1
|
Gautam M, Gabrani R. Current Combinatorial Therapeutic Aspects: The Future Prospect for Glioblastoma Treatment. Curr Med Sci 2024; 44:1175-1184. [PMID: 39695017 DOI: 10.1007/s11596-024-2950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/21/2024] [Indexed: 12/20/2024]
Abstract
There are several types of brain tumors but glioblastoma (GBM) is one of the highly malignant tumors. A primary concern with GBM is that the treatment is inadequate. Even after giving many multi-stacked combinations of therapies to patients, inclusive of chemotherapy, radiation, and surgery, the median survival rate remains poor. Due to its heterogeneous nature, the use of selective therapy for specific targeting of tumor cells is of particular importance. Although many treatment alternatives which include surgery with adjuvant chemotherapy and radiotherapy are available, the prognosis of the disease is very poor. Combination therapy is becoming the foundation of modern antitumor therapy and it is continuously evolving and developing innovative drug regimens as evidenced by ongoing preclinical and clinical trials. In this review, we discuss the current treatment options and emerging therapeutic approaches for the treatment of GBM. The prospects for alternative glioblastoma therapy are also discussed.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
2
|
Jiao Y, Ye J, Zhao W, Fan Z, Kou Y, Guo S, Chao M, Fan C, Ji P, Liu J, Zhai Y, Wang Y, Wang N, Wang L. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Comput Biol Med 2024; 182:109185. [PMID: 39341114 DOI: 10.1016/j.compbiomed.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk. STUDY DESIGN The study involved pediatric glioma patients from the Surveillance, Epidemiology, and End Results (SEER) Registry (2000-2018) and Tangdu Hospital in China (2010-2018) within specific time frames. For training, we selected two neural network-based algorithms (DeepSurv, neural multi-task logistic regression [N-MTLR]) and one ensemble learning-based algorithm (random survival forest [RSF]). Additionally, a multivariable Cox proportional hazard (CoxPH) model was developed for comparison purposes. The SEER dataset was randomly divided into 80 % for training and 20 % for testing, while the Tangdu Hospital dataset served as an external validation cohort. Super-parameters were fine-tuned through 1000 repeated random searches and 5-fold cross-validation on the training cohort. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). Furthermore, the accuracy of predicting survival at 1, 3, and 5 years was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and the area under the ROC curves (AUC). The generalization ability of the model was assessed using the C-index of the Tangdu Hospital data, ROC curves for 1, 3, and 5 years, and AUC values. Lastly, decision curve analysis (DCA) curves for 1, 3, and 5-year time frames are provided to assess the net benefits across different models. RESULTS A total of 9532 patients with pediatric glioma were included in this study, comprising 9274 patients from the SEER database and 258 patients from Tangdu Hospital in China. The average age at diagnosis was 9.4 ± 6.2 years, and the average survival time was 96 ± 66 months. Through comprehensive performance comparison, the DeepSurv model demonstrated the highest effectiveness, with a C-index of 0.881 on the training cohort. Furthermore, it exhibited excellent accuracy in predicting the 1-year, 3-year, and 5-year survival rates (AUC: 0.903-0.939). Notably, the DeepSurv model also achieved remarkable performance and accuracy on the Chinese dataset (C-index: 0.782, AUC: 0.761-0.852). Comprehensive analysis of DeepSurv, N-MTLR, and RSF revealed that tumor stage, radiotherapy, histological type, tumor size, chemotherapy, age, and surgical method are all significant factors influencing the prognosis of pediatric glioma. Finally, an online version of the pediatric glioma survival predictor based on the DeepSurv model has been established and can be accessed through https://pediatricglioma-tangdu.streamlit.app. CONCLUSIONS The DeepSurv model exhibits exceptional efficacy in predicting the survival of pediatric glioma patients, demonstrating strong performance in discrimination, calibration, stability, and generalization. By utilizing the online version of the pediatric glioma survival predictor, which is based on the DeepSurv model, clinicians can accurately predict patient survival and offer personalized treatment options.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Jianan Ye
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenjian Zhao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Zhicheng Fan
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yunpeng Kou
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Chao Fan
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
4
|
Chen YT, Chung CL, Cheng YW, Lin CJ, Tseng TT, Hsu SS, Tsai HP, Kwan AL. High Thioredoxin Domain-Containing Protein 11 Expression Is Associated with Tumour Progression in Glioma. Int J Mol Sci 2023; 24:13367. [PMID: 37686174 PMCID: PMC10488054 DOI: 10.3390/ijms241713367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults. Despite multimodal treatment that involves maximal safe resection, concurrent chemoradiotherapy, and tumour treatment for supratentorial lesions, the prognosis remains poor. The current median overall survival is only <2 years, and the 5-year survival is only 7.2%. Thioredoxin domain-containing protein 11 (TXNDC11), also known as EF-hand binding protein 1, was reported as an endoplasmic reticulum stress-induced protein. The present study aimed to elucidate the prognostic role of TXNDC11 in GBM. We evaluated the clinical parameters and TXNDC11 scores in gliomas from hospitals. Additionally, proliferation, invasion, migration assays, apoptosis, and temozolomide (TMZ)-sensitivity assays of GBM cells were conducted to evaluate the effects of short interfering RNA (siRNA) on these processes. In addition, these cells were subjected to Western blotting to detect the expression levels of N-cadherin, E-cadherin, and Cyclin D1. High levels of TXNDC11 protein expression were significantly associated with World Health Organization (WHO) high-grade tumour classification and poor prognosis. Multivariate analysis revealed that in addition to the WHO grade, TXNDC11 protein expression was also an independent prognostic factor of glioma. In addition, TXNDC11 silencing inhibited proliferation, migration, and invasion and led to apoptosis of GBM cells. However, over-expression of TXNDC11 enhanced proliferation, migration, and invasion. Further, TXNDC11 knockdown downregulated N-cadherin and cyclin D1 expression and upregulated E-cadherin expression in GBM cells. Knock-in TXNDC11 return these. Finally, in vivo, orthotopic xenotransplantation of TXNDC11-silenced GBM cells into nude rats promoted slower tumour growth and prolonged survival time. TXNDC11 is a potential oncogene in GBMs and may be an emerging therapeutic target.
Collapse
Affiliation(s)
- Ying-Tso Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (Y.-T.C.); (Y.-W.C.); (S.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Li Chung
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
| | - Yu-Wen Cheng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (Y.-T.C.); (Y.-W.C.); (S.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Shu-Shong Hsu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (Y.-T.C.); (Y.-W.C.); (S.-S.H.)
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Singh A, Singh A, Agrawal S, Jaiswal A, Jaiswal S. Prognostic Significance and Clinicopathological Correlations of Epigenetic MGMT Gene Silencing in High Grade Diffuse Gliomas. Discoveries (Craiova) 2023; 11:e175. [PMID: 39760063 PMCID: PMC11695113 DOI: 10.15190/d.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 01/07/2025] Open
Abstract
Glioblastoma is the most aggressive and commonest primary malignant brain tumour. Current standard of care includes surgery, radiation, and alkylating agent chemotherapy. Despite multimodal treatment, the survival of glioblastoma patients is dismal. Loss of O6-methylguanine-DNA-methyltransferase(MGMT) protein expression due to promoter methylation reduces glioma cell DNA repair activity and resistance to alkylating agents. Thus, in world health organization (WHO) grade 4 diffuse glioma patients treated with an alkylating agent, methylated MGMT promoter is currently being considered a clinically relevant prognostic as well as predictive biomarker. Our aim was to assess the frequency of MGMT promoter methylation in WHO grade 4 diffuse glioma patients and study their prognostic role and clinicopathological correlations. A two-year prospective cohort research was conducted on 89 WHO grade 4 diffuse glioma patients. The clinical and demographic data were retrieved from our hospital information system. MGMT methylation was assessed using methylation specific polymerase chain reaction. Data was analysed using SPSS-24 software. We studied 89 cases of WHO grade 4 diffuse glioma, of which 38.2% showed methylation of MGMT promoter. There was no significant difference in age, sex, location of tumor and clinical presentation between the methylated and unmethylated groups. A statistically significant association of methylated MGMT promoter was observed with isocitrate dehydrogenase-1 (IDH1) protein expression (p = 0.050) and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss (p = 0.003). No significant association was noted with p53 overexpression (p = 0.492) and Ki-67 index (p = 0.698). The median overall survival in these patients receiving standard radiotherapy and concomitant temozolomide chemotherapy showed a trend towards better survival in group with methylated MGMT promoter (p < 0.001). Our study suggests that methylation of MGMT promoter is more frequent in the subset of grade 4 diffuse gliomas that significantly exhibit IDH1 immunopositivity and loss of ATRX expression. Also, patients who receive radiation therapy and simultaneous temozolomide chemotherapy have a considerably better prognosis and treatment outcome, if the promoter region of MGMT is methylated.
Collapse
Affiliation(s)
- Alka Singh
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow, India
| | - Anurag Singh
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow, India
| | - Sarita Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Awadhesh Jaiswal
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sushila Jaiswal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
6
|
Lazarević M, Jovanović N, Cvetković VJ, Tošić S, Vitorović J, Stamenković S, Nikolov V, Vidović N, Kostić Perić J, Jovanović M, Mitrović T. A Comparison of MGMT Testing by MSP and qMSP in Paired Snap-Frozen and Formalin-Fixed Paraffin-Embedded Gliomas. Diagnostics (Basel) 2023; 13:diagnostics13030360. [PMID: 36766464 PMCID: PMC9914267 DOI: 10.3390/diagnostics13030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Comparative analysis of the conventional methylation-specific PCR (MSP) vs. the quantitative MSP (qMSP) assessment of the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in 34 snap-frozen (SF) glioma samples was performed. The accuracy of the semi-quantitative MSP was compared with the corresponding qMSP semi-quantitative values using two semi-quantitative cut-off values (0-unmethylated and 1-weakly methylated) to discriminate methylated from unmethylated samples. In the case of the cut-off value 0, MSP test showed 80.0% sensitivity and 78.9% specificity compared to the reference qMSP analysis. However, when using the cut-off value 1, the diagnostic accuracy of the MSP test was significantly higher (85.7% sensitivity, 85.2% specificity). Fleiss' Kappa statistical analyses indicated moderate agreement (Fleiss' Kappa Coefficient = 0.509; 70.59% agreement) between MSP and qMSP semi-quantitative measurements of MGMT promoter methylation in glioma patients, justifying the conventional MSP use in diagnostics and confirming its high reliability. Further, we aimed to compare the validity of SF and formalin-fixed paraffin-embedded (FFPE) glioma samples for MGMT testing. Statistical analyses indicated moderate overall agreement of FFPE glioma samples and SF MSP semi-quantitative measurements (Fleiss' Kappa Coefficient = 0.516/0.509; 70.0% agreement) and emphasized their low reliability in the assessment of highly methylated MGMT promoter samples.
Collapse
Affiliation(s)
- Milica Lazarević
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Nikola Jovanović
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
- Correspondence: or ; Tel.: +381-18-533015
| | - Vladimir J. Cvetković
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Svetlana Tošić
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Jelena Vitorović
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Slaviša Stamenković
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Vesna Nikolov
- Faculty of Medicine, Clinic of Neurosurgery, Clinical Centre, University of Niš, 18000 Niš, Serbia
| | - Nataša Vidović
- Faculty of Medicine, Pathology and Pathological Anathomy Centre, Clinical Centre, University of Niš, 18000 Niš, Serbia
| | - Jelena Kostić Perić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Marija Jovanović
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Tatjana Mitrović
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
7
|
Salah S, Naser W, Jaber O, Saleh Y, Mustafa R, Abuhijlih R, Abuhijla F, Ismaeel T, Yaser S, Sultan I, Mustafa N, Tbakhi A. The O 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and clinical outcomes of Ewing sarcoma patients treated with irinotecan and temozolomide. Rep Pract Oncol Radiother 2022; 27:759-767. [PMID: 36523794 PMCID: PMC9746634 DOI: 10.5603/rpor.a2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There remains an unmet need to identify molecular biomarkers in Ewing sarcoma (ES). We sought to assess the influence of the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation on response and progression-free survival (PFS) following initiation of irinotecan and temozolomide (IT), PFS following initiation of vincristine, doxorubicin, and cyclophosphamide alternating with ifosfamide and etoposide (VDC-IE), and overall survival (OS). MATERIALS AND METHODS Data of advanced ES patients, treated with IT were retrospectively collected. Patients were required to have progression after prior VDC-IE. MGMT promoter methylation was assessed on non-decalcified Formalin-fixed paraffin embedded (FFPE) tissue using methylation sensitive restriction enzyme-quantitative PCR (MSRE-qPCR). Survival was estimated by the Kaplan-Meier method. RESULTS A total of 20 ES patients underwent MGMT promoter methylation testing, and were eligible for analysis. Five patients (25%) had methylated MGMT, whereas the remaining (15; 75%) had unmethylated promoter. Five (25%) had objective response to IT, with no observed difference by promoter methylation (p = 0.76). Median PFS from initiation of IT for methylated vs. unmethylated MGMT patients was 4.9 and 1.2 months, respectively, p = 0.69. Median PFS from date of initiation of VDC-IE was significantly superior in the methylated group; 27.8 vs. 8.6 months, p = 0.034. Median OS was superior but not statistically significant in the methylated group. CONCLUSION MGMT-promoter methylation did not correlate with clinical activity or outcomes following the IT regimen for advanced ES. However, methylated MGMT predicted significantly superior PFS following initiation of the standard VDC-IE protocol.
Collapse
Affiliation(s)
- Samer Salah
- Department of Medical Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Walid Naser
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Omar Jaber
- Department of Pathology, King Hussein Cancer Center, Amman, Jordan
| | - Yacob Saleh
- Department of Medical Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Rawan Mustafa
- Department of Medical Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Ramiz Abuhijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Fawzi Abuhijla
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Taleb Ismaeel
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Sameer Yaser
- Department of Medical Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Iyad Sultan
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Nour Mustafa
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| | - Abdelghani Tbakhi
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
8
|
Jovanović N, Lazarević M, Cvetković VJ, Nikolov V, Kostić Perić J, Ugrin M, Pavlović S, Mitrović T. The Significance of MGMT Promoter Methylation Status in Diffuse Glioma. Int J Mol Sci 2022; 23:ijms232113034. [PMID: 36361838 PMCID: PMC9654114 DOI: 10.3390/ijms232113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
A single-institution observational study with 43 newly diagnosed diffuse gliomas defined the isocitrate dehydrogenase 1 and 2 (IDH1/2) gene mutation status and evaluated the prognostic relevance of the methylation status of the epigenetic marker O6-methylguanine-DNA methyltransferase (MGMT). Younger patients (<50 years) with surgically resected glioma and temozolomide (TMZ) adjuvant chemotherapy were associated with better prognosis, consistent with other studies. The methylation status depends on the chosen method and the cut-off value determination. Methylation-specific PCR (MSP) established the methylation status for 36 glioma patients (19 (52.8%) positively methylated and 17 (47.2%) unmethylated) without relevancy for the overall survival (OS) (p = 0.33). On the other side, real-time methylation-specific PCR (qMSP) revealed 23 tumor samples (54%) that were positively methylated without association with OS (p = 0.15). A combined MSP analysis, which included the homogenous cohort of 24 patients (>50 years with surgical resection and IDH1/2-wildtype diffuse glioma), distinguished 10 (41.6%) methylated samples from 14 (58.4%) unmethylated samples. Finally, significant correlation between OS and methylation status was noticed (p ≈ 0.05). The OS of the hypermethylated group was 9.6 ± 1.77 months, whereas the OS of the unmethylated group was 5.43 ± 1.04 months. Our study recognized the MGMT promoter methylation status as a positive prognostic factor within the described homogenous cohort, although further verification in a larger population of diffuse gliomas is required.
Collapse
Affiliation(s)
- Nikola Jovanović
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Milica Lazarević
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Vladimir J Cvetković
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Vesna Nikolov
- Faculty of Medicine, Clinic of Neurosurgery, Clinical Center, University of Niš, 18000 Niš, Serbia
| | - Jelena Kostić Perić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Tatjana Mitrović
- Laboratory for Molecular Biology and Biotechnology, Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
9
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
10
|
Asano K, Fumoto T, Matsuzaka M, Hasegawa S, Suzuki N, Akasaka K, Katayama K, Kamataki A, Kurose A, Ohkuma H. Combination chemoradiotherapy with temozolomide, vincristine, and interferon-β might improve outcomes regardless of O6-methyl-guanine-DNA-methyltransferase (MGMT) promoter methylation status in newly glioblastoma. BMC Cancer 2021; 21:867. [PMID: 34320929 PMCID: PMC8320052 DOI: 10.1186/s12885-021-08592-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background This investigator-initiated, open-label, single-arm, single-institute study was conducted to investigate the effectiveness of induction combination chemoradiotherapy and long-term maintenance therapy with temozolomide (TMZ) plus interferon (IFN)-β for glioblastoma. Methods The initial induction combination chemoradiotherapy comprised radiotherapy plus TMZ plus vincristine plus IFN-β. Maintenance chemotherapy comprised monthly TMZ, continued for 24–50 cycles, plus weekly IFN-β continued for as long as possible. The primary endpoint was 2-year overall survival (2y-OS). The study protocol was to be considered valid if the expected 2y-OS was over 38% and the lower limit of the 95% confidence interval (CI) was no less than 31.7% compared with historical controls, using Kaplan-Meier methods. Secondary endpoints were median progression-free survival (mPFS), median OS (mOS), 5-year OS rate (5y-OS), and mPFS and mOS classified according to MGMT promoter methylation status. Results Forty-seven patients were analyzed. The 2y-OS was 40.7% (95%CI, 27.5–55.4%). The mPFS and mOS were 11.0 months and 18.0 months, respectively, and 5y-OS was 20.3% (95%CI, 10.9–34.6%). The mPFS in groups with and without MGMT promoter methylation in the tumor was 10.0 months and 11.0 months (p = 0.59), respectively, and mOS was 24.0 months and 18.0 months (p = 0.88), respectively. The frequency of grade 3/4 neutropenia was 19.1%. Conclusions The 2y-OS with induction multidrug combination chemoradiotherapy and long-term maintenance therapy comprising TMZ plus IFN-β tended to exceed that of historical controls, but the lower limit of the 95%CI was below 31.7%. Although the number of cases was small, this protocol may rule out MGMT promoter methylation status as a prognostic factor. Trial registration University Hospital Medical Information Network (number UMIN000040599).
Collapse
Affiliation(s)
- Kenichiro Asano
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Toshio Fumoto
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Masashi Matsuzaka
- Clinical Research Support Center, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan.,Department of Medical Informatics, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Seiko Hasegawa
- Department of Neurosurgery, Kuroishi General Hospital, 1-70 Kitami-cho, Kuroishi, Aomori, 036-0541, Japan
| | - Naoya Suzuki
- Department of Neurosurgery, Towada City Hospital, 8-14 Nishi-Jyuniban-cho, Towada, Aomori, 034-0093, Japan
| | - Kenichi Akasaka
- Department of Neurosurgery, Towada City Hospital, 8-14 Nishi-Jyuniban-cho, Towada, Aomori, 034-0093, Japan
| | - Kosuke Katayama
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Akihisa Kamataki
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 53 Honcho, Hirosaki, Aomori, 036-8563, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 53 Honcho, Hirosaki, Aomori, 036-8563, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
11
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
12
|
Li H, He Y, Huang L, Luo H, Zhu X. The Nomogram Model Predicting Overall Survival and Guiding Clinical Decision in Patients With Glioblastoma Based on the SEER Database. Front Oncol 2020; 10:1051. [PMID: 32676458 PMCID: PMC7333664 DOI: 10.3389/fonc.2020.01051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Patients with glioblastoma have a poor prognosis. We want to develop and validate nomograms for predicting overall survival in patients with glioblastoma. Methods: Data of patients with glioblastoma diagnosed pathologically in the SEER database from 2007 to 2016 were collected by SEER*Stat software. After eliminating invalid and missing clinical information, 3,635 patients (total group) were finally identified and randomly divided into the training group (2,183 cases) and the verification group (1,452 cases). Cox proportional risk regression model was used in the training group, the verification group and the total group to analyze the prognostic factors of patients in the training group, and then the nomogram was constructed. C-indexes and calibration curves were used to evaluate the predictive value of nomogram by internal (training group data) and external validation (verification group data). Results: Cox proportional risk regression model in the training group showed that age, year of diagnosis, laterality, radiation, chemotherapy were all influential factors for prognosis of patients with glioblastoma (P < 0.05) and were all used to construct nomogram as well. The internal and external validation results of nomogram showed that the C-index of the training group was 0.729 [95% CI was (0.715, 0.743)], and the verification group was 0.734 [95% CI was (0.718, 0.750)]. The calibration curves of both groups showed good consistency. Conclusions: The proposed nomogram resulted in accurate prognostic prediction for patients with glioblastoma.
Collapse
Affiliation(s)
- Hongjian Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yingya He
- School of Foreign Languages, Guangdong Medical University, Dongguan, China
| | - Lianfang Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
13
|
Simon T, Jackson E, Giamas G. Breaking through the glioblastoma micro-environment via extracellular vesicles. Oncogene 2020; 39:4477-4490. [PMID: 32366909 PMCID: PMC7269906 DOI: 10.1038/s41388-020-1308-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and most aggressive brain tumour. Prognosis remains poor, despite the combined treatment of radio- and chemotherapy following surgical removal. GBM cells coexist with normal non-neoplastic cells, including endothelial cells, astrocytes and immune cells, constituting a complex and dynamic tumour micro-environment (TME). Extracellular vesicles (EVs) provide a critical means of bidirectional inter-cellular communication in the TME. Through delivery of a diverse range of genomic, lipidomic and proteomic cargo to neighbouring and distant cells, EVs can alter the phenotype and function of the recipient cell. As such, EVs have demonstrated their role in promoting angiogenesis, immune suppression, invasion, migration, drug resistance and GBM recurrence. Moreover, EVs can reflect the phenotype of the cells within the TME. Thus, in conjunction with their accessibility in biofluids, they can potentially serve as a biomarker reservoir for patient prognosis, diagnosis and predictive therapeutic response as well as treatment follow-up. Furthermore, together with the ability of EVs to cross the blood-brain barrier undeterred and through the exploitation of their cargo, EVs may provide an effective mean of drug delivery to the target site. Unveiling the mechanisms by which EVs within the GBM TME are secreted and target recipient cells may offer an indispensable understanding of GBM that holds the potential to provide a better prognosis and overall quality of life for GBM patients.
Collapse
Affiliation(s)
- Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Ellen Jackson
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|