1
|
Maida M, Vitello A, Shahini E, Vassallo R, Sinagra E, Pallio S, Melita G, Ramai D, Spadaccini M, Hassan C, Facciorusso A. Green endoscopy, one step toward a sustainable future: Literature review. Endosc Int Open 2024; 12:E968-E980. [PMID: 39184060 PMCID: PMC11343619 DOI: 10.1055/a-2303-8621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 08/27/2024] Open
Abstract
Rapid climate change or climate crisis is one of the most serious emergencies of the 21st century, accounting for highly impactful and irreversible changes worldwide. Climate crisis can also affect the epidemiology and disease burden of gastrointestinal diseases because they have a connection with environmental factors and nutrition. Gastrointestinal endoscopy is a highly intensive procedure with a significant contribution to greenhouse gas (GHG) emissions. Moreover, endoscopy is the third highest generator of waste in healthcare facilities with significant contributions to carbon footprint. The main sources of direct carbon emission in endoscopy are use of high-powered consumption devices (e.g. computers, anesthesia machines, wash machines for reprocessing, scope processors, and lighting) and waste production derived mainly from use of disposable devices. Indirect sources of emissions are those derived from heating and cooling of facilities, processing of histological samples, and transportation of patients and materials. Consequently, sustainable endoscopy and climate change have been the focus of discussions between endoscopy providers and professional societies with the aim of taking action to reduce environmental impact. The term "green endoscopy" refers to the practice of gastroenterology that aims to raise awareness, assess, and reduce endoscopy´s environmental impact. Nevertheless, while awareness has been growing, guidance about practical interventions to reduce the carbon footprint of gastrointestinal endoscopy are lacking. This review aims to summarize current data regarding the impact of endoscopy on GHG emissions and possible strategies to mitigate this phenomenon. Further, we aim to promote the evolution of a more sustainable "green endoscopy".
Collapse
Affiliation(s)
- Marcello Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy
- Gastroenterology Unit, Umberto I Hospital, Enna, Italy
| | - Alessandro Vitello
- Gastroenterology and Endoscopy Unit, S. Elia Hospital, ASP di Caltanissetta, Caltanissetta, Italy
| | - Endrit Shahini
- Gastroenterology Unit, Istituto Nazionale di Ricovero e Cura a Carattere Scientifico Saverio de Bellis, Castellana Grotte, Italy
| | - Roberto Vassallo
- Gastroenterology Unit, Buccheri La Ferla Fatebenefratelli Hospital, Palermo, Italy
| | - Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele G Giglio di Cefalù, Cefalu, Italy
| | - Socrate Pallio
- Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital, University of Messina, Messina, Italy
| | - Giuseppinella Melita
- Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital, University of Messina, Messina, Italy
| | - Daryl Ramai
- Gastroenterology and Hepatology, The University of Utah School of Medicine, Salt Lake City, United States
| | - Marco Spadaccini
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Cesare Hassan
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
2
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A, Corneschi I, Antoniac I, Bodog AD, Băcilă CI. Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances. Int J Mol Sci 2023; 24:10540. [PMID: 37445718 DOI: 10.3390/ijms241310540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horațiu Moldovan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iuliana Corneschi
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Ciprian Ionuț Băcilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| |
Collapse
|
4
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Rodríguez de Santiago E, Dinis-Ribeiro M, Pohl H, Agrawal D, Arvanitakis M, Baddeley R, Bak E, Bhandari P, Bretthauer M, Burga P, Donnelly L, Eickhoff A, Hayee B, Kaminski MF, Karlović K, Lorenzo-Zúñiga V, Pellisé M, Pioche M, Siau K, Siersema PD, Stableforth W, Tham TC, Triantafyllou K, Tringali A, Veitch A, Voiosu AM, Webster GJ, Vienne A, Beilenhoff U, Bisschops R, Hassan C, Gralnek IM, Messmann H. Reducing the environmental footprint of gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) Position Statement. Endoscopy 2022; 54:797-826. [PMID: 35803275 DOI: 10.1055/a-1859-3726] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change and the destruction of ecosystems by human activities are among the greatest challenges of the 21st century and require urgent action. Health care activities significantly contribute to the emission of greenhouse gases and waste production, with gastrointestinal (GI) endoscopy being one of the largest contributors. This Position Statement aims to raise awareness of the ecological footprint of GI endoscopy and provides guidance to reduce its environmental impact. The European Society of Gastrointestinal Endoscopy (ESGE) and the European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) outline suggestions and recommendations for health care providers, patients, governments, and industry. MAIN STATEMENTS 1: GI endoscopy is a resource-intensive activity with a significant yet poorly assessed environmental impact. 2: ESGE-ESGENA recommend adopting immediate actions to reduce the environmental impact of GI endoscopy. 3: ESGE-ESGENA recommend adherence to guidelines and implementation of audit strategies on the appropriateness of GI endoscopy to avoid the environmental impact of unnecessary procedures. 4: ESGE-ESGENA recommend the embedding of reduce, reuse, and recycle programs in the GI endoscopy unit. 5: ESGE-ESGENA suggest that there is an urgent need to reassess and reduce the environmental and economic impact of single-use GI endoscopic devices. 6: ESGE-ESGENA suggest against routine use of single-use GI endoscopes. However, their use could be considered in highly selected patients on a case-by-case basis. 7: ESGE-ESGENA recommend inclusion of sustainability in the training curricula of GI endoscopy and as a quality domain. 8: ESGE-ESGENA recommend conducting high quality research to quantify and minimize the environmental impact of GI endoscopy. 9: ESGE-ESGENA recommend that GI endoscopy companies assess, disclose, and audit the environmental impact of their value chain. 10: ESGE-ESGENA recommend that GI endoscopy should become a net-zero greenhouse gas emissions practice by 2050.
Collapse
Affiliation(s)
- Enrique Rodríguez de Santiago
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Dinis-Ribeiro
- Porto Comprehensive Cancer Center (Porto.CCC), and RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Heiko Pohl
- Dartmouth Geisel School of Medicine, Hanover, New Hampshire, and Section of Gastroenterology and Hepatology, VA White River Junction, Vermont, USA
| | - Deepak Agrawal
- Division of Gastroenterology and Hepatology, Dell Medical School, University of Texas Austin, Texas, USA
| | - Marianna Arvanitakis
- Department of Gastroenterology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Robin Baddeley
- King's Health Partners Institute for Therapeutic Endoscopy, King's College Hospital, and Wolfson Unit for Endoscopy, St Mark's Hospital, London, United Kingdom
| | - Elzbieta Bak
- Department of Gastroenterology and Internal Medicine, Clinical Hospital of Medical University of Warsaw, Warsaw, Poland
| | | | - Michael Bretthauer
- Clinical Effectiveness Research Group, University of Oslo, and Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Patricia Burga
- Endoscopy Department, University Hospital of Padua, Italy
| | - Leigh Donnelly
- Endoscopy Department, Northumbria Healthcare NHS Trust, Northumberland, United Kingdom
| | - Axel Eickhoff
- Klinik für Gastroenterologie, Diabetologie, Infektiologie, Klinikum Hanau, Hanau, Germany
| | - Bu'Hussain Hayee
- Department of Gastroenterology, University College London Hospitals, London, United Kingdom
| | - Michal F Kaminski
- Department of Cancer Prevention and Department of Oncological Gastroenterology, The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarina Karlović
- Clinical Hospital Center Rijeka , Department of Gastroenterology, Endoscopy Unit, Rijeka, Croatia
| | - Vicente Lorenzo-Zúñiga
- Department of Gastroenterology, University and Polytechnic La Fe Hospital/IIS La Fe, Valencia, Spain
| | - Maria Pellisé
- Department of Gastroenterology, Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Mathieu Pioche
- Endoscopy Unit, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Keith Siau
- Department of Gastroenterology, Dudley Group Hospitals NHS Foundation Trust, Dudley, United Kingdom
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William Stableforth
- Department of Gastroenterology, Dudley Group Hospitals NHS Foundation Trust, Dudley, United Kingdom
| | - Tony C Tham
- Division of Gastroenterology, Ulster Hospital, Dundonald, Belfast, Northern Ireland
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Alberto Tringali
- Digestive Endoscopy Unit, ULSS 2 Marca Trevigiana, Conegliano Hospital, Conegliano, Italy
| | - Andrew Veitch
- Department of Gastroenterology, Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Andrei M Voiosu
- Department of Gastroenterology and Hepatology, Colentina Clinical Hospital, Bucharest, Romania
| | - George J Webster
- Department of Gastroenterology, University College London Hospitals, London, United Kingdom
| | | | | | - Raf Bisschops
- Department of Gastroenterology and Hepatology, Catholic University of Leuven (KUL), TARGID, University Hospitals Leuven, Leuven, Belgium
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, and Endoscopy Unit, IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Ian M Gralnek
- Ellen and Pinchas Mamber Institute of Gastroenterology and Hepatology, Emek Medical Center, Afula, and Rappaport Faculty of Medicine Technion Israel Institute of Technology, Haifa, Israel
| | - Helmut Messmann
- III Medizinische Klinik Universitätsklinikum Augsburg, Augsburg, Germany
| |
Collapse
|
6
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|