1
|
Naghinejad M, Parvizpour S, Khaniani MS, Mehri M, Derakhshan SM, Amirfiroozy A. The known structural variations in hearing loss and their diagnostic approaches: a comprehensive review. Mol Biol Rep 2025; 52:131. [PMID: 39821465 DOI: 10.1007/s11033-025-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Hearing loss (HL) is the most common sensory disorder, characterized by a wide range of causes, including both environmental and genetic factors. While single-nucleotide variants (SNVs) and small insertions/deletions have been extensively studied, the role of structural variations (SVs) in hearing impairment has gained increasing recognition. This review article aims to provide a comprehensive overview of the importance of SVs in HL, by exploring the SVs associated with HL and their underlying pathogenic mechanisms. Additionally, diagnostic methods of SVs have been briefly evaluated and compared in general. Three major mechanisms by which SVs can lead to HL are gene disruption, gene dosage imbalance, and position effect. Furthermore, to facilitate the detection of SVs in HL, this review presents a table highlighting the key genes and genomic regions implicated in SVs and their diagnostic approaches associated with HL patients. In the next step, indications for the use of SV diagnostic techniques are compiled in another table in this article, which will help experts in choosing the most appropriate technique. At last, the comprehensive review presented here underscores the significant role of SVs in HL. Further research is required to fully elucidate the spectrum of SVs in HL and optimize the clinical use of SV detection methods in routine diagnostic procedures.
Collapse
Affiliation(s)
- Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Mehri
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Kalinousky AJ, Luperchio TR, Schrode KM, Harris JR, Zhang L, DeLeon VB, Fahrner JA, Lauer AM, Bjornsson HT. KMT2D Deficiency Causes Sensorineural Hearing Loss in Mice and Humans. Genes (Basel) 2023; 15:48. [PMID: 38254937 PMCID: PMC10815913 DOI: 10.3390/genes15010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection.
Collapse
Affiliation(s)
- Allison J. Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Teresa R. Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Katrina M. Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (K.M.S.); (A.M.L.)
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Li Zhang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Valerie B. DeLeon
- Department of Anthropology, University of Florida, Gainesville, FL 32610, USA;
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Amanda M. Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (K.M.S.); (A.M.L.)
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Landspitali University Hospital, 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
3
|
Kim YS, Kim Y, Jeon HW, Yi N, Lee SY, Kim Y, Han JH, Kim MY, Kim BH, Choi HY, Carandang M, Koo JW, Kim BJ, Bae YJ, Choi BY. Full etiologic spectrum of pediatric severe to profound hearing loss of consecutive 119 cases. Sci Rep 2022; 12:12335. [PMID: 35853923 PMCID: PMC9296524 DOI: 10.1038/s41598-022-16421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Determining the etiology of severe-to-profound sensorineural hearing loss (SP-SNHL) in pediatric subjects is particularly important in aiding the decision for auditory rehabilitation. We aimed to update the etiologic spectrum of pediatric SP-SNHL by combining internal auditory canal (IAC)-MRI with comprehensive and state-of-the-art genetic testings. From May 2013 to September 2020, 119 cochlear implantees under the age of 15 years with SP-SNHL were all prospectively recruited. They were subjected to genetic tests, including exome sequencing, and IAC-MRI for etiologic diagnosis. Strict interpretation of results were made based on ACMG/AMP guidelines and by an experienced neuroradiologist. The etiology was determined in of 65.5% (78/119) of our cohort. If only one of the two tests was done, the etiologic diagnostic rate would be reduced by at least 21.8%. Notably, cochlear nerve deficiency (n = 20) detected by IAC-MRI topped the etiology list of our cohort, followed by DFNB4 (n = 18), DFNB1 (n = 10), DFNB9 (n = 10) and periventricular leukomalacia associated with congenital CMV infection (n = 8). Simultaneous application of state-of-the-art genetic tests and IAC-MRI is essential for etiologic diagnosis, and if lesions of the auditory nerve or central nerve system are carefully examined on an MRI, we can identify the cause of deafness in more than 65% of pediatric SP-SNHL cases.
Collapse
Affiliation(s)
- Young Seok Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Yoonjoong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Hyoung Won Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Nayoung Yi
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, South Korea
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Bo Hye Kim
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyeong Yun Choi
- Information Science Major, University of Maryland, College Park, MD, USA
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, East Avenue Medical Center, Metro Manila, Philippines
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, South Korea
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea.
| |
Collapse
|
4
|
Ray M, Rath SN, Sarkar S, Sable MN. Presentation of potential genes and deleterious variants associated with non-syndromic hearing loss: a computational approach. Genomics Inform 2022; 20:e5. [PMID: 35399004 PMCID: PMC9001992 DOI: 10.5808/gi.21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is a common hereditary disorder. Both clinical and genetic heterogeneity has created many obstacles to understanding the causes of NSHL. The present study has attempted to ravel the genetic aetiology in NSHL progression and to screen out potential target genes using computational approaches. The reported NSHL target genes (2009-2020) have been studied by analyzing different biochemical and signaling pathways, interpretation of their functional association network, and discovery of important regulatory interactions with three previously established miRNAs in the human inner ear as well as in NSHL such as miR-183, miR-182, and miR-96. This study has identified SMAD4 and SNAI2 as the most putative target genes of NSHL. But pathogenic and deleterious non-synonymous single nucleotide polymorphisms discovered within SMAD4 is anticipated to have an impact on NSHL progression. Additionally, the identified deleterious variants in the functional domains of SMAD4 added a supportive clue for further study. Thus, the identified deleterious variant i.e., rs377767367 (G491V) in SMAD4 needs further clinical validation. The present outcomes would provide insights into the genetics of NSHL progression.
Collapse
Affiliation(s)
- Manisha Ray
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Saurav Sarkar
- Department of Ear Nose Throat, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Mukund Namdev Sable
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
5
|
Hearing Screening Combined with Target Gene Panel Testing Increased Etiological Diagnostic Yield in Deaf Children. Neural Plast 2021; 2021:6151973. [PMID: 34335733 PMCID: PMC8324351 DOI: 10.1155/2021/6151973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022] Open
Abstract
Genetic testing is the gold standard for exploring the etiology of congenital hearing loss. Here, we enrolled 137 Chinese patients with congenital hearing loss to describe the molecular epidemiology by using 127 gene panel testing or 159 variant testing. Sixty-three deaf children received 127 gene panel testing, while seventy-four patients received 159 variant testing. By use of 127 gene panel testing, more mutant genes and variants were identified. The most frequent mutant genes were GJB2, SLC26A4, MYO15A, CDH23, and OTOF. By analyzing the patients who received 127 gene panel testing, we found that 51 deaf children carried variants which were not included in 159 variant testing. Therefore, a large number of patients would be misdiagnosed if only 159 variant testing is used. This study highlights the advantage of 127 gene panel testing, and it suggests that broader genetic testing should be done to identify the genetic etiology of congenital hearing loss.
Collapse
|
6
|
Novel GRHL2 Gene Variant Associated with Hearing Loss: A Case Report and Review of the Literature. Genes (Basel) 2021; 12:genes12040484. [PMID: 33810548 PMCID: PMC8066333 DOI: 10.3390/genes12040484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
In contrast to the recessive form, hearing loss inherited in a dominant manner is more often post-lingual and typically results in a progressive sensorineural hearing loss with variable severity and late onset. Variants in the GRHL2 gene are an extremely rare cause of dominantly inherited hearing loss. Genetic testing is a crucial part of the identification of the etiology of hearing loss in individual patients, especially when performed with next-generation sequencing, enabling simultaneous analysis of numerous genes, including those rarely associated with hearing loss. We aimed to evaluate the genetic etiology of hearing loss in a family with moderate late-onset hearing loss using next-generation sequencing and to conduct a review of reported variants in the GRHL2 gene. We identified a novel disease-causing variant in the GRHL2 gene (NM_024915: c.1510C>T; p.Arg504Ter) in both affected members of the family. They both presented with moderate late-onset hearing loss with no additional clinical characteristics. Reviewing known GRHL2 variants associated with hearing loss, we can conclude that they are more likely to be truncating variants, while the associated onset of hearing loss is variable.
Collapse
|