1
|
Taheri M, Safarzadeh A, Baniahmad A. Unveiling four axes ADAMTS9-AS2|MEG3/hsa-miR-150/PRKCA|MMP14 within prostate cancer through establishment of the ceRNA network. Pathol Res Pract 2024; 263:155604. [PMID: 39341147 DOI: 10.1016/j.prp.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Prostate cancer is among the most common cancers in males. Recent application of system biology methods has resulted in identification of key genes in the process of carcinogenesis. In the current study, we selected two datasets related to prostate cancer (PCa) and performed bulk RNA-seq analysis by selecting samples with Gleason scores greater than 7 and combining them. Subsequently, using several systems biology approaches, we constructed the ceRNA network and ultimately identified key axes related to PCa. Our analyses revealed importance of ADAMTS9-AS2/miR-150/PRKCA, ADAMTS9-AS2/miR-150/MMP14, MEG3/miR-150/PRKCA and MEG3/miR-150/MMP14 with miR-150 being a central component. Remarkably, miR-150 exhibited strong statistical significance in survival analyses. Further, analyzing expression levels from TCGA datasets, the expression of the identified genes associates significantly with prostate cancer compared to normal tissue confirming the bioinformatic analyses. Therefore, these genes can be regarded as prognostic markers in prostate cancer and the pathways are potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arash Safarzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Coman RA, Schitcu VH, Budisan L, Raduly L, Braicu C, Petrut B, Coman I, Berindan-Neagoe I, Al Hajjar N. Evaluation of miR-148a-3p and miR-106a-5p as Biomarkers for Prostate Cancer: Pilot Study. Genes (Basel) 2024; 15:584. [PMID: 38790213 PMCID: PMC11120777 DOI: 10.3390/genes15050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that may function as tumor suppressors or oncogenes. Alteration of their expression levels has been linked to a range of human malignancies, including cancer. The objective of this investigation is to assess the relative expression levels of certain miRNAs to distinguish between prostate cancer (PCa) from benign prostatic hyperplasia (BPH). Blood plasma was collected from 66 patients diagnosed with BPH and 58 patients with PCa. Real-time PCR technology was used to evaluate the relative expression among the two groups for miR-106a-5p and miR-148a-3p. The significant downregulation of both miRNAs in plasma from PCa versus BPH patients suggests their potential utility as diagnostic biomarkers for distinguishing between these conditions. The concurrent utilization of these two miRNAs slightly enhanced the sensitivity for discrimination among the two analyzed groups, as shown in ROC curve analysis. Further validation of these miRNAs in larger patient cohorts and across different stages of PCa may strengthen their candidacy as clinically relevant biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Roxana Andra Coman
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.C.); (B.P.); (I.C.)
| | - Vlad Horia Schitcu
- Department of Urology, “Prof Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (L.B.); (L.R.); (C.B.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (L.B.); (L.R.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (L.B.); (L.R.); (C.B.)
| | - Bogdan Petrut
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.C.); (B.P.); (I.C.)
| | - Ioan Coman
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.C.); (B.P.); (I.C.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (L.B.); (L.R.); (C.B.)
| | - Nadim Al Hajjar
- Department of Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Rao P, Li J, Xiong J, Shen S, Zeng J, Zhao H. MicroRNA-150-5p-mediated Inhibition of Cell Proliferation, G1/S Transition, and Migration in Bladder Cancer through Targeting NEDD4-binding Protein 2-like 1 Gene. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:118-128. [PMID: 38910572 DOI: 10.4103/ejpi.ejpi-d-24-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/29/2024] [Indexed: 06/25/2024]
Abstract
MicroRNA-150-5p (miR-150-5p) has been implicated in the progression of several cancer types, yet its specific functional role and regulatory mechanisms in bladder cancer (BC) remain largely unexplored. Our study revealed significant downregulation of miR-150-5p and upregulation of NEDD4-binding protein 2-like 1 gene (N4BP2L1) in BC tissues compared to controls using quantitative real-time polymerase chain reaction and western blot analysis, respectively. Reduced miR-150-5p expression correlated with advanced tumor stage and lymph node metastasis, while increased N4BP2L1 levels were associated with larger tumor size by the Chi-square test. Functionally, miR-150-5p exerted significant inhibitory effects on BC cell proliferation, migration, inducing G0/G1 phase arrest, and apoptosis. We confirmed N4BP2L1 as a direct target of miR-150-5p in BC cells using luciferase reporter assay. Crucially, N4BP2L1 knockdown mimicked, while overexpression counteracted the inhibitory impacts of miR-150-5p on BC cell proliferation, migration, and invasion. In addition, N4BP2L1 overexpression reversed miR-150-5p-induced alterations in CDK4, Cyclin D1, Bcl-2, PCNA, Ki-67, N-cadherin, Bad, and E-cadherin levels in BC cells. Based on these results, it can be inferred that the miR-150-5p/N4BP2L1 axis might constitute a promising candidate for therapeutic targeting in the treatment of BC.
Collapse
Affiliation(s)
- Pinlang Rao
- Department of Urology, The Fourth Affiliated Hospital of Jiangxi University of Chinese Medicine (Jiangxi Province Hospital of Integrated Chinese & Western Medicine), Nanchang, Jiangxi, China
| | | | | | | | | | | |
Collapse
|
4
|
Perrapato SD, Farina NH, Berg AN, Wallace HJ, Ades S, Ahern TP, Stein JL, Stein GS, Lian JB. A MicroRNA Approach to Evaluating Elevated Prostate Cancer Risk in Cancer-Free Men. Crit Rev Eukaryot Gene Expr 2024; 34:61-69. [PMID: 38912963 DOI: 10.1615/critreveukaryotgeneexpr.2024053672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Objective criteria are required for prostate cancer (PCa) risk assessment, treatment decisions, evaluation of therapy, and initial indications of recurrence. Circulating microRNAs were utilized as biomarkers to distinguish PCa patients from cancer-free subjects or those encountering benign prostate hyperplasia. A panel of 60 microRNAs was developed with established roles in PCa initiation, progression, metastasis, and recurrence. Utilizing the FirePlex® platform for microRNA analysis, we demonstrated the efficacy and reproducibility of a rapid, high-throughput, serum-based assay for PCa biomarkers that circumvents the requirement for extraction and fractionation of patient specimens supporting feasibility for expanded clinical research and diagnostic applications.
Collapse
Affiliation(s)
| | - Nicholas H Farina
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont; Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont; Department of Surgery, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Adrian N Berg
- Department of Surgery, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - H James Wallace
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont; Division of Radiation Oncology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Steven Ades
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont; Division of Hematology and Oncology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | | | - Janet L Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Jane B Lian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| |
Collapse
|
5
|
Niemira M, Erol A, Bielska A, Zeller A, Skwarska A, Chwialkowska K, Kuzmicki M, Szamatowicz J, Reszec J, Knapp P, Moniuszko M, Kretowski A. Identification of serum miR-1246 and miR-150-5p as novel diagnostic biomarkers for high-grade serous ovarian cancer. Sci Rep 2023; 13:19287. [PMID: 37935712 PMCID: PMC10630404 DOI: 10.1038/s41598-023-45317-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the leading cancers in women, with high-grade serous ovarian cancer (HGSOC) being the most common and lethal subtype of this disease. A vast majority of HGSOC are diagnosed at the late stage of the disease when the treatment and total recovery chances are low. Thus, there is an urgent need for novel, more sensitive and specific methods for early and routine HGSOC clinical diagnosis. In this study, we performed miRNA expression profiling using the NanoString miRNA assay in 34 serum samples from patients with HGSOC and 36 healthy women. We identified 13 miRNAs that were differentially expressed (DE). For additional exploration of expression patterns correlated with HGSOC, we performed weighted gene co-expression network analysis (WGCNA). As a result, we showed that the module most correlated with tumour size, nodule and metastasis contained 8 DE miRNAs. The panel including miR-1246 and miR-150-5p was identified as a signature that could discriminate HGSOC patients with AUCs of 0.98 and 1 for the training and test sets, respectively. Furthermore, the above two-miRNA panel had an AUC = 0.946 in the verification cohorts of RT-qPCR data and an AUC = 0.895 using external data from the GEO public database. Thus, the model we developed has the potential to markedly improve the diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Erol
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zeller
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Skwarska
- Cancer Center, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karolina Chwialkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuzmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Knapp
- University Oncology Centre, University Clinical Hospital in Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Alahdal M, Perera RA, Moschovas MC, Patel V, Perera RJ. Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol Ther Oncolytics 2023; 30:27-38. [PMID: 37575217 PMCID: PMC10415624 DOI: 10.1016/j.omto.2023.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Prostate cancer (PCa) incidence is increasing and endangers men's lives. Early detection of PCa could improve overall survival (OS) by preventing metastasis. The prostate-specific antigen (PSA) test is a popular screening method. Several advisory groups, however, warn against using the PSA test due to its high false positive rate, unsupported outcome, and limited benefit. The number of disease-related biopsies performed annually far outweighs the number of diagnoses. Thus, there is an urgent need to develop accurate diagnostic biomarkers to detect PCa and distinguish between aggressive and indolent cancers. Recently, non-coding RNA (ncRNA), circulating tumor DNA (ctDNA)/ctRNA, exosomes, and metabolomic biomarkers in the liquid biopsies (LBs) of patients with PCa showed significant differences and clinical benefits in diagnosis, prognosis, and monitoring response to therapy. The analysis of urinary exosomal ncRNA presented a substantial correlation among Exos-miR-375 downregulation, clinical T stage, and bone metastases of PCa. Furthermore, the expression of miR-532-5p in urine samples was a vital predictive biomarker of PCa progression. Thus, this review focuses on promising molecular and metabolomic biomarkers in LBs from patients with PCa. We thoroughly addressed the most recent clinical findings of LB biomarker use in diagnosing and monitoring PCa in early and advanced stages.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
- Department of Oncology, Sydney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| | - Roshane A. Perera
- AdventHealth Celebration, 380 Celebration Place, Celebration, FL 34747, USA
| | | | - Vipul Patel
- AdventHealth Celebration, 380 Celebration Place, Celebration, FL 34747, USA
| | - Ranjan J. Perera
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
- Department of Oncology, Sydney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Zhang ZG, Shi ZD, Dong JJ, Chen YA, Cao MY, Li YT, Ma WM, Hao L, Pang K, Zhou JH, Zhang WD, Dong Y, Han CH. Novel potential urinary biomarkers for effective diagnosis and prognostic evaluation of high-grade bladder cancer. Transl Cancer Res 2023; 12:1992-2007. [PMID: 37701108 PMCID: PMC10493797 DOI: 10.21037/tcr-23-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Background High-grade bladder cancer (HGBC) has a higher malignant potential, recurrence and progression rate compared to low-grade phenotype. Its early symptoms are often vague, making non-invasive diagnosis using urinary biomarkers a promising approach. Methods The gene expression data from urine samples of patients with HGBC was extracted from the GSE68020 dataset. The clinical information and gene expression data in tumor tissues of HGBC patients were obtained from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis was used to predict the optimal risk model. The protein-protein interaction (PPI) analysis was performed via the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape. Overall survival (OS) was evaluated in the Gene Expression Profiling Interactive Analysis (GEPIA) online platform. Competing endogenous RNA (ceRNA) network was also visualized using Cytoscape. The expression levels of specific genes were assessed through quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Moreover, co-expressed genes and potential biological functions related to specific genes were explored based on the Cancer Cell Line Encyclopedia (CCLE) database. Results A total of 560 differentially expressed genes (DEGs) were identified when comparing the urine sediment samples from HGBC patients with the benign ones. Using these urinary DEGs and the clinical information of HGBC patients, we developed an optimal risk model consisting of eight genes to predict the patient outcome. By integrating the node degree values in the PPI network with the expression changes in both urine and tissue samples, eighteen hub genes were selected out. Among them, DKC1 and SNRPG had the most prominent comprehensive values, and EFTUD2, LOR and EBNA1BP2 were relevant to a worse OS in bladder cancer patients. The ceRNA network of hub genes indicated that DKC1 may be directly regulated by miR-150 in HGBC. The upregulation of both SNRPG and DKC1 were detected in HGBC cells, which were also observed in various tumor tissues and malignant cell lines, displaying high correlations with other hub genes. Conclusions Our study may provide theoretical basis for the development of effective non-invasive detection and treatment strategies, and further research is necessary to explore the clinical applications of these findings.
Collapse
Affiliation(s)
- Zhi-Guo Zhang
- Medical College of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Ang Chen
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Ming-Yang Cao
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yun-Tian Li
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Wei-Ming Ma
- Medical College of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jia-He Zhou
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Wen-Da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Cong-Hui Han
- Medical College of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- College of Life Sciences, Jiangsu Normal University, Xuzhou, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
10
|
Zabegina L, Zyatchin I, Kniazeva M, Shalaev A, Berkut M, Sharoyko V, Mikhailovskii V, Kondratov K, Reva S, Nosov A, Malek A. Diagnosis of Prostate Cancer through the Multi-Ligand Binding of Prostate-Derived Extracellular Vesicles and miRNA Analysis. Life (Basel) 2023; 13:life13040885. [PMID: 37109414 PMCID: PMC10141197 DOI: 10.3390/life13040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The development of new non-invasive markers for prostate cancer (PC) diagnosis, prognosis, and management is an important issue that needs to be addressed to decrease PC mortality. Small extracellular vesicles (SEVs) secreted by prostate gland or prostate cancer cells into the plasma are considered next-generation diagnostic tools because their chemical composition might reflect the PC development. The population of plasma vesicles is extremely heterogeneous. The study aimed to explore a new approach for prostate-derived SEV isolation followed by vesicular miRNA analysis. Methods: We used superparamagnetic particles functionalized by five types of DNA-aptamers binding the surface markers of prostate cells. Specificity of binding was assayed by AuNP-aptasensor. Prostate-derived SEVs were isolated from the plasma of 36 PC patients and 18 healthy donors and used for the assessment of twelve PC-associated miRNAs. The amplification ratio (amp-ratio) value was obtained for all pairs of miRNAs, and the diagnostic significance of these parameters was evaluated. Results: The multi-ligand binding approach doubled the efficiency of prostate-derived SEVs’ isolation and made it possible to purify a sufficient amount of vesicular RNA. The neighbor clusterization, using three pairs of microRNAs (miR-205/miR-375, miR-26b/miR375, and miR-20a/miR-375), allowed us to distinguish PC patients and donors with sensitivity—94%, specificity—76%, and accuracy—87%. Moreover, the amp-ratios of other miRNAs pairs reflected such parameters as plasma PSA level, prostate volume, and Gleason score of PC. Conclusions: Multi-ligand isolation of prostate-derived vesicles followed by vesicular miRNA analysis is a promising method for PC diagnosis and monitoring.
Collapse
Affiliation(s)
- Lidia Zabegina
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Ilya Zyatchin
- Department of Oncology No. 6, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia
| | - Margarita Kniazeva
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Andrey Shalaev
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Maria Berkut
- Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Vladimir Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia
| | - Vladimir Mikhailovskii
- Interdisciplinary Resource Center for Nanotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Kirill Kondratov
- Translational Medicine Laboratory, City Hospital No. 40, 197706 Saint-Petersburg, Russia
| | - Sergey Reva
- Department of Oncology No. 6, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia
- Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Alexandr Nosov
- Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Anastasia Malek
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
- Oncosystem Ltd., 121205 Moscow, Russia
- Correspondence: ; Tel.: +7-960-250-46-80
| |
Collapse
|
11
|
Zhao Y, Song X, Song X, Xie L. Identification of Diagnostic Exosomal LncRNA-miRNA-mRNA Biomarkers in Colorectal Cancer Based on the ceRNA Network. Pathol Oncol Res 2022; 28:1610493. [PMID: 36185995 PMCID: PMC9522904 DOI: 10.3389/pore.2022.1610493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Background: Colorectal cancer (CRC) is currently the fourth most common cancer worldwide. The roles of exosomal competing endogenous RNAs (ceRNAs) in CRC remain unclear. In this study, we constructed an exosomal ceRNA network to identify the core ceRNAs and investigate the diagnostic biomarkers in CRC.Methods and Patients: Serum exosomes were isolated from four CRC patients and two healthy donors by ultracentrifugation, and then subjected to RNA isolation, sequencing and microarray. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses were performed to identify functional enrichment implications of differentially expressed exosomal mRNAs. TargetScan and miRanda were used for identifying the miRNA-mRNA and miRNA-LncRNA interactions. The predicted lncRNAs and mRNAs were intersected with the differentially expressed genes, for which the screening criterion was fold change >1.5 in the microarray. Differentially expressed exosomal miRNAs were identified in the GSE71008 dataset, and differentially expressed mRNAs (DEmRNAs) were further summarized from The Cancer Genome Atlas (TCGA) database.Results: A total of 1186 exosomal DEmRNAs, 2088 exosomal DElncRNAs and 29 exosomal miRNAs were detected in CRC patients compared to the healthy donors. Functional enrichment analysis suggested that exosomal DEmRNAs might participate in pathways related to carcinogenesis and development of cancer. An exosomal ceRNA regulatory network of CRC was constructed based on 40 lncRNAs, two miRNAs, and five mRNAs. Exosomal miR-150-5p and miR-10b-5p expression levels were increased in healthy donors compared with CRC patients in the GSE71008 dataset, and five DEmRNAs (TOMM70A, RBM48, BEND3, RHOBTB1, and ADAMTS2) were significantly upregulated in TCGA database. Two potential exosomal regulatory axes of lncRNA G016261-miR-150-5p-RBM48 and lncRNA XLOC_011677-miR-10b-5p-BEND3 were identified from the network.Conclusion: The current study revealed potential molecular biological regulation pathways and diagnostic biomarkers through the exosomal ceRNA regulatory network.
Collapse
|
12
|
Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23031626. [PMID: 35163550 PMCID: PMC8835890 DOI: 10.3390/ijms23031626] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.
Collapse
|
13
|
Karagur ER, Akgun S, Akca H. Computational and Bioinformatics Methods for MicroRNA Gene Prediction. Methods Mol Biol 2022; 2257:349-373. [PMID: 34432287 DOI: 10.1007/978-1-0716-1170-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are 20-24-nucleotide-long noncoding RNAs that bind to the untranslated region (3' UTR) of their target mRNAs. The importance of miRNAs in medicine has grown rapidly in the 20 years since the discovery of them. As the regulatory function of miRNAs on biological processes was discovered, they were advocated to play a role in the underlying mechanisms of human pathogenesis. Functional studies have confirmed that miRNAs are promising in preclinical development through deregulation of genes targeted by miRNAs in many cancer cases. In this chapter, we summarize the miRNAs identified for some specific types of cancer and their functions. Besides, miRNAs function as cancer biomarker and their benefits to diagnosis and treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Ege Riza Karagur
- Department of Medical Genetic, School of Medicine, Pamukkale University, Denizli, Turkey
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Sakir Akgun
- Department of Medical Biology, School of Medicine, Kafkas University, Kars, Turkey
| | - Hakan Akca
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
14
|
Zhang S, Liu C, Zou X, Geng X, Zhou X, Fan X, Zhu D, Zhang H, Zhu W. MicroRNA panel in serum reveals novel diagnostic biomarkers for prostate cancer. PeerJ 2021; 9:e11441. [PMID: 34055487 PMCID: PMC8141284 DOI: 10.7717/peerj.11441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose MicroRNAs (miRNAs), which could be stably preserved and detected in serum or plasma, could act as biomarkers in cancer diagnosis. Prostate cancer is the second cancer in males for incidence. This study aimed to establish a miRNA panel in peripheral serum which could act as a non-invasive biomarker helping diagnosing PC. Methods A total of 86 PC patients and 86 normal control serum samples were analyzed through a four-stage experimental process using quantitative real-time polymerase chain reaction. Logistic regression method was used to construct a diagnostic model based on the differentially expressed miRNAs in serum. Receiver operating characteristic curves were constructed to evaluate the diagnostic accuracy. We also compared the 3-miRNA panel with previously reported biomarkers and verified in four public datasets. In addition, the expression characteristics of the identified miRNAs were further explored in tissue and serum exosomes samples. Results We identified a 3-miRNA signature including up-regulated miR-146a-5p, miR-24-3p and miR-93-5p for PC detection. Areas under the receiver operating characteristic curve of the 3-miRNA panel for the training, testing and external validation phase were 0.819, 0.831 and 0.814, respectively. The identified signature has a very stable diagnostic performance in the large cohorts of four public datasets. Compared with previously identified miRNA biomarkers, the 3-miRNA signature in this study has superior performance in diagnosing PC. What’s more, the expression level of miR-93-5p was also elevated in exosomes from PC samples. However, in PC tissues, none of the three miRNAs showed significantly dysregulated expression. Conclusions We established a three-miRNA panel (miR-146a-5p, miR-24-3p and miR-93-5p) in peripheral serum which could act as a non-invasive biomarker helping diagnosing PC.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuan Zou
- Fudan University Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
| | - Xiangnan Geng
- Department of Clinical Engineer, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - XingChen Fan
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Huo Zhang
- Department of Oncology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Abramovic I, Vrhovec B, Skara L, Vrtaric A, Nikolac Gabaj N, Kulis T, Stimac G, Ljiljak D, Ruzic B, Kastelan Z, Kruslin B, Bulic-Jakus F, Ulamec M, Katusic-Bojanac A, Sincic N. MiR-182-5p and miR-375-3p Have Higher Performance Than PSA in Discriminating Prostate Cancer from Benign Prostate Hyperplasia. Cancers (Basel) 2021; 13:cancers13092068. [PMID: 33922968 PMCID: PMC8123314 DOI: 10.3390/cancers13092068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the most prevalent neoplasia among men worldwide but is commonly “mimicked” by benign prostate hyperplasia (BPH). Their discrimination by the prostate-specific antigen (PSA) is often uncertain, resulting in lengthy diagnostic protocols and recurrent tissue biopsies. The development of more appropriate biomarkers, possibly present in liquid biopsy, would significantly improve PCa and BPH patient management. To address this challenge, in this study miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were analyzed by ddPCR in blood plasma and seminal plasma of patients with PCa and BPH prior to tissue biopsy. Among other findings, miR-182-5p and miR-375-3p were found to have statistically significantly higher expression in PCa patients compared to BPH in blood, with a combined specificity of 90.2% to predict positive or negative biopsy results. The data presented emphasize the great potential of miRNAs as liquid biopsy biomarkers for PCa. Abstract Prostate cancer (PCa) is the most commonly diagnosed neoplasm among men. Since it often resembles benign prostate hyperplasia (BPH), biomarkers with a higher differential value than PSA are required. Epigenetic biomarkers in liquid biopsies, especially miRNA, could address this challenge. The absolute expression of miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were quantified in blood plasma and seminal plasma of 65 PCa and 58 BPH patients by digital droplet PCR. The sensitivity and specificity of these microRNAs were determined using ROC curve analysis. The higher expression of miR-182-5p and miR-375-3p in the blood plasma of PCa patients was statistically significant as compared to BPH (p = 0.0363 and 0.0226, respectively). Their combination achieved a specificity of 90.2% for predicting positive or negative biopsy results, while PSA cut-off of 4 µg/L performed with only 1.7% specificity. In seminal plasma, miR-375-3p, miR-182-5p, and miR-21-5p showed a statistically significantly higher expression in PCa patients with PSA >10 µg/L compared to ones with PSA ≤10 µg/L. MiR-182-5p and miR-375-3p in blood plasma show higher performance than PSA in discriminating PCa from BPH. Seminal plasma requires further investigation as it represents an obvious source for PCa biomarker identification.
Collapse
Affiliation(s)
- Irena Abramovic
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Borna Vrhovec
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Alen Vrtaric
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Nora Nikolac Gabaj
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Kulis
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Stimac
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Dejan Ljiljak
- Department of Gynecology and Obstetrics, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Boris Ruzic
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Zeljko Kastelan
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Bozo Kruslin
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Floriana Bulic-Jakus
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Monika Ulamec
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Department of Pathology, School of Dental Medicine and School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Katusic-Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Correspondence: ; Tel.: +385-145-66-806
| |
Collapse
|
16
|
Nitusca D, Marcu A, Dema A, Balacescu L, Balacescu O, Bardan R, Cumpanas AA, Sirbu IO, Petrut B, Seclaman E, Marian C. Long Noncoding RNA NEAT1 as a Potential Candidate Biomarker for Prostate Cancer. Life (Basel) 2021; 11:life11040320. [PMID: 33917553 PMCID: PMC8067529 DOI: 10.3390/life11040320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Prostate cancer (PCa) remains one of the leading causes of cancer-related mortality in men worldwide, mainly due to unsatisfactory diagnostic methods used at present, which lead to overdiagnosis, unnecessary biopsies and treatment, or misdiagnosis in early asymptomatic stages. New diagnostic biomarkers are needed for a correct and early diagnosis. Long noncoding RNAs (lncRNAs) have been broadly studied for their involvement in PCa biology, as well as for their potential role as diagnostic biomarkers. Methods: We conducted lncRNA profiling in plasma and microdissected formalin-fixed paraffin-embedded (FFPE) tissues of PCa patients and attempted validation for commonly dysregulated individual lncRNAs. Results: Plasma profiling revealed eight dysregulated lncRNAs, while microarray analysis revealed 717 significantly dysregulated lncRNAs, out of which only nuclear-enriched abundant transcript 1 (NEAT1) was commonly upregulated in plasma samples and FFPE tissues. NEAT1’s individual validation revealed statistically significant upregulation (FC = 2.101, p = 0.009). Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) value of 0.7298 for NEAT1 (95% CI = 0.5812–0.8785), suggesting a relatively high diagnostic value, thus having a potential biomarker role for this malignancy. Conclusions: We present herein data suggesting that NEAT1 could serve as a diagnostic biomarker for PCa. Additional studies of larger cohorts are needed to confirm our findings, as well as the oncogenic mechanism of NEAT1 in the development of PCa.
Collapse
Affiliation(s)
- Diana Nitusca
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Anca Marcu
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Alis Dema
- Department of Pathology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania;
| | - Loredana Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (L.B.); (O.B.)
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (L.B.); (O.B.)
| | - Razvan Bardan
- Department of Urology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (R.B.); (A.A.C.)
- Urology Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department of Urology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (R.B.); (A.A.C.)
- Urology Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Bogdan Petrut
- Department of Urology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
- Correspondence:
| |
Collapse
|
17
|
Kim Y, Varn FS, Park SH, Yoon BW, Park HR, Lee C, Verhaak RGW, Paek SH. Perspective of mesenchymal transformation in glioblastoma. Acta Neuropathol Commun 2021; 9:50. [PMID: 33762019 PMCID: PMC7992784 DOI: 10.1186/s40478-021-01151-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
Despite aggressive multimodal treatment, glioblastoma (GBM), a grade IV primary brain tumor, still portends a poor prognosis with a median overall survival of 12–16 months. The complexity of GBM treatment mainly lies in the inter- and intra-tumoral heterogeneity, which largely contributes to the treatment-refractory and recurrent nature of GBM. By paving the road towards the development of personalized medicine for GBM patients, the cancer genome atlas classification scheme of GBM into distinct transcriptional subtypes has been considered an invaluable approach to overcoming this heterogeneity. Among the identified transcriptional subtypes, the mesenchymal subtype has been found associated with more aggressive, invasive, angiogenic, hypoxic, necrotic, inflammatory, and multitherapy-resistant features than other transcriptional subtypes. Accordingly, mesenchymal GBM patients were found to exhibit worse prognosis than other subtypes when patients with high transcriptional heterogeneity were excluded. Furthermore, identification of the master mesenchymal regulators and their downstream signaling pathways has not only increased our understanding of the complex regulatory transcriptional networks of mesenchymal GBM, but also has generated a list of potent inhibitors for clinical trials. Importantly, the mesenchymal transition of GBM has been found to be tightly associated with treatment-induced phenotypic changes in recurrence. Together, these findings indicate that elucidating the governing and plastic transcriptomic natures of mesenchymal GBM is critical in order to develop novel and selective therapeutic strategies that can improve both patient care and clinical outcomes. Thus, the focus of our review will be on the recent advances in the understanding of the transcriptome of mesenchymal GBM and discuss microenvironmental, metabolic, and treatment-related factors as critical components through which the mesenchymal signature may be acquired. We also take into consideration the transcriptomic plasticity of GBM to discuss the future perspectives in employing selective therapeutic strategies against mesenchymal GBM.
Collapse
|
18
|
Arrighetti N, Beretta GL. miRNAs as Therapeutic Tools and Biomarkers for Prostate Cancer. Pharmaceutics 2021; 13:380. [PMID: 33805590 PMCID: PMC7999286 DOI: 10.3390/pharmaceutics13030380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is the fifth cause of tumor-related deaths in man worldwide. Despite the considerable improvement in the clinical management of PCa, several limitations emerged both in the screening for early diagnosis and in the medical treatment. The use of prostate-specific antigen (PSA)-based screening resulted in patients' overtreatment and the standard therapy of patients suffering from locally advanced/metastatic tumors (e.g., radical prostatectomy, radiotherapy, and androgen deprivation therapy) showed time-limited efficacy with patients undergoing progression toward the lethal metastatic castration-resistant PCa (mCRPC). Although valuable alternative therapeutic options have been recently proposed (e.g., docetaxel, cabazitaxel, abiraterone, enzalutamide, and sipuleucel-T), mCRPC remains incurable. Based on this background, there is an urgent need to identify new and more accurate prostate-specific biomarkers for PCa diagnosis and prognosis and to develop innovative medical approaches to counteract mCRPC. In this context, microRNA (miRNAs) emerged as potential biomarkers in prostate tissues and biological fluids and appeared to be promising therapeutic targets/tools for cancer therapy. Here we overview the recent literature and summarize the achievements of using miRNAs as biomarkers and therapeutic targets/tools for fighting PCa.
Collapse
Affiliation(s)
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| |
Collapse
|
19
|
Lu X, Lu J, Wang S, Zhang Y, Ding Y, Shen X, Jing R, Ju S, Chen H, Cong H. Circulating serum exosomal miR-92a-3p as a novel biomarker for early diagnosis of gastric cancer. Future Oncol 2021; 17:907-919. [PMID: 33533649 DOI: 10.2217/fon-2020-0792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the common malignant tumors with high mortality. The abundance of miRNAs in serum exosomes has proved to have a high application value as a new noninvasive diagnostic method. The purpose of this study was to investigate whether serum exosomal miR-92a-3p could be used as a new biomarker for early diagnosis of GC and evaluate its clinical application value by detecting the expression of serum exosomal miR-92a-3p in 131 patients with primary GC and 122 healthy controls by real-time quantitative (qRT)-PCR. The results showed that the expression level of serum exosomal miR-92a-3p in GC patients was significantly lower than that in normal controls (p < 0.0001). In addition, the level was closely correlated with lymph node metastasis and tumor node metastasis stage of GC patients. The area under the curve for serum exosomal miR-92a-3p was 0.829, significantly higher than for other indicators. Furthermore, combined detection of serum exosomal miR-92a-3p, CEA and CA19-9 was more sensitive than any of the three alone or any pair. These results showed that serum exosomal miR-92a-3p could be used as a novel new tumor biomarker to improve diagnostic efficiency in GC.
Collapse
Affiliation(s)
- Xu Lu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianxin Lu
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Siqi Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hongmei Chen
- Vip Ward, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
20
|
Yue Z, Shusheng J, Hongtao S, Shu Z, Lan H, Qingyuan Z, Shaoqiang C, Yuanxi H. Silencing DSCAM-AS1 suppresses the growth and invasion of ER-positive breast cancer cells by downregulating both DCTPP1 and QPRT. Aging (Albany NY) 2020; 12:14754-14774. [PMID: 32716908 PMCID: PMC7425442 DOI: 10.18632/aging.103538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/20/2020] [Indexed: 01/06/2023]
Abstract
Breast cancer (BC) remains a significant threat to the health of women; however, the mechanism underlying the initiation and progression of BC is poorly understood. We analyzed data from the Gene Expression Omnibus database and The Cancer Genome Atlas datasets to identify differentially expressed genes between BC and normal tissues. The roles of dCTP pyrophosphatase 1 (DCTPP1) and quinolinate phosphoribosyltransferase (QPRT) in BC cells were investigated after knocking down or overexpressing the genes. The regulatory effects of Down syndrome cell adhesion molecule antisense RNA 1 (DSCAM-AS1) on DCTPP1 and QPRT expression were determined using luciferase reporter, RNA immunoprecipitation, RNA pull-down, chromatin immunoprecipitation, and fluorescence in situ hybridization assays. DCTPP1 and QPRT were overexpressed in BC compared to normal tissues. Overexpression of DCTPP1 and QPRT was associated with poor BC progression and promoted growth, migration, and invasion of MCF7 and T47D cells but inhibited apoptosis. DSCAM-AS1 increased QPRT expression via competitively binding miRNA-150-5p and miRNA-2467-3p. DSCAM-AS1 promoted DCTPP1 gene transcription by affecting H3K27 acetylation and enhanced DCTPP1 mRNA stability by binding to the 3′ untranslated region, which collectively resulted in DCTPP1 overexpression. Overall, DSCAM-AS1 knockdown decreased both DCTPP1 and QPRT expression, inhibiting the growth, migration, and invasion of estrogen receptor-positive BC.
Collapse
Affiliation(s)
- Zhang Yue
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jia Shusheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Song Hongtao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhao Shu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huang Lan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhang Qingyuan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cheng Shaoqiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huang Yuanxi
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
21
|
Dong C, Fan B, Ren Z, Liu B, Wang Y. CircSMARCA5 Facilitates the Progression of Prostate Cancer Through miR-432/PDCD10 Axis. Cancer Biother Radiopharm 2020; 36:70-83. [PMID: 32407167 DOI: 10.1089/cbr.2019.3490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Circular RNAs (circRNAs) have been reported to be implicated in the pathogenesis of prostate cancer (PCa). Herein, the authors explore the role and molecular mechanism of circRNA SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 5 (circSMARCA5) in PCa. Materials and Methods: The levels of circSMARCA5, SMARCA5, miR-432, and programmed cell death 10 (PDCD10) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The circular structure and stability of circSMARCA5 were validated by qRT-PCR using Oligo dT primer, transcriptional inhibitor actinomycin D, or RNase R treatment, respectively. Cell proliferation, migration, invasion, epithelial/mesenchymal transition (EMT), and glycolysis were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell migration and invasion assays, Western blot assay, and Glucose or Lactate Detection Kit, respectively. The target relationship between miR-432 and circSMARCA5 or PDCD10 was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Western blot was performed to detect the protein expression of PDCD10 in PCa cells. Results: CircSMARCA5 was aberrantly upregulated, and was a circular and stable RNA in PCa cells. CircSMARCA5 accelerated the proliferation, metastasis, and glycolysis of PCa cells. MiR-432 was a direct target of circSMARCA5, and circSMARCA5 accelerated the development of PCa through miR-432 in PCa cells. PDCD10 was a direct target of miR-432, and PDCD10 addition reversed the inhibitory effects of miR-432 accumulation on the proliferation, metastasis, and glycolysis of PCa cells. CircSMARCA5 upregulated the expression of PDCD10 through sponging miR-432 in PCa cells. Conclusion: CircSMARCA5 deteriorated PCa through the miR-432/PDCD10 axis. CircSMARCA5/miR-432/PDCD10 axis might be an underlying therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Chunhui Dong
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Fan
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongtao Ren
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Liu
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanchao Wang
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|