1
|
Kujawski S, Słomko J, Morten KJ, Murovska M, Buszko K, Newton JL, Zalewski P. Correction: Kujawski et al. Autonomic and Cognitive Function Response to Normobaric Hyperoxia Exposure in Healthy Subjects. Preliminary Study. Medicina 2020, 56, 172. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:255. [PMID: 38399634 PMCID: PMC10870258 DOI: 10.3390/medicina60020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024]
Abstract
There was an error in the original publication [...].
Collapse
Affiliation(s)
- Sławomir Kujawski
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Training, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (J.S.); (P.Z.)
| | - Joanna Słomko
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Training, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (J.S.); (P.Z.)
| | - Karl J. Morten
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK;
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradiņš University, LV-1067 Riga, Latvia;
| | - Katarzyna Buszko
- Department of Theoretical Foundations of Bio-Medical Science and Medical Informatics, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland;
| | - Julia L. Newton
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK;
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Training, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (J.S.); (P.Z.)
| |
Collapse
|
2
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ristescu AI, Tiron CE, Tiron A, Grigoras I. Exploring Hyperoxia Effects in Cancer-From Perioperative Clinical Data to Potential Molecular Mechanisms. Biomedicines 2021; 9:1213. [PMID: 34572400 PMCID: PMC8470547 DOI: 10.3390/biomedicines9091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment. The effects of supplemental oxygen on the long-term mortality of surgical cancer patients offer, at this point, conflicting results. In experimental studies, hyperoxia effects on cancer biology were explored following multiple pathways. In cancer cell cultures and animal models, hyperoxia increases the production of reactive oxygen species (ROS) and increases the oxidative stress. These can be followed by the induction of the expression of Brain-derived neurotrophic factor (BDNF) and other molecules involved in angiogenesis and by the promotion of various degrees of epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Anca Irina Ristescu
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Crina Elena Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Adrian Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Ioana Grigoras
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
4
|
Li Y, Luo NC, Zhang X, Hara T, Inadomi C, Li TS. Prolonged oxygen exposure causes the mobilization and functional damage of stem or progenitor cells and exacerbates cardiac ischemia or reperfusion injury in healthy mice. J Cell Physiol 2021; 236:6657-6665. [PMID: 33554327 DOI: 10.1002/jcp.30317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Oxygen is often administered to patients and occasionally to healthy individuals as well; however, the cellular toxicity of oxygen, especially following prolonged exposure, is widely known. To evaluate the potential effect of oxygen exposure on circulating stem/progenitor cells and cardiac ischemia/reperfusion (I/R) injury, we exposed healthy adult mice to 100% oxygen for 20 or 60 min. We then examined the c-kit-positive stem/progenitor cells and colony-forming cells and measured the cytokine/chemokine levels in peripheral blood. We also induced cardiac I/R injury in mice at 3 h after 60 min of oxygen exposure and examined the recruitment of inflammatory cells and the fibrotic area in the heart. The proportion of c-kit-positive stem/progenitor cells significantly increased in peripheral blood at 3 and 24 h after oxygen exposure for either 20 or 60 min (p < .01 vs. control). However, the abundance of colony-forming cells in peripheral blood conversely decreased at 3 and 24 h after oxygen exposure for only 60 min (p < .05 vs. control). Oxygen exposure for either 20 or 60 min resulted in significantly decreased plasma vascular endothelial growth factor levels at 3 h, whereas oxygen exposure for only 60 min reduced plasma insulin-like growth factor 1 levels at 24 h (p < .05 vs. control). Protein array indicated the increase in the levels of some cytokines/chemokines, such as CXCL6 (GCP-2) at 24 h after 60 min of oxygen exposure. Moreover, oxygen exposure for 60 min enhanced the recruitment of Ly6g- and CD11c-positive inflammatory cells at 3 days (p < .05 vs. control) and increased the fibrotic area at 14 days in the heart after I/R injury (p < .05 vs. control). Prolonged oxygen exposure induced the mobilization and functional impairment of stem/progenitor cells and likely enhanced inflammatory responses to exacerbate cardiac I/R injury in healthy mice.
Collapse
Affiliation(s)
- Yu Li
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Na-Chuan Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chiaki Inadomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|