1
|
Alnoaman H, Al-Kuraishy HM, Al-Gareeb AI, Turkistani A, Allam A, Alexiou A, Papadakis M, Batiha GES. Dysregulation of proBDNF/p75 NTR and BDNF/TrkB Signaling in Acute Ischemic Stroke: Different Sides of the Same Coins. Brain Res Bull 2025:111338. [PMID: 40209946 DOI: 10.1016/j.brainresbull.2025.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Acute ischemic stroke (AIS) is a focal neurological deficit due to sudden occlusion of cerebral vessels in the brain. AIS-induced neuronal injury and associated excite-toxicity and neurodegeneration affect the synthesis and the release of different neurotrophic factors such as brain-derived neurotropic factor (BDNF) and its precursor proBDNF. Both BDNF and proBDNF act on the specific receptors with different neurological effects. BDNF activates tropomyosin receptor kinase B (TrkB) receptor results in promoting neuronal survival, synaptic plasticity, and neuronal growth. However, the proBDNF activates p75 neurotrophin receptor (p75NTR) and sortilin which attenuates synaptic plasticity and promotes neuronal apoptosis. Dysregulation of central and peripheral expression of proBDNF/BDNF is linked with the severity and clinical outcomes of AIS. Therefore, this review aims to discuss the alterations of proBDNF/BDNF signaling in AIS. Findings from the present review illustrated that proBDNF/p75NTR/sortilin signaling pathway is exaggerated whereas; BDNF-TrkB signaling is reduced in AIS leading to neuronal apoptosis. Therefore, activation of BDNF-TrkB signaling, and inhibition of proBDNF/p75NTR/sortilin signaling pathway could be a promising therapeutic strategy in the management of AIS.
Collapse
Affiliation(s)
- Hala Alnoaman
- Consultant family medicine, Ministry of health, kingdom of Saudi Arabia,.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132 Baghdad, Iraq,.
| | - Ali I Al-Gareeb
- Head of Jabir Ibn, Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO.Box13, Kufa, Iraq,.
| | - Areej Turkistani
- Department of pharmacology and toxicology, Collage of Medicine, Taif University, Taif 21944, Kingdom of Saudi Arabia,.
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), AL-Azhar University, Cairo,.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany,.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt,.
| |
Collapse
|
2
|
Asgharzade S, Ahmadzadeh AM, Pourbagher-Shahri AM, Forouzanfar F. Protective effects of cedrol against transient global cerebral ischemia/reperfusion injury in rat. BMC Complement Med Ther 2025; 25:83. [PMID: 40012040 DOI: 10.1186/s12906-025-04827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The natural compound cedrol possess anti-inflammatory and antioxidant properties. We sought to assess the neuroprotective effect of cedrol in an animal model of transient global ischemia/reperfusion (I/R) injury. METHOD To induce transient global cerebral I/R injury, bilateral carotid arteries were temporarily occluded for 20 min. A total of 40 male Wistar rats were randomly divided in to 5 groups; The control and global I/R groups, and the treatment groups that received cedrol at doses of 7.5, 15, and 30 mg/kg/day for a week, following the global I/R induction. The passive avoidance test was used for assessing memory function, and then hippocampal tissues were collected to assess levels of malondialdehyde (MDA), total thiol, nitric oxide (NO), and the activity of superoxide dismutase (SOD), along with the concentration of brain-derived neurotrophic factor (BDNF). RESULT Our findings revealed that global I/R injury impaired rats' performance in the passive avoidance test and increased levels of MDA and NO. Moreover, it decreased the total thiol level, SOD activity, and BDNF level in the hippocampus. Administration of cedrol significantly improved memory function, reduced oxidative stress, NO level and increased BDNF level in the hippocampus. CONCLUSION The results indicate that cedrol has neuroprotective properties in global I/R by reducing oxidative stress and enhancing the levels of BDNF.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Malewska-Kasprzak M, Permoda-Pachuta A, Skibińska M, Malinowska-Kubiak M, Rybakowski F, Dmitrzak-Węglarz M. Investigation of serum BDNF levels in alcohol withdrawal syndrome with and without other medical co-morbidities. Alcohol 2025; 122:1-9. [PMID: 38237791 DOI: 10.1016/j.alcohol.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Consequences of alcohol use disorder (AUD) are associated with mental and somatic burdens that result in alcohol withdrawal syndrome (AWS), with 30% of AWS cases leading to life-threatening delirium tremens (DTs). So far, biomarkers for tracking abstinence syndrome that are useful in clinical practice have yet to be detected. Current research focuses on brain-derived neurotrophic factor (BDNF) effects on neurogenesis, modulation of plasticity, and its role in the pathogenesis of AWS and DTs. AIMS The present study aimed to assess pro-BDNF and BDNF concentrations in a group of patients with AWS. Changes in BDNF and prof-BDNF were also evaluated with attention to subgroups of patients with coexisting mental and somatic disorders, with a particular emphasis on the presence or absence of DTs. RESULTS The AWS group had a higher concentration of BDNF and a lower concentration of pro-BDNF compared to the control group, and BDNF increased during 7 days of hospitalisation. Patients with comorbid psychiatric disorders had higher levels of pro-BDNF than those without disease and also had higher levels of BDNF at the end of the study than at the beginning. On the other hand, patients with coexisting somatic diseases had higher levels of pro-BDNF at the beginning than at the end of the study, while patients with delirium had higher BDNF levels at the end of the study than at the beginning. CONCLUSIONS The obtained results indicate that pro-BDNF and BDNF may be useful markers for the course of withdrawal syndrome. In particular, BDNF showed an association with the development of delirium complications. The authors are aware of several limitations of the work only men in the SG, different age between SG and CG.
Collapse
Affiliation(s)
| | | | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Malinowska-Kubiak
- Mental Health Center at the HCP Medical Center - Hospital St. John Paul II in Poznan (CMHCP), Poland
| | - Filip Rybakowski
- Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
4
|
Huang Z, Li F, Zheng X, Zheng J, Dong Y, Ding Z, Gou H, Yao M, Liu J. Catalpol promotes hippocampal neurogenesis and synaptogenesis in rats after multiple cerebral infarctions by mitochondrial regulation: involvement of the Shh signaling pathway. Front Pharmacol 2024; 15:1461279. [PMID: 39749196 PMCID: PMC11693731 DOI: 10.3389/fphar.2024.1461279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine Dihuang, which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function. In the present study, we investigated whether catalpol has a neurorestorative effect after multiple cerebral infarctions and its underlying mechanisms. Methods In this study, male 8-week-old Sprague-Dawley (SD) rats were grouped according to neurological deficit scores to minimize differences between groups the second day: sham group, model group, Ginkgo biloba P.E (EGb) (Ginaton:18 mg/kg) group, model + CAT 30 mg/kg group (CAT 30), model + CAT 60 mg/kg group (CAT 60), and model + CAT 120 mg/kg group (CAT 120). From the first day to the fourteenth day after MCI, rats were given the corresponding doses of drugs by gastric administration every day(1 mL/100g), and from day 7 to day 14, all rats were injected with Brdu solution (50 mg/kg) i.p. Neuro-Function was assessed by the neurologic deficit scores. Then we observed measurement of brain atrophy and fluorescent Nissl staining. The expression of BrdU+/DCX+ cells and the BDNF concentrations were tested to observe the neuro-restoration effect. Transmission electron microscope (TEM) and Western blot (WB) were used to observed synaptogenesis. we observed the restoration of mitochondrial function by detecting the intracortical calcium and T-AOC content. Finally, we examined the protein and mRNA expression of shh signaling pathway through q-PCR and WB. Results Catalpol alleviated neurological deficits, reduced the degree of brain atrophy, as well as minimize pathological damage in the hippocampus and cortex. In addition, catalpol also promoted hippocampal neurogenesis and synaptogenesis by improving the mitochondrial structure and promoting mitochondrial function, as evidenced by the up-regulation of positive expression of both Recombinant Doublecortin (DCX) and 5-Bromodeoxyuridinc (BrdU), the enhancement of the Total antioxidant capacity (T-AOC), and the increase in the expression of synapse-associated proteins, Synaptophysin (SYP) and post-synaptic density-95 (PSD-95). Finally, we observed that catalpol up-regulated the expression of Sonic hedgehog (Shh) and Glioma-associated homologue-1 (GLI-1), factors related to the Shh signaling pathway. Discussion In conclusion, catalpol may regulate mitochondria through activation of the Shh signaling pathway and exert its role in promoting hippocampal neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Zishan Huang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Feng Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Xiaoyu Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jiarui Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Heilongjiang Academy of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yilei Dong
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Zhao Ding
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Huanyu Gou
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Mingjiang Yao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Borzooee B, Aghayan S, Hassani-Abharian P, Emamian MH. Effect of Transcranial Direct Current Stimulation on Craving, Cognitive Functions, and Serum Brain-Derived Neurotrophic Factor Level in Individuals on Maintenance Treatment for Opioid Use Disorder, A Randomized Sham-Controlled Trial. J ECT 2024; 40:e38-e48. [PMID: 38981034 DOI: 10.1097/yct.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
OBJECTIVES To investigate the effects of transcranial direct current stimulation (tDCS) on brain-derived neurotrophic factor (BDNF) levels, craving, and executive functions in individuals on maintenance treatment for opioid use. METHODS We randomized 70 right-handed men aged 18-55 years into 2 groups: the intervention group and the sham group. The intervention was 10 sessions of 2 mA stimulation over 5 days. Each session in the sham group ended after 30 seconds. Craving was measured using the Desire for Drug Questionnaire (DDQ), Obsessive Compulsive Drug Use Scale (OCDUS), and visual analog scale (VAS). The measurements were taken before and after the intervention, as well as 2 months later. BDNF was measured before and after the intervention. Repeated-measures analysis of variance, the generalized estimating equation model, and independent t test were used for data analysis. RESULTS The mean differences (95% confidence intervals) in pre and post craving scores in the intervention group were (12.71 [9.10 to 16.32], P = 0.167) for VAS, (1.54 [1.12 to 1.96], P = 0.012) for OCDUS, and (1.71 [1.27 to 2.15], P = 0.125) for DDQ. These measures in the control group were -0.44 (-1.19 to 0.30), 0.01 (-0.21 to 0.23), and 0.126 (-0.11 to 0.36), respectively. BDNF serum levels significantly increased after the intervention (difference, 0.84 [0.69 to 0.99], P < 0.001); however, this change was not significant in the generalized estimating equation model. The effect of tDCS on craving was significant in OCDUS, but not significant in VAS and DDQ. CONCLUSIONS The tDCS reduces craving and improves executive functions in the short term. BDNF serum level was not associated with tDCS.
Collapse
Affiliation(s)
| | - Shahrokh Aghayan
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud
| | - Peyman Hassani-Abharian
- Department of Cognitive Psychology and Cognitive Rehabilitation, Institute for Cognitive Science Studies, Tehran
| | - Mohammad Hassan Emamian
- Ophthalmic Epidemiology Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
6
|
Zhu M, Li X, Guo J, Zhang Z, Guo X, Li Z, Lin J, Li P, Jiang Z, Zhu Y. Orexin A protects against cerebral ischemia-reperfusion injury by enhancing reperfusion in ischemic cortex via HIF-1α-ET-1/eNOS pathway. Brain Res Bull 2024; 218:111105. [PMID: 39442584 DOI: 10.1016/j.brainresbull.2024.111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The purpose of this study was to investigate the protective effect and underlying mechanism of orexin A on cerebral ischemia-reperfusion injury, specifically through vasodilation mediated by the hypoxia inducible factor-1α (HIF-1α)-Endothelin-1(ET-1)/endothelial nitric oxide synthase (eNOS) pathway. A model of middle cerebral artery occlusion was established in both wild-type SD rats with exogenous orexin A intervention and in orexin A transgenic rats. Neurological deficit scores and cerebral infarction areas were assessed, and ischemic cortical blood flow was monitored. Gene and protein expression levels of HIF-1α, HIF-2α, ET-1, and three types of NOS were detected using real-time RT-qPCR and Western blot analysis, respectively. Additionally, nitric oxide (NO) levels in the cortex were analyzed through biochemical detection methods. Orexin A demonstrated a protective effect by reducing cerebral infarction and improving neurological deficits, which was achieved by increasing cortical blood flow during reperfusion. This protective mechanism was associated with upregulated HIF-1α expression, downregulated ET-1 expression, upregulated eNOS expression, and increased NO production. This study demonstrates the protective effect of orexin A on cerebral ischemia-reperfusion injury, achieved by regulating the release of vasomotor substances to enhance cortical blood flow during reperfusion. These findings suggest that orexin A may represent a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Minxia Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.
| | - Xiaofeng Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Jing Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zhaojun Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xu Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zhuoqi Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Junwei Lin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Pengfei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zixuan Jiang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Yifan Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
7
|
Cheng X, Hu D, Wang C, Lu T, Ning Z, Li K, Ren Z, Huang Y, Zhou L, Chung SK, Liu Z, Xia Z, Meng W, Tang G, Sun J, Guo J. Plasma Inflammation Markers Linked to Complications and Outcomes after Spontaneous Intracerebral Hemorrhage. J Proteome Res 2024; 23:4369-4383. [PMID: 39225497 DOI: 10.1021/acs.jproteome.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracerebral hemorrhage (ICH) could trigger inflammatory responses. However, the specific role of inflammatory proteins in the pathological mechanism, complications, and prognosis of ICH remains unclear. In this study, we investigated the expression of 92 plasma inflammation-related proteins in patients with ICH (n = 55) and healthy controls (n = 20) using an Olink inflammation panel and discussed the relation to the severity of stroke, clinical complications, 30-day mortality, and 90-day outcomes. Our result showed that six proteins were upregulated in ICH patients compared with healthy controls, while seventy-four proteins were downregulated. In patients with ICH, seven proteins were increased in the severe stroke group compared with the moderate stroke group. In terms of complications, two proteins were downregulated in patients with pneumonia, while nine proteins were upregulated in patients with sepsis. Compared with the survival group, three proteins were upregulated, and one protein was downregulated in the death group. Compared with the good outcome group, eight proteins were upregulated, and four proteins were downregulated in the poor outcome group. In summary, an in-depth exploration of the differential inflammatory factors in the early stages of ICH could deepen our understanding of the pathogenesis of ICH, predict patient prognosis, and explore new treatment strategies.
Collapse
Affiliation(s)
- Xiao Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| | - Dafeng Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Chengyi Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Ting Lu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Zhenqiu Ning
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Kunhong Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Zhixuan Ren
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Yan Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region 999078, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi City People's Hospital, Linyi 276000, Shandong China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng City People's Hospital, Liaocheng 252600, Shandong China
| | - Wei Meng
- Department of Neurology, Panjin City Central Hospital, Panjin 124010, Liaoning China
| | - Guanghai Tang
- Department of Neurology, Shenyang City Second Hospital of Traditional Chinese Medicine, Shenyang 110000, Liaoning China
| | - Jingbo Sun
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| | - Jianwen Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| |
Collapse
|
8
|
Mark VW. Biomarkers and Rehabilitation for Functional Neurological Disorder. J Pers Med 2024; 14:948. [PMID: 39338202 PMCID: PMC11433361 DOI: 10.3390/jpm14090948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Functional neurological disorder, or FND, is widely misunderstood, particularly when considering recent research indicating that the illness has numerous biological markers in addition to its psychiatric disorder associations. Nonetheless, the long-held view that FND is a mental illness without a biological basis, or even a contrived (malingered) illness, remains pervasive both in current medical care and general society. This is because FND involves intermittent disability that rapidly and involuntarily alternates with improved neurological control. This has in turn caused shaming, perceived low self-efficacy, and social isolation for the patients. Until now, biomarker reviews for FND tended not to examine the features that are shared with canonical neurological disorders. This review, in contrast, examines current research on FND biomarkers, and in particular their overlap with canonical neurological disorders, along with the encouraging outcomes for numerous physical rehabilitation trials for FND. These findings support the perspective endorsed here that FND is unquestionably a neurological disorder that is also associated with many biological markers that lie outside of the central nervous system. These results suggest that FND entails multiple biological abnormalities that are widely distributed in the body. General healthcare providers would benefit their care for their patients through their improved understanding of the illness and recourses for support and treatment that are provided in this review.
Collapse
Affiliation(s)
- Victor W. Mark
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-934-3499
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Zabroda EN, Amelina VV, Gordeev AD, Sakovsky IV, Bochkarev MV, Kolomeichuk SN, Kayumova EE, Vasilieva EY, Sviryaev YV, Korostovtseva LS. Brain-Derived Neurotrophic Factor in the Acute and Early Recovery Period of Ischemic Stroke: The Role of Nocturnal Hypoxemia. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2024; 54:984-989. [DOI: 10.1007/s11055-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 10/21/2024]
|
10
|
Zhang X, Deng F, Wang X, Liu F, Zhu Y, Yu B, Ruan M. Synergistic amelioration between Ligusticum striatum DC and borneol against cerebral ischemia by promoting astrocytes-mediated neurogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118062. [PMID: 38492790 DOI: 10.1016/j.jep.2024.118062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum chuanxiong Hort (LCH), with the accepted name of Ligusticum striatum DC in "The Plant List" database, is a widely used ethnomedicine in treating ischemic stroke, and borneol (BO) is usually prescribed with LCH for better therapy. Our previous study confirmed their synergistic effect on neurogenesis against cerebral ischemia. However, the underlying mechanism is still unclear. AIM OF THE STUDY More and more evidence indicated that astrocytes (ACs) might be involved in the modulation of neurogenesis via polarization reaction. The study was designed to explore the synergic mechanism between LCH and BO in promoting astrocyte-mediated neurogenesis. MATERIALS AND METHODS After primary cultures and identifications of ACs and neural stem cells (NSCs), the oxygen-glucose deprivation (OGD) model and the concentrations of LCH and BO were optimized. After the OGD-injured ACs were treated by LCH, BO, and their combination, the conditioned mediums were used to culture the OGD-injured NSCs. The proliferation, migration, and differentiation of NSCs were assessed, and the secretions of BDNF, CNTF, and VEGF from ACs were measured. Then the expressions of C3 and PTX3 were detected. Moreover, the mice were performed a global cerebral ischemia/reperfusion model and treated with LCH and (or) BO. After the assessments of Nissl staining, the expressions of Nestin, DCX, GFAP, C3, PTX3, p65 and p-p65 were probed. RESULTS The most appropriate duration of OGD for the injury of both NSCs and ACs was 6 h, and the optimized concentrations of LCH and BO were 1.30 μg/mL and 0.03 μg/mL, respectively. The moderate OGD environment induced NSCs proliferation, migration, astrogenesis, and neurogenesis, increased the secretions of CNTF and VEGF from ACs, and upregulated the expressions of C3 and PTX3. For the ACs, LCH further increased the secretions of BDNF and CNTF, enhanced PTX3 expression, and reduced C3 expression. Additionally, the conditioned medium from LCH-treated ACs further enhanced NSC proliferation, migration, and neurogenesis. The in vivo study showed that LCH markedly enhanced the Nissl score and neurogenesis, and decreased astrogenesis which was accompanied by downregulations of C3, p-p65, and p-p65/p65 and upregulation of PTX3. BO not only decreased the expression of C3 in ACs both in vitro and in vivo but also downregulated p-p65 and p-p65/p65 in vivo. Additionally, BO promoted the therapeutic effect of LCH for most indices. CONCLUSION A certain degree of OGD might induce ACs to stimulate the proliferation, astrogenesis, and neurogenesis of NSCs. LCH and BO exhibited a marked synergy in promoting ACs-mediated neurogenesis and reducing astrogenesis, in which LCH played a dominant role and BO boosted the effect of LCH. The mechanism of LCH might be involved in switching the polarization of ACs from A1 to A2, while BO preferred to inhibit the formation of A1 phenotype via downregulating NF-κB pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fengjiao Deng
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xueqing Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fanghan Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yue Zhu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bin Yu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ming Ruan
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Waste Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211117, China.
| |
Collapse
|
11
|
Li C, Jiang M, Fang Z, Chen Z, Li L, Liu Z, Wang J, Yin X, Wang J, Wu M. Current evidence of synaptic dysfunction after stroke: Cellular and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14744. [PMID: 38727249 PMCID: PMC11084978 DOI: 10.1111/cns.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhi‐Ting Fang
- Department of Pathophysiology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Li Li
- Department of Intensive Care UnitThe Affiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
12
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
13
|
Montero-Almagro G, Bernal-Utrera C, Geribaldi-Doldán N, Nunez-Abades P, Castro C, Rodriguez-Blanco C. Influence of High-Intensity Interval Training on Neuroplasticity Markers in Post-Stroke Patients: Systematic Review. J Clin Med 2024; 13:1985. [PMID: 38610750 PMCID: PMC11012260 DOI: 10.3390/jcm13071985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Exercise has shown beneficial effects on neuronal neuroplasticity; therefore, we want to analyze the influence of high-intensity interval training (HIIT) on neuroplasticity markers in post-stroke patients. Methods: A systematic review of RCTs including studies with stroke participants was conducted using the following databases (PubMed, LILACS, ProQuest, PEDro, Web of Science). Searches lasted till (20/11/2023). Studies that used a HIIT protocol as the main treatment or as a coadjutant treatment whose outcomes were neural plasticity markers were used and compared with other exercise protocols, controls or other kinds of treatment. Studies that included other neurological illnesses, comorbidities that interfere with stroke or patients unable to complete a HIIT protocol were excluded. HIIT protocol, methods to assess intensity, neuroplasticity markers (plasmatic and neurophysiological) and other types of assessments such as cognitive scales were extracted to make a narrative synthesis. Jadad and PEDro scales were used to assess bias. Results: Eight articles were included, one included lacunar stroke (less than 3 weeks) and the rest had chronic stroke. The results found here indicate that HIIT facilitates neuronal recovery in response to an ischemic injury. This type of training increases the plasma concentrations of lactate, BDNF and VEGF, which are neurotrophic and growth factors involved in neuroplasticity. HIIT also positively regulates other neurophysiological measurements that are directly associated with a better outcome in motor learning tasks. Conclusions: We conclude that HIIT improves post-stroke recovery by increasing neuroplasticity markers. However, a limited number of studies have been found indicating that future studies are needed that assess this effect and include the analysis of the number of intervals and their duration in order to maximize this effect.
Collapse
Affiliation(s)
- Gines Montero-Almagro
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
| | - Carlos Bernal-Utrera
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
| | - Noelia Geribaldi-Doldán
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain;
| | - Pedro Nunez-Abades
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41013 Seville, Spain
| | - Carmen Castro
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
- Department of Biomedicine, Biotechnology and Public Health, Area of Physiology, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Cleofas Rodriguez-Blanco
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
| |
Collapse
|
14
|
Boukhatem I, Fleury S, Jourdi G, Lordkipanidzé M. The intriguing role of platelets as custodians of brain-derived neurotrophic factor. Res Pract Thromb Haemost 2024; 8:102398. [PMID: 38706782 PMCID: PMC11066552 DOI: 10.1016/j.rpth.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
A State of the Art lecture titled "Platelets and neurotrophins" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Neurotrophins, a family of neuronal growth factors known to support cognitive function, are increasingly recognized as important players in vascular health. Indeed, along with their canonical receptors, neurotrophins are expressed in peripheral tissues, particularly in the vasculature. The better-characterized neurotrophin in vascular biology is the brain-derived neurotrophic factor (BDNF). Its largest extracerebral pool resides within platelets, partly inherited from megakaryocytes and also likely internalized from circulation. Activation of platelets releases vast amounts of BDNF into their milieu and interestingly leads to platelet aggregation through binding of its receptor, the tropomyosin-related kinase B, on the platelet surface. As BDNF is readily available in plasma, a mechanism to preclude excessive platelet activation and aggregation appears critical. As such, binding of BDNF to α2-macroglobulin hinders its ability to bind its receptor and limits its platelet-activating effects to the site of vascular injury. Altogether, addition of BDNF to a forming clot facilitates not only paracrine platelet activation but also binding to fibrinogen, rendering the resulting clot more porous and plasma-permeable. Importantly, release of BDNF into circulation also appears to be protective against adverse cardiovascular and cerebrovascular outcomes, which has been reported in both animal models and epidemiologic studies. This opens an avenue for platelet-based strategies to deliver BDNF to vascular lesions and facilitate wound healing through its regenerative properties. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
- Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Innovative Therapies in Haemostasis, Paris, France
- Service d’Hématologie Biologique, Assistance Publique : Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Singh B, Huang D. The Role of Circadian Rhythms in Stroke: A Narrative Review. Neurochem Res 2024; 49:290-305. [PMID: 37838637 DOI: 10.1007/s11064-023-04040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Stroke, a debilitating condition often leading to long-term disability, poses a substantial global concern and formidable challenge. The increasing incidence of stroke has drawn the attention of medical researchers and neurologists worldwide. Circadian rhythms have emerged as pivotal factors influencing stroke's onset, pathogenesis, treatment, and outcomes. To gain deeper insights into stroke, it is imperative to explore the intricate connection between circadian rhythms and stroke, spanning from molecular mechanisms to pathophysiological processes. Despite existing studies linking circadian rhythm to stroke onset, there remains a paucity of comprehensive reviews exploring its role in pathogenesis, treatment, and prognosis. This review undertakes a narrative analysis of studies investigating the relationship between circadian variation and stroke onset. It delves into the roles of various physiological factors, including blood pressure, coagulation profiles, blood cells, catecholamines, cortisol, and the timing of antihypertensive medication, which contribute to variations in circadian-related stroke risk. At a molecular level, the review elucidates the involvement of melatonin, circadian genes, and glial cells in the pathophysiology. Furthermore, it provides insights into the diverse factors influencing stroke treatment and outcomes within the context of circadian variation. The review underscores the importance of considering circadian rhythms when determining the timing of stroke interventions, emphasizing the necessity for personalized stroke management strategies that incorporate circadian rhythms. It offers valuable insights into potential molecular targets and highlights areas that require further exploration to enhance our understanding of the underlying pathophysiology. In comparison to the published literature, this manuscript distinguishes itself through its coverage of circadian rhythms' impact on stroke across the entire clinical spectrum. It presents a unique synthesis of epidemiological, clinical, molecular, and cellular evidence, underscoring their collective significance.
Collapse
Affiliation(s)
- Bivek Singh
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Medicine, National Cardiac Centre, Basundhara, Kathmandu, , Bagmati Province, Nepal.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Mayor RS, Ferreira NR, Lanzaro C, Castelo-Branco M, Valentim A, Donato H, Lapa T. Noninvasive transcranial brain stimulation in central post-stroke pain: A systematic review. Scand J Pain 2024; 24:sjpain-2023-0130. [PMID: 38956966 DOI: 10.1515/sjpain-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The aim of this systematic review is to analyze the efficacy of noninvasive brain stimulation (NBS) in the treatment of central post-stroke pain (CPSP). METHODS We included randomized controlled trials testing the efficacy of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation versus placebo or other usual therapy in patients with CPSP. Articles in English, Portuguese, Spanish, Italian, and French were included. A bibliographic search was independently conducted on June 1, 2022, by two authors, using the databases MEDLINE (PubMed), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and Web of Science Core Collection. The risk of bias was assessed using the second version of the Cochrane risk of bias (RoB 2) tool and the certainty of the evidence was evaluated through Grading of Recommendations Assessment, Development and Evaluation. RESULTS A total of 2,674 records were identified after removing duplicates, of which 5 eligible studies were included, involving a total of 119 patients. All five studies evaluated repetitive TMS, four of which stimulated the primary motor cortex (M1) and one stimulated the premotor/dorsolateral prefrontal cortex. Only the former one reported a significant pain reduction in the short term, while the latter one was interrupted due to a consistent lack of analgesic effect. CONCLUSION NBS in the M1 area seems to be effective in reducing short-term pain; however, more high-quality homogeneous studies, with long-term follow-up, are required to determine the efficacy of this treatment in CSPS.
Collapse
Affiliation(s)
- Rita Sotto Mayor
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Natália R Ferreira
- Institute of Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camile Lanzaro
- Anesthesiology Department, Local Unit of Health in Alto Minho, Viana do Castelo, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Ana Valentim
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Helena Donato
- Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Teresa Lapa
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
17
|
Zabroda EN, Amelina VV, Gordeev AD, Sakovsky IV, Bochkarev MV, Kolomeichuk SN, Kayumova EE, Vasilieva EY, Sviryaev YV, Korostovtseva LS. [Brain-derived neurotrophic factor in the acute and early recovery period of ischemic stroke: the role of nocturnal hypoxemia]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:72-78. [PMID: 38934669 DOI: 10.17116/jnevro202412405272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To study the relationship between brain-derived neurotrophic factor (BDNF) and the severity of nocturnal hypoxemia in patients in the acute and early recovery period of ischemic stroke (IS). MATERIAL AND METHODS We enrolled 44 patients (27 men, 17 women), aged 18-85 years, in the acute phase of IS. At 3-month follow-up, 35 people were examined (21 men and 14 women). In the acute period, in addition to routine diagnostic procedures, respiratory monitoring was carried out, and the serum level of BDNF was measured by enzyme-linked immunosorbent assay. BDNF level was also evaluated at 3-month follow-up visit. Neurological status and its dynamics in the acute period of stroke were assessed as part of the clinical routine according to the National Institutes of Health Stroke Scale (NIHSS) at admission and discharge. RESULTS We found a direct correlation between the duration of hypoxemia with SpO2 less than 90% (r=0.327, p=0.035) and less than 85% (r=0.461, p=0.003) and BDNF level in the acute phase of IS. BDNF level in the acute period of IS was negatively correlated with the minimum saturation value (r=-0.328, p=0.034). There was a direct relationship between BDNF level in the early recovery period and the duration of hypoxemia with SpO2 less than 85% (r=-0.389, p=0.028). A regression model showed that BDNF level was associated with the minimum SpO2 level. No significant associations were found with indicators of sleep-disordered breathing severity, such as the apnea-hypopnea index and the oxygen desaturation index. CONCLUSION The severity of nocturnal hypoxemia is associated with the increase in BDNF levels both in the acute and recovery periods of IS, regardless of the presence of concomitant breathing disorders during sleep.
Collapse
Affiliation(s)
- E N Zabroda
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| | - V V Amelina
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Herzen State Pedagogical University, St. Petersburg, Russia
| | - A D Gordeev
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| | - I V Sakovsky
- Saint Petersburg Medical and Social Institute, St. Petersburg, Russia
| | - M V Bochkarev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - S N Kolomeichuk
- Institute of Biology of Karelian Research Centre, Petrozavodsk, Russia
| | - E E Kayumova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - E Y Vasilieva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Y V Sviryaev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | |
Collapse
|
18
|
Wang W, Lu D, Shi Y, Wang Y. Exploring the Neuroprotective Effects of Lithium in Ischemic Stroke: A literature review. Int J Med Sci 2024; 21:284-298. [PMID: 38169754 PMCID: PMC10758146 DOI: 10.7150/ijms.88195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Ischemic stroke ranks among the foremost clinical causes of mortality and disability, instigating neuronal degeneration, fatalities, and various sequelae. While standard treatments, such as intravenous thrombolysis and endovascular thrombectomy, prove effective, they come with limitations. Hence, there is a compelling need to develop neuroprotective agents capable of improving the functional outcomes of the nervous system. Numerous preclinical studies have demonstrated that lithium can act in multiple molecular pathways, including glycogen synthase kinase 3(GSK-3), the Wnt signaling pathway, the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathway, brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and glutamate receptors. Through these pathways, lithium has been shown to affect inflammation, autophagy, apoptosis, ferroptosis, excitotoxicity, and other pathological processes, thereby improving central nervous system (CNS) damage caused by ischemic stroke. Despite these promising preclinical findings, the number of clinical trials exploring lithium's efficacy remains limited. Additional trials are imperative to thoroughly ascertain the effectiveness and safety of lithium in clinical settings. This review delineates the mechanisms underpinning lithium's neuroprotective capabilities in the context of ischemic stroke. It elucidates the intricate interplay between these mechanisms and sheds light on the involvement of mitochondrial dysfunction and inflammatory markers in the pathophysiology of ischemic stroke. Furthermore, the review offers directions for future research, thereby advancing the understanding of the potential therapeutic utility of lithium and establishing a theoretical foundation for its clinical application.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Dunlin Lu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Youkui Shi
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology Ⅱ, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
19
|
Sadhukhan D, Biswas A, Mishra S, Chatterjee K, Maji D, Mitra P, Mukherjee P, Podder G, Ray BK, Biswas A, Banerjee TK, Hui SP, Deb I. Genetic Variations and Altered Blood mRNA Level of Circadian Genes and BDNF as Risk Factors of Post-Stroke Cognitive Impairment Among Eastern Indians. Neuromolecular Med 2023; 25:586-595. [PMID: 37814155 DOI: 10.1007/s12017-023-08761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Post-stroke cognitive impairment (PSCI) is a clinical outcome in around 30% of post-stroke survivors. BDNF is a major gene in this regard. It is regulated by circadian rhythm. The circadian genes are correlated with stroke timings at molecular level. However, studies suggesting the role of these on susceptibility to PSCI are limited. We aim here to determine: (a) genetic risk variants in circadian clock genes, BDNF and (b) dysregulation in expression level of CLOCK, BMAL1, and BDNF that may be associated with PSCI. BDNF (rs6265G/A, rs56164415C/T), CLOCK (rs1801260T/C, rs4580704G/C), and CRY2 (rs2292912C/G) genes variants were genotyped among 119 post-stroke survivors and 292 controls from Eastern part of India. In addition, we analyzed their gene expression in Peripheral blood Mononuclear cells (PBMC) from 15 PSCI cases and 12 controls. The mRNA data for BDNF was further validated by its plasma level through ELISA (n = 38). Among the studied variants, only rs4580704/CLOCK showed an overall association with PSCI (P = 0.001) and lower Bengali Mini-Mental State Examination (BMSE) score. Its 'C' allele showed a correlation with attention deficiency. The language and memory impairments showed association with rs6265/BDNF, while the 'CC' genotype of rs2292912/CRY2 negatively influenced language and executive function. A significant decrease in gene expression for CLOCK and BDNF in PBMC (influenced by specific genotypes) of PSCI patients was observed than controls. Unlike Pro-BDNF, plasma-level mBDNF was also lower in them. Our results suggest the genetic variants in CLOCK, CRY2, and BDNF as risk factors for PSCI among eastern Indians. At the same time, a lowering expression of CLOCK and BDNF genes in PSCI patients than controls describes their transcriptional dysregulation as underlying mechanism for post-stroke cognitive decline.
Collapse
Affiliation(s)
- Dipanwita Sadhukhan
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India.
| | - Arindam Biswas
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Smriti Mishra
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Koustav Chatterjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Daytee Maji
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Parama Mitra
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Priyanka Mukherjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Gargi Podder
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Biman Kanti Ray
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Atanu Biswas
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Tapas Kumar Banerjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Ishani Deb
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
20
|
Fioranelli M, Garo ML, Roccia MG, Prizbelek B, Sconci FR. Brain-Heart Axis: Brain-Derived Neurotrophic Factor and Cardiovascular Disease-A Review of Systematic Reviews. Life (Basel) 2023; 13:2252. [PMID: 38137853 PMCID: PMC10744648 DOI: 10.3390/life13122252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The brain-heart axis is an intra- and bidirectional complex that links central nervous system dysfunction and cardiac dysfunction. In recent decades, brain-derived neurotrophic factor (BDNF) has emerged as a strategic molecule involved in both brain and cardiovascular disease (CVD). This systematic review of systematic reviews aimed to (1) identify and summarize the evidence for the BDNF genotype and BDNF concentration in CVD risk assessment, (2) evaluate the evidence for the use of BDNF as a biomarker of CVD recovery, and (3) evaluate rehabilitation approaches that can restore BDNF concentration. METHODS A comprehensive search strategy was developed using PRISMA. The risk of bias was assessed via ROBIS. RESULTS Seven studies were identified, most of which aimed to evaluate the role of BDNF in stroke patients. Only two systematic reviews examined the association of BDNF concentration and polymorphism in CVDs other than stroke. CONCLUSIONS The overall evidence showed that BDNF plays a fundamental role in assessing the risk of CVD occurrence, because lower BDNF concentrations and rs6265 polymorphism are often associated with CVD. Nevertheless, much work remains to be carried out in current research to investigate how BDNF is modulated in different cardiovascular diseases and in different populations.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy; (M.F.); (M.G.R.)
| | - Maria Luisa Garo
- Istituto Terapie Sistemiche Integrate, Casa di Cura Sanatrix, 00199 Rome, Italy; (B.P.); (F.R.S.)
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy; (M.F.); (M.G.R.)
| | - Bianca Prizbelek
- Istituto Terapie Sistemiche Integrate, Casa di Cura Sanatrix, 00199 Rome, Italy; (B.P.); (F.R.S.)
| | - Francesca Romana Sconci
- Istituto Terapie Sistemiche Integrate, Casa di Cura Sanatrix, 00199 Rome, Italy; (B.P.); (F.R.S.)
| |
Collapse
|
21
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
22
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
23
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
24
|
Tuwar MN, Chen WH, Chiwaya AM, Yeh HL, Nguyen MH, Bai CH. Brain-Derived Neurotrophic Factor (BDNF) and Translocator Protein (TSPO) as Diagnostic Biomarkers for Acute Ischemic Stroke. Diagnostics (Basel) 2023; 13:2298. [PMID: 37443691 DOI: 10.3390/diagnostics13132298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) interacts with tropomyosin-related kinase B (TrkB) to promote neuronal growth, survival, differentiation, neurotransmitter release, and synaptic plasticity. The translocator protein (TSPO) is known to be found in arterial plaques, which are a symptom of atherosclerosis and a contributory cause of ischemic stroke. This study aims to determine the diagnostic accuracy of plasma BDNF and TSPO levels in discriminating new-onset acute ischemic stroke (AIS) patients from individuals without acute ischemic stroke. A total of 90 AIS patients (61% male, with a mean age of 67.7 ± 12.88) were recruited consecutively in a stroke unit, and each patient was paired with two age- and gender-matched controls. The sensitivity, specificity, and area of the curve between high plasma BDNF and TSPO and having AIS was determined using receiver operating characteristic curves. Furthermore, compared to the controls, AIS patients exhibited significantly higher levels of BDNF and TSPO, blood pressure, HbA1c, and white blood cells, as well as higher creatinine levels. The plasma levels of BDNF and TSPO can significantly discriminate AIS patients from healthy individuals (AUC 0.76 and 0.89, respectively). However, combining the two biomarkers provided little improvement in AUC (0.90). It may be possible to use elevated levels of TSPO as a diagnostic biomarker in patients with acute ischemic stroke upon admission.
Collapse
Affiliation(s)
- Mayuri N Tuwar
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 106236, Taiwan
| | - Wei-Hung Chen
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| | - Arthur M Chiwaya
- CLIME Group, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, FMHS, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Hsu-Ling Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| | - Minh H Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 106236, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 106236, Taiwan
| |
Collapse
|
25
|
Lin TC, Tsai YC, Chen YA, Young TH, Wu CC, Chiang YH, Kao CH, Huang APH, Hsu YH, Chen KY, Tsai LK. Brain-derived neurotrophic factor contributes to neurogenesis after intracerebral hemorrhage: a rodent model and human study. Front Cell Neurosci 2023; 17:1170251. [PMID: 37252187 PMCID: PMC10210133 DOI: 10.3389/fncel.2023.1170251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Intracerebral hemorrhage (ICH) enhances neurogenesis in the subventricular zone (SVZ); however, the mechanism is not fully understood. We investigated the role of brain-derived neurotrophic factor (BDNF) in post-ICH neurogenesis in a rodent model and in patients with ICH using cerebrospinal fluid (CSF). Methods A rat model of ICH was constructed via stereotaxic injection of collagenase into the left striatum. Patients with ICH receiving an external ventricular drain were prospectively enrolled. CSF was collected from rats and patients at different post-ICH times. Primary cultured rat neural stem cells (NSCs) were treated with CSF with or without BDNF-neutralized antibody. Immunohistochemistry and immunocytochemistry were used to detect NSC proliferation and differentiation. The BDNF concentration in CSF was quantified using enzyme-linked immunosorbent assays (ELISA). Results In the rat model of ICH, the percentage of proliferating NSCs and neuroblasts in SVZ was elevated in bilateral hemispheres. The cultured rat NSCs treated with CSF from both rats and patients showed an increased capacity for proliferation and differentiation toward neuroblasts. BDNF concentration was higher in CSF collected from rats and patients with ICH than in controls. Blocking BDNF decreased the above-noted promotion of proliferation and differentiation of cultured NSCs by CSF treatment. In patients with ICH, the BDNF concentration in CSF and the neurogenesis-promoting capacity of post-ICH CSF correlated positively with ICH volume. Conclusion BDNF in CSF contributes to post-ICH neurogenesis, including NSC proliferation and differentiation toward neuroblasts in a rat model and patients with ICH.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chieh Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-An Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Che Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsin Kao
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hua Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
26
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
27
|
Serum Level of Brain-Derived Neurotrophic Factor and Thrombotic Type Are Predictive of Cognitive Impairment in the Acute Period of Ischemic Strokes Patients. Neurol Res Int 2023; 2023:5578850. [PMID: 36969561 PMCID: PMC10033208 DOI: 10.1155/2023/5578850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
40–70% of patients after a stroke, including a mild one, may experience cognitive impairment. Brain-derived neurotrophic factor (BDNF) plays a significant role in the pathogenesis and rehabilitation of ischemic stroke and also affects the patients’ recovery prognosis. An association between cognitive impairment in the poststroke period and lower peripheral BDNF levels is known, but the prognostic significance of serum BDNF levels and clinical characteristics for the risk of developing cognitive impairment in the acute period remains uncertain. We conducted a prospective cohort study of patients in the acute phase of ischemic stroke. Clinical examination, assessment of neurological status, neuropsychological testing, and laboratory analyzes were performed on patients at 1 and 14 days after ischemic stroke. The state of cognitive functions was assessed by the Mini-Mental State Examination scale. Quantification of BDNF in blood serum was performed by solid-phaseenzyme-linked immunosorbent assay (ELISA). We found that within 14 days after an acute ischemic stroke, we found a decrease in the clinical severity of patients compared to 1 day of the onset of the disease before the start of treatment and a significant decrease in the level of BDNF in the blood serum of patients with ischemic stroke both on the first and on the 14th day. However, during the 2 weeks of the acute period, no significant changes were detected, despite the general improvement of the clinical condition. In our study, cognitive impairment was found in almost half of the patients on the first day of ischemic stroke, and there was no significant reduction in this prevalence over 2 weeks. We found that a low level of BDNF and a thrombotic subtype of ischemic stroke can be risk factors for cognitive impairment in the acute period, which can be useful in planning treatment and rehabilitation measures.
Collapse
|
28
|
Goraltchouk A, Mankovskaya S, Kuznetsova T, Hladkova Z, Hollander JM, Luppino F, Seregin A. Comparative evaluation of rhFGF18 and rhGDF11 treatment in a transient ischemia stroke model. Restor Neurol Neurosci 2023; 41:257-270. [PMID: 38363623 DOI: 10.3233/rnn-231347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Pharmacological treatments for ischemic stroke remain limited to thrombolysis, which is associated with increased risk of potentially fatal hemorrhage. Treatments with Recombinant Human Fibroblast Growth Factor 18 (rhFGF18) and Growth and Differentiation Factor 11 (rhGDF11) appear promising based on different preclinical models. The goal of this study was to compare the effects of rhFGF18 and rhGDF11 directly on survival, behavioral deficits, and histological fingerprint of cerebral ischemia in the Wistar rat middle cerebral artery occlusion (MCAO) model of stroke. Methods Ischemia-reperfusion injury was induced using a 2-hour transient MCAO. Animals were administered rhFGF18 (infusion), rhGDF11 (multi-injection), or Phosphate Buffered Saline (PBS) vehicle control and followed for 42 days. Motor-Cognitive deficits were evaluated using the Morris Water Maze at Days 0 (pre-MCAO), 7, 21, and 42. Histopathological assessments were performed on Days 21 and 42. Results Day 7 post-ischemia water maze performance times increased 38.3%, 2.1%, and 23.1% for PBS, rhFGF18, and rhGDF11-treated groups, respectively. Fraction of neurons with abnormal morphology (chromatolysis, pyknotic nuclei, somal degeneration) decreased in all groups toward Day 42 and was lowest for rhFGF18. AChE-positive fiber density and activity increased over time in the rhFGF18 group, remained unchanged in the rhGDF11 treatment arm, and declined in the PBS control. Metabolic increases were greatest in rhGDF11 treated animals, with both rhFGF18 and rhGDF11 achieving improvements over PBS, as evidenced by increased succinate dehydrogenase and lactate dehydrogenase activity. Finally, rhFGF18 treatment exhibited a trend for reduced mortality relative to PBS (5.6%, 95% CI [27.3%, 0.1% ] vs. 22.2%, 95% CI [47.6%, 6.4% ]). Conclusions rhFGF18 treatment appears promising in improving survival and promoting motor-cognitive recovery following cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | | | - Zhanna Hladkova
- Institute of Physiology, National Academy of Sciences, Minsk, Belarus
| | - Judith M Hollander
- Remedium Bio, Inc., Needham, MA, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
29
|
Chen S, Huang W, He T, Zhang M, Jin X, Jiang L, Xu H, Chen K. Exploring the Causality Between Plasma Brain-Derived Neurotrophic Factor and Neurological Diseases: A Mendelian Randomization Study. J Alzheimers Dis 2023; 96:135-148. [PMID: 37742652 DOI: 10.3233/jad-230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a protein synthesized in the brain and widely expressed in the nervous system. Previous studies have demonstrated a controversial role of BDNF in neurological diseases. OBJECTIVE In this study, we aimed to assess the association between BDNF levels and the risk of neurological diseases by Mendelian randomization analysis. METHODS From a genome-wide association analysis of plasma proteins comprising 3,301 European participants, we isolated 25 genetic variations as instrumental variables for BDNF levels. Summary statistics data on six common neurological diseases as outcome variables. Two-sample Mendelian randomization (MR) analysis was used to assess whether plasma BDNF is causally related to neurological diseases. We also performed sensitivity analysis to ensure the robustness of the results and reverse MR to exclude potential reverse causality. RESULTS We confirmed the significant causal relationship between BDNF levels and the risk of Alzheimer's disease (AD) (OR, 0.92; 95% CI, 0.85, 0.98; p = 0.013). Other methods have also shown similar results. We infer that BDNF also reduces the risk of epilepsy (OR, 0.94; 95% CI, 0.90, 0.98; p = 0.004). In reverse MR analysis, we also found that AD can affect the level of BDNF. CONCLUSIONS Our study suggests higher plasma BDNF was associated with the reduced risk of AD. Moreover, higher plasma BDNF is a protective factor on AD and focal epilepsy. The results provide credence to the idea that BDNF may play a significant role in the development of focal epilepsy and AD.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Aycan A, Tas A, Yeltekin AC, El-Tekreti SAA, Arslan A, Arslan M, Aycan N. Evaluation of cholinergic enzymes and selected biochemical parameters in the serum of patients with a diagnosis of acute subarachnoid hemorrhage. Transl Neurosci 2023; 14:20220311. [PMID: 37873057 PMCID: PMC10590606 DOI: 10.1515/tnsci-2022-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
Background Spontaneous subarachnoid hemorrhage (SAH) is the most severe form of hemorrhagic stroke and accounts for 5-7% of all strokes. Several chemical enzymes and cytokines are thought to cause reactions that may affect the mortality and morbidity of SAH patients. This study aimed to examine the possible relationships between these parameters and the occurrence of SAH and the clinical-radiological parameters in patients with acute SAH. Methods This study evaluated 44 patients, including 20 with SAH and 24 controls. We obtained blood from the patients and control groups, which was stored in heparinized tubes and used in determining tumor necrosis factor alpha (TNF-α), brain-derived neurotrophic factor (BDNF), acetylcholinesterase (AChE), caspase-3, and butyrylcholinesterase (BChE) enzymes. Results TNF-α, BDNF, AChE, and BChE enzyme levels were not related to the Glasgow Coma scale (GCS) score in the patient group (p > 0.05), whereas higher enzyme levels of caspase-3 were associated with lower GCS scores (p < 0.05). The difference between the control and patient groups in terms of mean TNF-α levels was statistically significant (p < 0.01). The BDNF levels were statistically insignificant in the patient groups (p > 0.05). Caspase-3, AChE, and BChE levels were significantly different between the control and patient groups (p < 0.01). Conclusions Our results may be valuable for predicting the prognosis, diagnosis, and follow-up of patients with SAH. However, further studies are required to elucidate the relationship between the clinical and radiological results in patients with SAH and certain enzymes, cytokines, and growth factors.
Collapse
Affiliation(s)
- Abdurrahman Aycan
- Department of Neurosurgery, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| | - Abdurrahim Tas
- Department of Neurosurgery, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | | | | | - Ayse Arslan
- Department of Nutrition and Dietetics, Yuzuncu Yil University Faculty of Health Sciences, Van, Turkey
| | - Mustafa Arslan
- Department of Neurosurgery, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| | - Nur Aycan
- Department of Pediatrics, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| |
Collapse
|
31
|
Neuroprotective and Neuroregenerative Properties of Dimeric Dipeptide Mimetics of Individual NGF and BDNF Loops Under Conditions of an Experimental Ischemic Stroke Model. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol 2022; 13:889404. [PMID: 35770087 PMCID: PMC9236302 DOI: 10.3389/fphar.2022.889404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
P. Notoginseng Saponins (PNS), the main active component of herbal medicine Panax notoginseng, has been widely used to treat cerebrovascular diseases. It has been acknowledged that PNS exerted protection on nerve injuries induced by ischemic stroke, however, the long-term impacts of PNS on the restoration of neurological defects and neuroregeneration after stroke have not been thoroughly studied and the underlying molecular mechanism of stimulating neurogenesis is difficult to precisely clarify, much more in-depth researches are badly needed. In the present study, cerebral ischemia injury was induced by microsphere embolism (ME) in rats. After 14 days, PNS administration relieved cerebral ischemia injury as evidenced by alleviating neurological deficits and reducing hippocampal pathological damage. What’s more, PNS stimulated hippocampal neurogenesis by promoting cell proliferation, migration and differentiation activity and modulated synaptic plasticity. Increased number of BrdU/Nestin, BrdU/DCX and NeuroD1-positive cells and upregulated synapse-related GAP43, SYP, and PSD95 expression were observed in the hippocampus. We hypothesized that upregulation of brain-derived neurotrophic factor (BDNF) expression and activation of Akt/mTOR/p70S6K signaling after ME could partially underlie the neuroprotective effects of PNS against cerebral ischemia injury. Our findings offer some new viewpoints into the beneficial roles of PNS against ischemic stroke.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianxun Liu,
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangrui Wang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Brain-Derived Neurotropic Factor in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10051143. [PMID: 35625880 PMCID: PMC9138678 DOI: 10.3390/biomedicines10051143] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, neurodegenerative diseases cause a significant degree of disability and distress. Brain-derived neurotrophic factor (BDNF), primarily found in the brain, has a substantial role in the development and maintenance of various nerve roles and is associated with the family of neurotrophins, including neuronal growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). BDNF has affinity with tropomyosin receptor kinase B (TrKB), which is found in the brain in large amounts and is expressed in several cells. Several studies have shown that decrease in BDNF causes an imbalance in neuronal functioning and survival. Moreover, BDNF has several important roles, such as improving synaptic plasticity and contributing to long-lasting memory formation. BDNF has been linked to the pathology of the most common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. This review aims to describe recent efforts to understand the connection between the level of BDNF and neurodegenerative diseases. Several studies have shown that a high level of BDNF is associated with a lower risk for developing a neurodegenerative disease.
Collapse
|
34
|
Bako AT, Potter T, Tannous J, Pan AP, Johnson C, Baig E, Downer B, Vahidy FS. Sex differences in post-stroke cognitive decline: A population-based longitudinal study of nationally representative data. PLoS One 2022; 17:e0268249. [PMID: 35522611 PMCID: PMC9075630 DOI: 10.1371/journal.pone.0268249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background Sex differences in post-stroke cognitive decline have not been systematically evaluated in a nationally representative cohort. We use a quasi-experimental design to investigate sex differences in rate of post-stroke cognitive decline. Methods Utilizing the event study design, we use the Health and Retirement Study (HRS) data (1996–2016) to evaluate the differences (percentage points [95% Confidence interval]) in the rate of change in cognitive function, measured using the modified version of the Telephone Interview for Cognitive Status (TICS-m) score, before and after incident stroke, and among patients with and without incident stroke. We estimated this event study model for the overall study population and separately fit the same model for male and female participants. Results Of 25,872 HRS participants included in our study, 14,459 (55.9%) were females with an overall mean age (SD) of 61.2 (9.3) years. Overall, 2,911 (11.3%) participants reported experiencing incident stroke. Participants with incident stroke (vs. no stroke) had lower baseline TICS-m score (15.6 vs. 16.1). Among participants with incident stroke, the mean pre-stroke TICS-m score was higher than the mean post-stroke TICS-m score (14.9 vs. 12.7). Event study revealed a significant short-term acceleration of cognitive decline for the overall population (4.2 [1.7–6.6] percentage points, p value = 0.001) and among female participants (5.0 [1.7–8.3] percentage points, p value = 0.003). We, however, found no evidence of long-term acceleration of cognitive decline after stroke. Moreover, among males, incident stroke was not associated with significant changes in rate of post-stroke cognitive decline. Conclusion Females, in contrast to males, experience post-stroke cognitive deficits, particularly during early post-stroke period. Identifying the sex-specific stroke characteristics contributing to differences in post stroke cognitive decline may inform future strategies for reducing the burden of post-stroke cognitive impairment and dementia.
Collapse
Affiliation(s)
- Abdulaziz T. Bako
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
| | - Thomas Potter
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
| | - Jonika Tannous
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
| | - Alan P. Pan
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
| | - Carnayla Johnson
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
| | - Eman Baig
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
| | - Brian Downer
- Department of Nutrition, Metabolism & Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Farhaan S. Vahidy
- Center for Outcomes Research, Houston Methodist, Houston, TX, United States of America
- Houston Methodist Neurological Institute, Houston, TX, United States of America
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
35
|
Song L, Wu Q, Fu X, Wang W, Dai Z, Gu Y, Zhuo Y, Fang S, Zhao W, Wang X, Wang Q, Fang J. In Silico Identification and Mechanism Exploration of Active Ingredients against Stroke from An-Gong-Niu-Huang-Wan (AGNHW) Formula. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5218993. [PMID: 35432729 PMCID: PMC9006076 DOI: 10.1155/2022/5218993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
An-Gong-Niu-Huang-Wan (AGNHW) is a well-known formula for treating cerebrovascular diseases, with roles including clearing away heat, detoxification, and wake-up consciousness. In recent years, AGNHW has been commonly used for the treatment of ischemic stroke, but the mechanism by which AGNHW relieves stroke has not been clearly elucidated. In the current study, we developed a multiple systems pharmacology-based framework to identify the potential antistroke ingredients in AGNHW and explore the underlying mechanisms of action (MOA) of AGNHW against stroke from a holistic perspective. Specifically, we performed a network-based method to identify the potential antistroke ingredients in AGNHW by integrating the drug-target network and stroke-associated genes. Furthermore, the oxygen-glucose deprivation/reoxygenation (OGD/R) model was used to validate the anti-inflammatory effects of the key ingredients by determining the levels of inflammatory cytokines, including interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. The antiapoptotic effects of the key ingredients were also confirmed in vitro. Integrated pathway analysis of AGNHW revealed that it might regulate three biological signaling pathways, including IL-17, TNF, and PI3K-AKT, to play a protective role in stroke. Moreover, 30 key antistroke ingredients in AGNHW were identified via network-based in silico prediction and were confirmed to have known neuroprotective effects. After drug-like property evaluation and pharmacological validation in vitro, scutellarein (SCU) and caprylic acid (CA) were selected for further antistroke investigation. Finally, systems pharmacology-based analysis of CA and SCU indicated that they might exert antistroke effects via the apoptotic signaling pathway and inflammatory response, which was further validated in an in vitro stroke model. Overall, the current study proposes an integrative systems pharmacology approach to identify antistroke ingredients and demonstrate the underlying pharmacological MOA of AGNHW in stroke, which provides an alternative strategy to investigate novel traditional Chinese medicine formulas for complex diseases.
Collapse
Affiliation(s)
- Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510404, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou 570100, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wentao Wang
- School of Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou 570100, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoyun Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510404, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
36
|
Mojtabavi H, Shaka Z, Momtazmanesh S, Ajdari A, Rezaei N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J Transl Med 2022; 20:126. [PMID: 35287688 PMCID: PMC8919648 DOI: 10.1186/s12967-022-03312-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Background Stroke, an acute cerebrovascular event, is a leading cause of disability, placing a significant psycho-socioeconomic burden worldwide. The adaptation and reorganization process following any neuronal damage is regarded as neuroplasticity. Among many factors believed to attribute to this process, Brain-derived Neurotrophic Factor (BDNF) is a neurotrophin coordinating neuroplasticity after various neurological disorders such as stroke. Methods We conducted a systematic search in the main electronic medical databases in January 2021. Primarily we want to compare BDNF levels between patients with stroke and healthy controls (HC). Additional aims included investigation of (1) longitudinal changes in the BDNF levels post-stroke, (2) effects of physical training, (3) repeated transcranial magnetic stimulation (rTMS), and presence of depression on BDNF levels in patients with stroke. Results Among 6243 reviewed records from PubMed, Web of Science, and Scopus, 62 studies were eligible for inclusion in our systematic review. Subjects with stroke, n = 1856, showed lower BDNF levels compared to HC, n = 1191 (SMD [95%CI] = − 1.04 [− 1.49 to − 0.58]). No significant difference was detected in the level of BDNF through time points past stroke. BDNF levels were lower in the patients with depression compared to non-depressed subjects (SMD [95%CI] = − 0.60 [− 1.10 to − 0.10]). Physical training had an immediate positive effect on the BDNF levels and not statistically significant effect in the long term; SMD [95%CI] = 0.49 [0.09 to 0.88]) and SMD [95%CI] = 0.02 [− 0.43 to 0.47]). Lastly, rTMS showed no effect on the level of BDNF with 0.00 SMD. Conclusions Our study confirms that stroke significantly decreases the level of BDNF in various domains such as cognition, affect, and motor function. As BDNF is the major representative of neuroplasticity within nervous system, it is believed that stroke has a significant impact on the CNS regeneration, which is permanent if left untreated. This effect is intensified with coexisting conditions such as depression which further decrease the BDNF level but the net impact yet needs to be discovered. We also conclude that exercise and some interventions such as different medications could effectively reverse the damage but further studies are crucial to reach the exact modality and dosage for their optimal effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03312-y.
Collapse
|
37
|
Sarmah D, Datta A, Kaur H, Kalia K, Borah A, Rodriguez AM, Yavagal DR, Bhattacharya P. Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Rev Rep 2022; 18:821-838. [PMID: 35112234 DOI: 10.1007/s12015-021-10315-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
AIM Stroke results in long term serious disability that affect millions across the globe. Several clinical and preclinical studies have reinforced the therapeutic use of stem cells in stroke patients to enhance their quality of life. Previous studies from our lab have demonstrated that 1*105 allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) when given intraarterially (IA) render neuroprotection by modulating the expression of inflammasomes. Sirtuins are a class of important deacylases having a significant role in cellular functioning. Sirtuin-1 (SIRT-1) is an important enzyme essential for regulating cellular metabolism, which is reduced following an ischemic episode. The present study aims to unviel the role of MSCs in regulating the brain SIRT-1 levels following stroke and the involvement of SIRT-1 in regulating inflammasome signaling to reduce cellular apoptosis towards rendering neuroprotection. MATERIALS AND METHODS 6 h post-reversible middle cerebral artery occlusion (MCAo), ovariectomized Sprague Dawley (SD) rats were infused intraarterially with 1*105 MSCs. 24 h after MCAo animals were examined for functional and behavioral outcomes. Brains were collected for assessing size of infarct and neuronal morphology. Molecular and immunofluroscence studies were also performed for assessing changes in gene and protein expressions. Extent of apoptosis was also determined in different groups. Inhibition study with SIRT-1 specific inhibitor EX-527 was also performed. RESULTS A reduction in infarct size and improvement in motor functional and behavioral outcomes following infusion of MSCs IA at 6 h post-stroke was observed. Increase in average neuronal density and neuronal length was also seen. Increased expression of SIRT-1, BDNF and concomitant reduction in the expression of different inflammatory and apoptotic markers in the brain cortical regions were observed following MSCs treatment. CONCLUSION Our study provides a preliminary evidence that post-stroke IA MSCs therapy regulates SIRT-1 to modulate NF-κB pathway to mitigate inflammasome signaling and cellular apoptosis. This study using IA approach for administering MSCs is highly relevant clinically. Our study is the first to report that neuroprotective effects of IA MSCs in rodent focal ischemia is mediated by SIRT-1 regulation of inflammasome signaling.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
38
|
Tereshin AE, Kiryanova VV, Reshetnik DA, Karyagina MV, Konstantinov KV, Lapin SV, Moshnikova AN. [The effect of non-invasive brain stimulation on neuroplasticity in the early recovery period after ischemic stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:5-12. [PMID: 36279371 DOI: 10.17116/kurort2022990515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
UNLABELLED The post-stroke cognitive impairment syndrome (PSCI) develops in 10-80% cases of ischemic stroke and leads to a significant patients' quality of life impairment. The standard program of cognitive rehabilitation includes nootropic agents therapy and neuro-cognitive training. The additional various methods of non-invasive brain stimulation (NIBS) application can improve the results of PSCI rehabilitation. PURPOSE OF THE STUDY Studying the different variants of NIBS influence on synaptic neuroplasticity in the early recovery period after ischemic stroke. MATERIAL AND METHODS The rehabilitation of 62 patients with PSCI syndrome after ischemic stroke outcomes were studied. The patients were assigned to 5 groups. Patients from the control group underwent standardized nootropic therapy and course sessions with a neuropsychologist. The rest of the patients were divided into 4 groups, in which, in addition to the basic program of cognitive rehabilitation, different options for the course use of NIBS were used: photochromotherapy (PCT) with narrow-band optical radiation (NOR) with a wavelength of 530 nm (green light); rhythmic transcranial magnetic stimulation (rTMS) with a low-intensity high-frequency running pulsed magnetic field; infrared radiation with a wavelength of 1-56 microns, modulated by terahertz frequencies (IRMT); bioacoustic correction (BAC). We analyzed the dynamics of changes in scores of MMSE scales, FAB, Roshchina. In order to assess the effect of NIBS on neuroplasticity, the concentrations of BDNF and antibodies to the NR2 fragment of the NMDA receptor were evaluated before and after the completion of the rehabilitation course. RESULTS Concentration values of antibodies to the NR2 subunit of the NMDA receptor in all groups remained consistently above the norm (more than 2 ng/ml) throughout the entire course of rehabilitation. Differences between groups in the dynamics of BDNF concentration in the peripheral blood were revealed. There was a significant (p<0.05) decrease in its concentration by almost 2 times by the end of rehabilitation course in control group. In the rTMS and IRMT groups, a decrease in the BDNF concentration was also recorded in dynamics, which, however, did not reach a significant level. There was no decrease in BDNF levels in the BAC group. There was an increase of this level in the PCT group. CONCLUSION The use of different types of NIBS in the program of cognitive rehabilitation of patients with PSCI syndrome contributes to an increase in the rehabilitation potential due to the activation of neurotrophin-mediated synaptic neuroplasticity. Green light PCT and BAC have the greatest effect on increasing neuroplasticity after ischemic stroke.
Collapse
Affiliation(s)
- A E Tereshin
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - V V Kiryanova
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - D A Reshetnik
- St. Petersburg SBHI «Nikolaevskaya hospital», St. Petersburg, Russia
| | - M V Karyagina
- St. Petersburg SBHI «Nikolaevskaya hospital», St. Petersburg, Russia
| | - K V Konstantinov
- Research Association «Clinic of Bioacoustic Correction», St. Petersburg, Russia
| | - S V Lapin
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - A N Moshnikova
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|