1
|
Ryszkiewicz P, Schlicker E, Malinowska B. Is Inducible Nitric Oxide Synthase (iNOS) Promising as a New Target Against Pulmonary Hypertension? Antioxidants (Basel) 2025; 14:377. [PMID: 40298665 PMCID: PMC12024173 DOI: 10.3390/antiox14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated blood pressure in the pulmonary arteries, associated also with inflammation and oxidative stress. Inducible nitric oxide synthase (iNOS) is one of the key mediators of inflammation and immune system activation. Although preclinical studies mostly suggest a detrimental role of iNOS overactivation in PH, there is a lack of exhaustive analyses and summaries. Therefore, this literature overview aims to fill this gap. The involvement of iNOS in the pathogenesis of the four main clinical groups of PH is discussed to assess whether targeting iNOS could be a promising way to treat PH. iNOS expression patterns in the organs primarily affected by PH are analyzed both in animals and in humans. Consequently, the effectiveness of pharmacological iNOS inhibition and/or iNOS gene deletion is discussed and compared, also with reference to the activity of constitutive NOS isoforms, particularly endothelial NOS (eNOS). Overall, our overview suggests that selective iNOS inhibitors could be considered as a novel treatment strategy for PH, as decreases in right ventricular and pulmonary artery pressure, the alleviation of ventricular hypertrophy, and improvements of pulmonary and cardiac function were observed, among others. Nevertheless, further research efforts in this area are needed.
Collapse
Affiliation(s)
- Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz Str. 2A, 15-222 Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz Str. 2A, 15-222 Bialystok, Poland
| |
Collapse
|
2
|
Zhu F, Gan W, Liu H, Chen W, Zeng X. Risk factors for renal progression in patients with CKD and coexisting COPD. Int Urol Nephrol 2025; 57:885-895. [PMID: 39400674 DOI: 10.1007/s11255-024-04227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Chronic diseases rarely occur in isolation, and chronic kidney disease (CKD) is no exception. There has been considerable research on the interplay between the heart and kidneys, but studies on the relationship between the lungs and kidneys are less common. The interaction between pulmonary and renal functions in areas such as acid-base metabolism, chronic inflammation, and bone metabolism is increasingly gaining clinical attention. METHOD In this cohort study, we examined 480 patients with stages 3-4 CKD and COPD (GOLD stages 1 and 2) to identify risk factors that contribute to the progression of renal function to a composite endpoint, which includes a 40% decline in estimated glomerular filtration rate (eGFR) and the onset of end-stage renal disease during follow-up periods. A Cox proportional hazards regression model was used to investigate the risk factors associated with the timing of renal event endpoints in the study population. Additionally, the restricted cubic spline method was used to explore the relationship between quantitative variables and survival risk. RESULTS Our study included 480 eligible patients with an average follow-up period of 21.41 ± 14.90 months, during which 224 individuals (46.7%) experienced the composite renal endpoints. Multivariable Cox regression analysis revealed that systolic blood pressure (SBP) [1.01 (1.00-1.02), p = 0.002], hemoglobin (Hb) [HR 0.89 (0.83-0.96), p = 0.002], albumin (Alb) [0.96 (0.93-0.99), p = 0.009], and edema [1.73 (1.29-2.33), p < 0.001] were independent risk factors for the renal endpoints. CONCLUSION The adjusted multivariable Cox regression analysis demonstrated that elevated SBP and edema were factors that promoted the occurrence of composite endpoints, while higher levels of Hb and Alb were protective factors.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Wenyuan Gan
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Hui Liu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Wenli Chen
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Xingruo Zeng
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| |
Collapse
|
3
|
Sipowicz K, Pietras T, Sobstyl M, Mosiołek A, Różycka-Kosmalska M, Mosiołek J, Stefanik-Markowska E, Ring M, Kamecki K, Kosmalski M. Sense of loneliness and meaning in life in chronic obstructive pulmonary disease patients. Preliminary studies. Multidiscip Respir Med 2024; 19:994. [PMID: 39530889 PMCID: PMC11614002 DOI: 10.5826/mrm.2024.994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) interferes with everyday functioning but its impact on the loneliness and the meaning in life of the patients is unclear. OBJECTIVES to determine whether the COPD severity levels correlate with the sense of loneliness and dimensions of the sense of meaning in life. METHODS 144 patients with COPD during a period of absence of an infectious exacerbation were examined. The number of infectious exacerbations over the past year, the Modified Medical Research Council (mMRC) dyspnea score, the COPD Assessment Test (CAT) score were determined as well as the feelings of loneliness using the De Jong Gierveld Loneliness Scale (DJGLS) and the sense of meaning in life using the Life Attitude Profile-Revised (LAP-R) questionnaire. RESULTS The age, the mMRC and CAT scores, the number of pack/years, as well as the number of infectious exacerbations during the year correlated positively with the feeling of loneliness. These variables (except for age) correlated negatively with the LAP-R scales apart from Existential Vacuum, which correlated positively. The subjects from the COPD severity group D (the most seriously ill people) had the highest level of loneliness, while it was the lowest in the subjects from group A (the least ill people). No statistical difference was observed between groups B and C. CONCLUSIONS With the increase in the values of the selected parameters determining the severity of COPD the sense of meaning in life decreases and loneliness intensifies.
Collapse
Affiliation(s)
- Kasper Sipowicz
- Department of Interdisciplinary Research in the area of Social Inclusion, The Maria Grzegorzewska University in Warsaw, Warsaw, Poland
| | - Tadeusz Pietras
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Michał Sobstyl
- Neurosurgery Department, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Anna Mosiołek
- Department of Forensic Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | | | - Jadwiga Mosiołek
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Stefanik-Markowska
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Michał Ring
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Krystian Kamecki
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Chen Z, Shi Q, Liu X, Lu G, Yang J, Luo W, Yang F. Codonopsis Radix Inhibits the Inflammatory Response and Oxidative Stress in Chronic Obstructive Pulmonary Disease Mice through Regulation of the Nrf2/NF-κB Signaling Pathway. Pharmacology 2024; 109:266-281. [PMID: 38615654 DOI: 10.1159/000538490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a nonspecific chronic inflammatory lung disease with no known cure. Codonopsis Radix (CR) has been shown to exhibit anti-inflammatory and antioxidant effects. Therefore, this study aimed to investigate the potential anti-inflammatory effects of different CR varieties on COPD mice. METHODS Sixty male-specified pathogen-free grade C57BL/6J mice were randomly divided into 6 groups, 10 mice in each group. The COPD mice model was induced by cigarette smoke extract combined with lipopolysaccharide, and the mice in each group were given corresponding drugs. Lung function was assessed in all mice. Lung tissues were stained with hematoxylin-eosin, Masson, and periodic acid-Schiff stains, and serum levels of interleukin (IL)-8 and tumor necrosis factor (TNF)-α were detected using an ELISA. Further, serum and lung tissue levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by colorimetric assay. Network pharmacology and molecular docking were used to predict signaling pathways, which were validated by Western blot analysis. RESULTS Compared with the COPD group, the mice in each dosing group of CR exhibited significant reductions in serum IL-8 and TNF-α levels, serum and lung tissue MDA levels, and pathological lung tissue damage, alongside elevations in lung function and SOD levels (p < 0.01). Western blot analysis also indicated significant downregulation of p-p65/p65 and p-IκB-α/IκB-α protein expression, alongside significant upregulation of Nrf2 protein expression in the lung tissues of mice treated with CR (p < 0.01). CONCLUSION In summary, CR effectively enhances lung function, minimizes lung tissue damage, and inhibits inflammation and oxidative stress in mice with COPD. Additionally, these findings suggest that inhibition of the Nrf2/NF-κB axis may be a key mechanism of action of CR in the alleviation of COPD.
Collapse
Affiliation(s)
- Zhengjun Chen
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China,
| | - Qi Shi
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuxia Liu
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guodi Lu
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenrong Luo
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Fude Yang
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Drapkina OM, Kontsevaya AV, Kalinina AM, Avdeev SN, Agaltsov MV, Alekseeva LI, Almazova II, Andreenko EY, Antipushina DN, Balanova YA, Berns SA, Budnevsky AV, Gainitdinova VV, Garanin AA, Gorbunov VM, Gorshkov AY, Grigorenko EA, Jonova BY, Drozdova LY, Druk IV, Eliashevich SO, Eliseev MS, Zharylkasynova GZ, Zabrovskaya SA, Imaeva AE, Kamilova UK, Kaprin AD, Kobalava ZD, Korsunsky DV, Kulikova OV, Kurekhyan AS, Kutishenko NP, Lavrenova EA, Lopatina MV, Lukina YV, Lukyanov MM, Lyusina EO, Mamedov MN, Mardanov BU, Mareev YV, Martsevich SY, Mitkovskaya NP, Myasnikov RP, Nebieridze DV, Orlov SA, Pereverzeva KG, Popovkina OE, Potievskaya VI, Skripnikova IA, Smirnova MI, Sooronbaev TM, Toroptsova NV, Khailova ZV, Khoronenko VE, Chashchin MG, Chernik TA, Shalnova SA, Shapovalova MM, Shepel RN, Sheptulina AF, Shishkova VN, Yuldashova RU, Yavelov IS, Yakushin SS. Comorbidity of patients with noncommunicable diseases in general practice. Eurasian guidelines. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2024; 23:3696. [DOI: 10.15829/1728-8800-2024-3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Создание руководства поддержано Советом по терапевтическим наукам отделения клинической медицины Российской академии наук.
Collapse
|
6
|
Nangliya R, Yadav V, Nandanwar SP. Novelty of Physiotherapy Management in a Classic Case of Chronic Obstructive Pulmonary Disease in an 84-Year-Old Male Patient with Hypertension and Well-Controlled Hypothyroidism: A Case Report. Cureus 2024; 16:e57318. [PMID: 38690482 PMCID: PMC11060019 DOI: 10.7759/cureus.57318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) often coexists with hypertension and hypothyroidism, posing challenges in management. Physiotherapy is crucial for improving respiratory function and quality of life in COPD patients. This case report details the physiotherapy management of an 84-year-old male with COPD, hypertension, and well-controlled hypothyroidism. The patient presented with worsening cough, breathlessness, and barrel chest. Diagnostic investigations confirmed COPD with respiratory alkalosis, hypoxemia, and well-controlled hypothyroidism. Pharmaceutical management was initiated alongside intensive physiotherapy interventions. A two-week rehabilitation program was tailored to the patient's COPD condition. It included deep breathing exercises, relaxation techniques, and aerobic activities to improve respiratory function and exercise tolerance. Physiotherapy sessions focused on patient education with medical treatment. Significant improvements were noted in dyspnea grading, perceived exertion rate, and thoracic excursion post-rehabilitation. Follow-up assessments showed sustained benefits with improved daily activities and reduced dyspnea. This case underscores the efficacy of multidisciplinary management, highlighting the essential role of physiotherapy in optimizing outcomes for COPD patients with comorbidities.
Collapse
Affiliation(s)
- Radha Nangliya
- Department of Cardiovascular and Respiratory Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vaishnavi Yadav
- Department of Cardiovascular and Respiratory Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sojwal P Nandanwar
- Department of Cardiovascular and Respiratory Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Ding R, Sang S, Yi J, Xie H, Wang F, Dai A. G6PD is a prognostic biomarker correlated with immune infiltrates in lung adenocarcinoma and pulmonary arterial hypertension. Aging (Albany NY) 2024; 16:466-492. [PMID: 38194707 PMCID: PMC10817399 DOI: 10.18632/aging.205381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with Pulmonary arterial hypertension (PAH) shows a poor prognosis. Detecting related genes is imperative for prognosis prediction. METHODS The gene expression profiles of LUAD and PAH were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, respectively. The co-expression modules associated with LUAD and PAH were evaluated using the Weighted Gene Co-Expression Network Analysis (WGCNA). The relationship between key gene expression with immune-cell infiltration and the tumor immune microenvironment (TIME) was evaluated. We confirmed the mRNA and protein levels in vivo and vitro. G6PD knockdown was used to conduct the colony formation assay, transwell invasion assay, and scratch wound assay of A549 cells. EDU staining and CCK8 assay were performed on G6PD knockdown HPASMCs. We identified therapeutic drug molecules and performed molecular docking between the key gene and small drug molecules. RESULTS Three major modules and 52 overlapped genes were recognized in LUAD and PAH. We identified the key gene G6PD, which was significantly upregulated in LUAD and PAH. In addition, we discovered a significant difference in infiltration for most immune cells between high- and low-G6PD expression groups. The mRNA and protein expressions of G6PD were significantly upregulated in LUAD and PAH. G6PD knockdown decreased proliferation, cloning, and migration of A549 cells and cell proliferation in HPASMCs. We screened five potential drug molecules against G6PD and targeted glutaraldehyde by molecular docking. CONCLUSIONS This study reveals that G6PD is an immune-related biomarker and a possible therapeutic target for LUAD and PAH patients.
Collapse
Affiliation(s)
- Rongzhen Ding
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Shuliu Sang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Yi
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Haiping Xie
- Department of Urinary Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Feiying Wang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Liu P, Gao H, Wang Y, Li Y, Zhao L. LncRNA H19 Contributes to Smoke-Related Chronic Obstructive Pulmonary Disease by Targeting miR-181/PDCD4 Axis. COPD 2023; 20:119-125. [PMID: 36943093 DOI: 10.1080/15412555.2023.2165906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) kills more than 3 million people worldwide every year. Despite progress in the treatment of symptoms and prevention of acute exacerbations, few advances have been made to ameliorate disease progression or affect mortality. Exercise plays a positive role in the prevention and treatment of diaphragm dysfunction in COPD, and the changes in diaphragm structure and function induced by exercise are closely related to the regulation of oxidative stress. But the mechanism remains unclear. So the aim of this study was to reveal the therapeutic mechanism of exercise to COPD using both in vivo and in vitro experiments. In this study, cigarette smoke (CS) induced COPD mice model, treadmill aerobic training for COPD mice were constructed and cigarette smoke extract (CSE) induced bronchial epithelial cells (BECs) model were used for COPD study. Bioinformatics analysis, luciferase reporting analysis, and RT-qPCR detection were used to clarify the interacted relationship among lncRNA, miRNA, and mRNA. ROS, inflammatory cytokines expression, and EMT relative protein α-SMA were detected using immunofluorescence and ELISA detection. The result shows that exercise ameliorates COPD induced lung injury by inhibit ROS, inflammation, and epithelial-mesenchymal transition (EMT) relative protein α-SMA expression. RT-qPCR detection shows that lnc-H19 expression was increased in lung tissues of COPD mice. Exercise decreased COPD induced lnc-H19 expression. Downregulation lnc-H19 inhibits COPD mediated lung injury. Bioinformatics analysis and luciferase reporting analysis confirmed that miR-181 and PDCD4 were downstream targets of lnc-H19. Upregulation of PDCD4 or downregulation of miR-181 reversed the protective effect of si-lnc-H19 to BECs after exposure to CSE. In conclusion, lncRNA H19 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-181/PDCD4 Axis.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Yumeng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Yujuan Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Lei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| |
Collapse
|
9
|
Xiong K, Yang P, Wei W, Li J, Cui Y, Li Y, Tang B. Periodontitis contributes to COPD progression via affecting ferroptosis. BMC Oral Health 2023; 23:664. [PMID: 37710216 PMCID: PMC10500905 DOI: 10.1186/s12903-023-03397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Periodontitis has emerged as a potential risk factor for chronic obstructive pulmonary disease (COPD). However, the precise mechanism through which periodontitis influences the progression of COPD requires further investigation. Ferroptosis is one of the crucial pathogenesis of COPD and recent researches suggested that periodontitis was associated with ferroptosis. Nonetheless, the relationship among periodontitis, COPD and ferroptosis remains unclear. This study aimed to elucidate whether periodontitis contributes to COPD exacerbation and to assess the potential impact of ferroptosis on periodontitis affecting COPD. METHODS The severity of COPD was assessed using Hematoxylin and eosin (H&E) staining and lung function tests. Iron assays, malondialdehyde (MDA) measurement and RT-qPCR were used to investigate the potential involvement of ferroptosis in the impact of periodontitis on COPD. Co-cultures of periodontitis associated pathogen Phophyromonas gingivalis (P. gingivalis) and lung tissue cells were used to evaluate the effect of P. gingivalis on inducing the ferroptosis of lung tissue via RT-qPCR analysis. Clinical Bronchoalveolar Lavage Fluid (BALF) samples from COPD patients were collected to further validate the role of ferroptosis in periodontal pathogen-associated COPD. RESULTS Periodontitis aggravated the COPD progression and the promotion was prolonged over time. For the first time, we demonstrated that periodontitis promoted the ferroptosis-associated iron accumulation, MDA contents and gene expressions in the COPD lung with a time-dependent manner. Moreover, periodontitis-associated pathogen P. gingivalis could promote the ferroptosis-associated gene expression in single lung tissue cell suspensions. Clinical BALF sample detection further indicated that ferroptosis played essential roles in the periodontal pathogen-associated COPD. CONCLUSION Periodontitis could contribute to the exacerbation of COPD through up-regulating the ferroptosis in the lung tissue.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peng Yang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Yan J, Duan Y, Cheng M. Clinical Diagnostic Value of Serum GABA, NE, ET-1, and VEGF in Chronic Obstructive Pulmonary Disease with Pulmonary Hypertension. Int J Chron Obstruct Pulmon Dis 2023; 18:1803-1813. [PMID: 37621655 PMCID: PMC10445639 DOI: 10.2147/copd.s418478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Background Pulmonary hypertension (PH) is the one of the most common complications of chronic obstructive pulmonary disease (COPD). Whereas, the associated diagnostic factors are uncertain. The present study aims to investigate useful diagnostic factors in patients with COPD and PH (COPD-PH). Patients and Methods A total of 111 patients with COPD in Shanxi Bethune Hospital from December 2019 to December 2020 were divided into COPD (PASP≤50 mmHg) and COPD-PH groups (PASP>50 mmHg). Pulmonary function and chest CT results were collected. Routine blood, biochemical, and blood coagulation function indices were examined for all patients. Arterial blood gas analysis and serum cytokines were also measured. Differences in the distribution of the above indicators between the two groups were analyzed using binary logistic regression analysis to identify the risk factors of COPD-PH, and multiple linear regression analysis to determine the factors affecting PASP. The influencing factors and joint predictive factors of the above linear regression analysis were analyzed using the ROC curve. The area under the curve and the best cut-off value were calculated, and their predictive value and clinical significance in disease diagnosis were discussed. Results A total of 27 indexes with statistically significant differences between the two groups were identified (P < 0.05). Binary Logistic regression analysis showed that the factors influencing the diagnosis of pulmonary hypertension were serum GABA, NE, VEGF, BUN, and LYM% levels (P < 0.05). Multiple linear regression showed that the factors influencing PASP were serum NE, ET-1, GABA, and VEGF levels, and the goodness of fit of the model was 0.748 (P < 0.001). ROC curve showed that the AUC of the combined diagnosis of serum NE, ET-1, GABA, and VEGF levels was 0.966 (sensitivity, 87.5%; specificity, 93.65%). Conclusion Serum NE and ET-1 are risk factors for COPD-PH, whereas serum GABA and VEGF are protective factors against COPD-PH. The combined diagnostic value of serum NE, ET-1, GABA, and VEGF levels was the highest.
Collapse
Affiliation(s)
- Jing Yan
- Department of Respiratory and Critical Care Medicine, Lvliang People’s Hospital Affiliated to Shanxi Medical University, Lvliang City, Shanxi Province, 033000, People’s Republic of China
| | - Yajing Duan
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, Nankai University, Tianjin, 300192, People’s Republic of China
| | - Mengyu Cheng
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
11
|
Nishiyama A, Kawata N, Yokota H, Hayano K, Matsuoka S, Shigeta A, Sugiura T, Tanabe N, Ishida K, Tatsumi K, Suzuki T, Uno T. Heterogeneity of Lung Density in Patients With Chronic Thromboembolic Pulmonary Hypertension (CTEPH). Acad Radiol 2022; 29:e229-e239. [PMID: 35466051 DOI: 10.1016/j.acra.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Pulmonary endarterectomy (PEA) is one of the most effective treatments for chronic thromboembolic pulmonary hypertension (CTEPH). Right heart catheterization (RHC) is the gold standard assessment for pulmonary circulatory dynamics. However, computed tomography (CT) is less invasive than RHC and can elucidate some of the morphological changes caused by thromboembolism. We hypothesized that CT could facilitate the evaluation of heterogeneous pulmonary perfusion. This study investigated whether CT imaging features reflect the disease severity and changes in pulmonary circulatory dynamics in patients with CTEPH before and after PEA. MATERIALS AND METHODS This retrospective study included 58 patients with CTEPH who underwent PEA. Pre-PEA and post-PEA CT images were assessed for heterogeneity using CT texture analysis (CTTA). The CT parameters were compared with the results of the RHC and other clinical indices and analyzed with receiver operating characteristic curves analysis for patients with and without residual pulmonary hypertension (PH) (post-PEA mean pulmonary artery pressure ≥ 25 mmHg). RESULTS CT measurements reflecting heterogeneity were significantly correlated with mean pulmonary artery pressure. Kurtosis, skewness, and uniformity were significantly lower, and entropy was significantly higher in patients with residual PH than patients without residual PH. Area under the curve values of pre-PEA and post-PEA entropy between patients with and without residual PH were 0.71 (95% confidence interval 0.57-0.84) and 0.75 (0.63-0.88), respectively. CONCLUSION Heterogeneity of lung density might reflect pulmonary circulatory dynamics, and CTTA for heterogeneity could be a less invasive technique for evaluation of changes in pulmonary circulatory dynamics in patients with CTEPH undergoing PEA.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan.
| | - Naoko Kawata
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Hajime Yokota
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Koichi Hayano
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Shin Matsuoka
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Ayako Shigeta
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Toshihiko Sugiura
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Nobuhiko Tanabe
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Keiichi Ishida
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Koichiro Tatsumi
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Takuji Suzuki
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| | - Takashi Uno
- Department of Radiology (A.N.), Chiba University Hospital, Chiba, Japan; Department of Respirology (N.K., A.S., T.S., K.T., T.S.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diagnostic Radiology and Radiation Oncology (H.Y., T.U.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Frontier Surgery (K.H.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Radiology (S.M.), St. Marianna University School of Medicine, Kanagawa, Japan; Department of Respirology (N.T.), Chibaken Saiseikai Narashino Hospital, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Chiba University Graduate School of Medicine, Chiba, Japan; Department of Cardiovascular Surgery (K.I.), Eastern Chiba Medical Center, Togane, Japan
| |
Collapse
|
12
|
Luca E, Bodrug N. The frequency of pulmonary hypertension in chronic obstructive pulmonary disease of geriatric patients: a narrative literature review. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pulmonary hypertension (PH) is a serious complication with complex pathogenesis in the natural history of chronic obstructive pulmonary disease COPD, with a progressively increasing frequency with a meanwhile decreasing in functional capacity.
Purpose
Assessment of the incidence, pathogenesis, peculiarities, and complications of PH in COPD in geriatric population worldwide.
Methods
We performed an analysis of randomized, retrospective, and prospective clinical, case-control and observational studies, published at the international level, according to the subject studied and target population. Four hundred ninety-seven full articles were identified after the search through engine Google Search and databases PubMed, Hinari, SpringerLink, and Scopus (Elsevier) according to the keywords and subsequent filters.
Results
Depending on various factors, like the population examined, the definition used for mPAP (mPAP> 20 mm Hg or ≥25 mm Hg), the severity of the lung disease, and the method of measuring PAP, a varied incidence of COPD patients with PH complication was discovered, namely 10–91%. PH prevalence increases with the COPD severity. The presence of PH is associated with acute exacerbations of COPD, reduced survival, and increasing expenses for healthcare programs. Mild to moderate levels of PH (mPAP 25–34 mm Hg) are relatively common in COPD and usually are associated with severe airflow obstruction or parenchymal destruction. Only a minority of patients (1–5%) have severe PH (mPAP ≥35 mm Hg).
Conclusions
Diagnosis of PH in COPD is difficult, especially in a mild form, and requires a clinical approach associated with a comprehensive set of investigations for confirming the etiology, evaluation of the functional and hemodynamical impairment severity, and important factors in the appropriate treatment election.
Collapse
|
13
|
Dong L, Liu X, Wu B, Li C, Wei X, Wumaier G, Zhang X, Wang J, Xia J, Zhang Y, Yiminniyaze R, Zhu N, Li J, Zhou D, Zhang Y, Li S, Lv J, Li S. Mxi1-0 Promotes Hypoxic Pulmonary Hypertension Via ERK/c-Myc-dependent Proliferation of Arterial Smooth Muscle Cells. Front Genet 2022; 13:810157. [PMID: 35401684 PMCID: PMC8984142 DOI: 10.3389/fgene.2022.810157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality, and so far patients have failed to benefit from therapeutics clinically available. Max interacting protein 1–0 (Mxi1-0) is one of the functional isoforms of Mxi1. Although it also binds to Max, Mxi1-0, unlike other Mxi1 isoforms, cannot antagonize the oncoprotein c-Myc because of its unique proline rich domain (PRD). While Mxi1-0 was reported to promote cell proliferation via largely uncharacterized mechanisms, it is unknown whether and how it plays a role in the pathogenesis of HPH. Methods: GEO database was used to screen for genes involved in HPH development, and the candidate players were validated through examination of gene expression in clinical HPH specimens. The effect of candidate gene knockdown or overexpression on cultured pulmonary arterial cells, e.g., pulmonary arterial smooth muscle cells (PASMCs), was then investigated. The signal pathway(s) underlying the regulatory role of the candidate gene in HPH pathogenesis was probed, and the outcome of targeting the aforementioned signaling was evaluated using an HPH rat model. Results: Mxi1 was significantly upregulated in the PASMCs of HPH patients. As the main effector isoform responding to hypoxia, Mxi1-0 functions in HPH to promote PASMCs proliferation. Mechanistically, Mxi1-0 improved the expression of the proto-oncogene c-Myc via activation of the MEK/ERK pathway. Consistently, both a MEK inhibitor, PD98059, and a c-Myc inhibitor, 10058F4, could counteract Mxi1-0-induced PASMCs proliferation. In addition, targeting the MEK/ERK signaling significantly suppressed the development of HPH in rats. Conclusion: Mxi1-0 potentiates HPH pathogenesis through MEK/ERK/c-Myc-mediated proliferation of PASMCs, suggesting its applicability in targeted treatment and prognostic assessment of clinical HPH.
Collapse
Affiliation(s)
- Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinning Liu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Wu
- Department of Lung Transplantation, Wuxi People’s Hospital, Wuxi, China
| | - Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Wei
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daibing Zhou
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Youzhi Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuanghui Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junzhu Lv
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Shengqing Li,
| |
Collapse
|