stages, and body parts. In addition, different sampling approaches and methodologies to study the phylogenetic diversity of the jellyfish-associated microbiome are described and discussed. Finally, some general conclusions are drawn from the existing literature and future research directions are highlighted on the jellyfish-associated microbiome.
Collapse
Affiliation(s)
- Tinkara Tinta
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Tjaša Kogovšek
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Alenka Malej
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, The Netherlands.
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| |
Collapse
|
49
|
Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review. Molecules 2019; 24:molecules24020243. [PMID: 30634698 PMCID: PMC6359551 DOI: 10.3390/molecules24020243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
Marine organisms represent almost half of total biodiversity and are a very important source of new bioactive substances. Within the varied biological activities found in marine products, their antimicrobial activity is one of the most relevant. Infectious diseases are responsible for high levels of morbidity and mortality and many antimicrobials lose their effectiveness with time due to the development of resistance. These facts justify the high importance of finding new, effective and safe anti-infective agents. Among the variety of biological activities of marine xanthone derivatives, one that must be highlighted is their anti-infective properties. In this work, a literature review of marine xanthones with anti-infective activity, namely antibacterial, antifungal, antiparasitic and antiviral, is presented. Their structures, biological activity, sources and the methods used for bioactivity evaluation are described. The xanthone derivatives are grouped in three sets: xanthones, hydroxanthones and glycosylated derivatives. Moreover, molecular descriptors, biophysico-chemical properties, and pharmacokinetic parameters were calculated, and the chemical space occupied by marine xanthone derivatives is recognized. The chemical space was compared with marketed drugs and framed accordingly to the drug-likeness concept in order to profile the pharmacokinetic of anti-infective marine xanthone derivatives.
Collapse
|
50
|
Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Arch Microbiol 2018; 201:505-518. [DOI: 10.1007/s00203-018-1592-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/28/2018] [Accepted: 10/28/2018] [Indexed: 11/25/2022]
|