1
|
Cheng SY, Giguere D, Silverstein I, Conza A, Seddon JM, Kim S, Iwata T, Mueller C, Punzo C. Role of alpha-1 antitrypsin in Bruch's membrane integrity. Sci Rep 2025; 15:12223. [PMID: 40210893 PMCID: PMC11985914 DOI: 10.1038/s41598-025-96570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor that plays a crucial role in maintaining extracellular matrix integrity. Studies suggest that AAT augmentation therapy may benefit multiple eye diseases, including age-related macular degeneration (AMD). However, the function of endogenous AAT in the eye remains unclear. Here we used genetic knockout mice to study the role of AAT in eye health. We show that loss of AAT results in Bruch's membrane (BrM) thickening driven in part by increased laminin deposition with a concomitant decrease in collagen and elastin, which are two other critical BrM components. Interestingly, BrM remodeling due to excess extracellular protease activity reduced the age-related deposition at the BrM of apolipoprotein E, while increasing complement factor H and lowering secretion of the proangiogenic vascular endothelial growth factor. Despite these changes, the phagocytic function of the retinal pigment epithelium was not affected nor was the expression of genes that partake in photoreceptor cell metabolism. Consistent with loss of AAT resulting in changes that should alleviate AMD pathologies, human AMD donor eyes exhibited lower AAT expression levels in the BrM/choroid layer when compared to healthy donor eyes. Together, the study provides insight into AAT's function and its potential involvement in AMD.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Delaney Giguere
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ilana Silverstein
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Adrienne Conza
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Johanna M Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - San Kim
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Takeshi Iwata
- Divivion of Molecular and Cellular Biology, National Institute of Sensory Organ, NHO Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | | | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Genetics and Cellular Medicine and Horae Gene Therapy Center, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Wang T, Shuai P, Wang Q, Guo C, Huang S, Li Y, Wu W, Yi L. α‑1 Antitrypsin is a potential target of inflammation and immunomodulation (Review). Mol Med Rep 2025; 31:107. [PMID: 40017119 PMCID: PMC11881679 DOI: 10.3892/mmr.2025.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
α‑1 Antitrypsin (AAT) is an acute phase protein encoded by the serine protease inhibitor family A member 1 gene. This multifunctional protein serves several roles, including anti‑inflammatory, antibacterial, antiapoptotic and immune regulatory functions. The primary role of AAT is to protect tissues and organs from protease‑induced damage due to its function as a serine protease inhibitor. AAT is associated with the development of lung inflammation, liver inflammation and immune‑mediated inflammatory diseases, which are influenced by environmental and genetic factors. For instance, AAT acts as an anti‑inflammatory protein to prevent and reverse type I diabetes. The present study briefly reviewed the molecular properties and mechanisms of AAT, as well as advances in the study of lung, liver and inflammatory diseases associated with AAT. The potential of AAT as a diagnostic and therapeutic target for inflammatory and immune‑mediated inflammatory diseases was reviewed. In addition, the damaging and protective effects of AAT, and its effects on organ function were discussed.
Collapse
Affiliation(s)
- Tiantian Wang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Peimeng Shuai
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qingyu Wang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Caimao Guo
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuqi Huang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuanyuan Li
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wenyu Wu
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
3
|
Suphapimol V, Liu YH, Prato S, Karnowski A, Hardy C, Morelli AB, Jayasimhan A, Deliyanti D, Wilkinson-Berka JL. Alpha-1 antitrypsin reduces inflammation and vasculopathy in mice with oxygen-induced retinopathy. J Inflamm (Lond) 2025; 22:6. [PMID: 39934776 DOI: 10.1186/s12950-025-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Damage to the retinal vasculature is a major cause of vision loss and is influenced by a pro-inflammatory environment within retinal tissue. Alpha-1 antitrypsin (AAT) is a potent inhibitor of serine proteases and has anti-inflammatory properties. We hypothesised that AAT could reduce inflammation and vasculopathy in neovascular retinopathies including oxygen-induced retinopathy (OIR). METHODS Litters of C57BL/6J mice were randomised to develop OIR by exposure to high oxygen between postnatal days 7 to 12 resulting in vaso-obliteration (phase I OIR), and then room air from postnatal days 12 to 18 resulting in neovascularisation (phase II OIR). Control mice were exposed to room air. Separate cohorts of mice were administered control vehicle or human AAT (120 mg/kg) by intraperitoneal injection every second day in phase I or phase II OIR. RESULTS In phase I OIR, plasma levels of AAT were reduced compared to room air controls, and AAT treatment reduced vaso-obliteration. In phase II OIR, AAT treatment influenced inflammation by reducing the density of ionised calcium binding adaptor protein 1 + cells (microglia/macrophages) and modulating their cell process length and reducing mRNA levels of tumour necrosis factor and monocyte chemoattractant protein-1, but not interleukin-1b and interleukin-6 in retina. Furthermore, AAT treatment reduced retinal neovascularisation, gliosis, vascular endothelial growth factor mRNA and protein expression, and vascular leakage, compared to OIR controls. CONCLUSIONS This research demonstrates the vasculo-protective actions of AAT, and thereby the potential of AAT as a therapeutic option for neovascular retinopathies.
Collapse
Affiliation(s)
- Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | | - Abhirup Jayasimhan
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia.
- School of Biomedical Sciences, The University of Melbourne, Level 2, Medical Building 181, Grattan Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Lin HH, Yu IS, Cheng MS, Chang TJ, Lin HY, Chang YC, Ko CJ, Chen PH, Lin SW, Huang TC, Huang SY, Chen TY, Kan KW, Huang HP, Lee MS. Spint1 disruption in mouse pancreas leads to glucose intolerance and impaired insulin production involving HEPSIN/MAFA. Nat Commun 2024; 15:10537. [PMID: 39627229 PMCID: PMC11615295 DOI: 10.1038/s41467-024-54927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
SPINT1, a membrane-anchored serine protease inhibitor, regulates cascades of pericellular proteolysis while its tissue-specific functions remain incompletely characterized. In this study, we generate Spint1-lacZ knock-in mice and observe Spint1 expression in embryonic pancreatic epithelium. Pancreas-specific Spint1 disruption significantly diminishes islet size and mass, causing glucose intolerance and downregulation of MAFA and insulin. Mechanistically, the serine protease HEPSIN interacts with SPINT1 in β cells, and Hepsin silencing counteracts the downregulation of Mafa and Ins1 caused by Spint1 depletion. Furthermore, we demonstrate a potential interaction between HEPSIN and GLP1R in β cells. Spint1 silencing or Hepsin overexpression reduces GLP1R-related cyclic AMP levels and Mafa expression. Spint1-disrupted mice also exhibit a significant reduction in Exendin-4-induced insulin secretion. Moreover, SPINT1 expression increases in islets of prediabetic humans compared to non-prediabetic groups. The results unveil a role for SPINT1 in β cells, modulating glucose homeostasis and insulin production via HEPSIN/MAFA signaling.
Collapse
Affiliation(s)
- Hsin-Hsien Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Hung Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Chung Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wen Kan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Mazzuca C, Vitiello L, Travaglini S, Maurizi F, Finamore P, Santangelo S, Rigon A, Vadacca M, Angeletti S, Scarlata S. Immunological and homeostatic pathways of alpha -1 antitrypsin: a new therapeutic potential. Front Immunol 2024; 15:1443297. [PMID: 39224588 PMCID: PMC11366583 DOI: 10.3389/fimmu.2024.1443297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
α -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by hepatocytes and to a lesser extent by monocytes, macrophages, intestinal epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1 locus, also known as PI locus, highly polymorphic with at least 100 allelic variants described and responsible for different A1AT serum levels and function. A1AT inhibits a variety of serine proteinases, but its main target is represented by Neutrophil Elastase (NE). However, recent attention has been directed towards its immune-regulatory and homeostatic activities. A1AT exerts immune-regulatory effects on different cell types involved in innate and adaptive immunity. Additionally, it plays a role in metal and lipid metabolism, contributing to homeostasis. An adequate comprehension of these mechanisms could support the use of A1AT augmentation therapy in many disorders characterized by a chronic immune response. The aim of this review is to provide an up-to-date understanding of the molecular mechanisms and regulatory pathways responsible for immune-regulatory and homeostatic activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic applications. Furthermore, the review summarizes the current state of knowledge regarding the application of A1AT in clinical and laboratory settings human and animal models.
Collapse
Affiliation(s)
- Carmen Mazzuca
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
- Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| | - Silvia Travaglini
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Fatima Maurizi
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Panaiotis Finamore
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Simona Santangelo
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marta Vadacca
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Simone Scarlata
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| |
Collapse
|
6
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
7
|
Cazzola M, Rogliani P, Ora J, Calzetta L, Lauro D, Matera MG. Hyperglycaemia and Chronic Obstructive Pulmonary Disease. Diagnostics (Basel) 2023; 13:3362. [PMID: 37958258 PMCID: PMC10650064 DOI: 10.3390/diagnostics13213362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) may coexist with type 2 diabetes mellitus (T2DM). Patients with COPD have an increased risk of developing T2DM compared with a control but, on the other side, hyperglycaemia and DM have been associated with reduced predicted levels of lung function. The mechanistic relationships between these two diseases are complicated, multifaceted, and little understood, yet they can impact treatment strategy. The potential risks and benefits for patients with T2DM treated with pulmonary drugs and the potential pulmonary risks and benefits for patients with COPD when taking antidiabetic drugs should always be considered. The interaction between the presence and/or treatment of COPD, risk of infection, presence and/or treatment of T2DM and risk of acute exacerbations of COPD (AECOPDs) can be represented as a vicious circle; however, several strategies may help to break this circle. The most effective approach to simultaneously treating T2DM and COPD is to interfere with the shared inflammatory substrate, thus targeting both lung inflammation (COPD) and vascular inflammation (DM). In any case, it is always crucial to establish glycaemic management since the reduction in lung function found in people with diabetes might decrease the threshold for clinical manifestations of COPD. In this article, we examine possible connections between COPD and T2DM as well as pharmacological strategies that could focus on these connections.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- Division of Respiratory Medicine, University Hospital Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Davide Lauro
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00173 Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, 81138 Naples, Italy
| |
Collapse
|
8
|
Nemčić M, Tijardović M, Rudman N, Bulum T, Tomić M, Plavša B, Vučković Rebrina S, Vučić Lovrenčić M, Duvnjak L, Morahan G, Gornik O. N-glycosylation of serum proteins in adult type 1 diabetes mellitus exposes further changes compared to children at the disease onset. Clin Chim Acta 2023; 543:117298. [PMID: 36925056 DOI: 10.1016/j.cca.2023.117298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE Previously we have shown that plasma protein N-glycosylation is changed in children at the onset of type 1 diabetes. In this study, we aim to identify N-glycan changes in adults with T1DM, compare them to those in children, and investigate their associations with disease duration, complications, glycaemic status, and smoking. METHODS Serum protein N-glycans from 200 adults with type 1 diabetes and 298 healthy controls were analysed using ultra-high performance liquid chromatography and divided into 39 directly measured glycan groups from which 16 derived traits were calculated. RESULTS Compared to healthy controls, subjects with type 1 diabetes showed differences in 19 glycan groups and a decrease in monogalactosylated, an increase in digalactosylated, monosialylated, and antennary fucosylated derived traits, from which changes in monogalactosylation and seven directly measured traits overlapped with previously reported in children. Changes in four directly measured and two derived traits previously seen in children were not detected in adults. HbA1c was positively associated with sialylated and highly branched structures, whereas N-glycome was not influenced by disease duration or diabetic complications. CONCLUSIONS Our results suggest potential N-glycome involvement in different stages of type 1 diabetes, including processes underlying its development, the disease itself, as well as those occurring after disease establishment.
Collapse
Affiliation(s)
- Matej Nemčić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Tomislav Bulum
- Department of Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4A, 10000 Zagreb, Croatia.
| | - Martina Tomić
- Department of Ophthalmology, Vuk Vrhovac University Clinic, Merkur University Hospital, Dugi dol 4A, 10000 Zagreb, Croatia.
| | - Branimir Plavša
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Sandra Vučković Rebrina
- Department of Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4A, 10000 Zagreb, Croatia.
| | - Marijana Vučić Lovrenčić
- Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zajčeva ul. 19, 10000 Zagreb, Croatia.
| | - Lea Duvnjak
- Department of Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4A, 10000 Zagreb, Croatia.
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, 6 Verdun St, Nedlands WA 6009, Perth, Australia; Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Swanston St, Parkville, VIC 3052, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
9
|
Zong Y, Yu W, Hong H, Zhu Z, Xiao W, Wang K, Xu G. Ginsenoside Rg1 Improves Inflammation and Autophagy of the Pancreas and Spleen in Streptozotocin-Induced Type 1 Diabetic Mice. Int J Endocrinol 2023; 2023:3595992. [PMID: 36960388 PMCID: PMC10030220 DOI: 10.1155/2023/3595992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Ginsenoside Rg1 (Rg1) is one of the key bioactive components of the precious Traditional Chinese Medicine that has been used to treat diabetes in China. Ginsenosides have been reported to protect diabetics from tissue damage, inflammation, and insulin resistance. Type 1 diabetes (T1D) is an organ-specific autoimmune disease that occurred frequently among adolescents over the world, its development was related to inflammation and β-cells immunodeficiency. The aim of this study is to explore the biological mechanism of Rg1 on inflammation and autophagy of β-cells in T1D and its therapeutic potential. METHODS The model of T1D mice was established by injecting Streptozotocin (STZ) (55 mg/kg) or citric acids once a day for 5 days and from the fourth day of injection, mice were administered with Rg1 (20 mg/kg) or saline by gavage once a day for 12 days. Hematoxylin-eosin staining, immunofluorescence, ELISA, quantitative real-time PCR, and Western blot were used to observe the histopathological changes, inflammatory factor levels, and autophagy markers after administration of ginsenoside Rg1. RESULTS Compared to the T1D mice, Rg1 improved the weight (p < 0.05) and blood glucose (p < 0.01) of mice, advanced the injury and apoptosis of β-cells in islets (p < 0.01), and markedly inhibited the protein expression degrees of CD45, CXCL16, ox-LDL, and TF in the pancreas and spleens (p < 0.01), also activated the degrees of insulin in serum (p < 0.01). Besides, in T1D mice' pancreas and spleen, Rg1 markedly repressed the IL-1β, TNF-α, and NOS2 mRNA levels (p < 0.05 or p < 0.01), inhibited the CXCL16, NF-κB, and TF proteins (p < 0.05 or p < 0.01), while elevating the ratio of LC3 II/I (p < 0.01) and P62 (p < 0.05) protein level. CONCLUSIONS This study proved that Rg1 protected mice against T1D possibly by improving islet injury and tissue inflammation, raising serum insulin, and tissue autophagy marker.
Collapse
Affiliation(s)
- Yi Zong
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weihua Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hanghang Hong
- Department of Ultrasound, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhiqiang Zhu
- Department of Clinical Laboratary, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wenbo Xiao
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kewu Wang
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Guoqiang Xu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Rafaqat S, Sattar A, Khalid A, Rafaqat S. Role of liver parameters in diabetes mellitus - a narrative review. Endocr Regul 2023; 57:200-220. [PMID: 37715985 DOI: 10.2478/enr-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Diabetes mellitus is characterized by hyperglycemia and abnormalities in insulin secretion and function. This review article focuses on various liver parameters, including albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), alpha fetoprotein (AFP), alpha 1 antitrypsin (AAT), ammonia, bilirubin, bile acid, gamma-glutamyl transferase (GGT), immunoglobulin, lactate dehydrogenase (LDH), and total protein. These parameters play significant roles in the development of different types of diabetes such as type 1 diabetes (T1DM), type 2 diabetes (T2DM) and gestational diabetes (GDM). The article highlights that low albumin levels may indicate inflammation, while increased ALT and AST levels are associated with liver inflammation or injury, particularly in non-alcoholic fatty liver disease (NAFLD). Elevated ALP levels can be influenced by liver inflammation, biliary dysfunction, or bone metabolism changes. High bilirubin levels are independently linked to albuminuria in T1DM and an increased risk of T2DM. Elevated GGT levels are proposed as markers of oxidative stress and liver dysfunction in T2DM. In GDM, decreased serum AFP levels may indicate impaired embryo growth. Decreased AFP levels in T2DM can hinder the detection of hepatocellular carcinoma. Hyperammonemia can cause encephalopathy in diabetic ketoacidosis, and children with T1DM and attention deficit hyperactivity disorder often exhibit higher ammonia levels. T2DM disrupts the regulation of nitrogen-related metabolites, leading to increased blood ammonia levels. Bile acids affect glucose regulation by activating receptors on cell surfaces and nuclei, and changes in bile acid metabolism are observed in T2DM. Increased LDH activity reflects metabolic disturbances in glucose utilization and lactate production, contributing to diabetic complications. Poor glycemic management may be associated with elevated levels of IgA and IgG serum antibodies, and increased immunoglobulin levels are also associated with T2DM.
Collapse
Affiliation(s)
- Sana Rafaqat
- 1Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Aqsa Sattar
- 2Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Amber Khalid
- 3Department of Zoology, University of Narowal, Punjab, Pakistan
| | - Saira Rafaqat
- 2Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
11
|
Park SS, Perez Perez JL, Perez Gandara B, Agudelo CW, Rodriguez Ortega R, Ahmed H, Garcia-Arcos I, McCarthy C, Geraghty P. Mechanisms Linking COPD to Type 1 and 2 Diabetes Mellitus: Is There a Relationship between Diabetes and COPD? Medicina (B Aires) 2022; 58:medicina58081030. [PMID: 36013497 PMCID: PMC9415273 DOI: 10.3390/medicina58081030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients frequently suffer from multiple comorbidities, resulting in poor outcomes for these patients. Diabetes is observed at a higher frequency in COPD patients than in the general population. Both type 1 and 2 diabetes mellitus are associated with pulmonary complications, and similar therapeutic strategies are proposed to treat these conditions. Epidemiological studies and disease models have increased our knowledge of these clinical associations. Several recent genome-wide association studies have identified positive genetic correlations between lung function and obesity, possibly due to alterations in genes linked to cell proliferation; embryo, skeletal, and tissue development; and regulation of gene expression. These studies suggest that genetic predisposition, in addition to weight gain, can influence lung function. Cigarette smoke exposure can also influence the differential methylation of CpG sites in genes linked to diabetes and COPD, and smoke-related single nucleotide polymorphisms are associated with resting heart rate and coronary artery disease. Despite the vast literature on clinical disease association, little direct mechanistic evidence is currently available demonstrating that either disease influences the progression of the other, but common pharmacological approaches could slow the progression of these diseases. Here, we review the clinical and scientific literature to discuss whether mechanisms beyond preexisting conditions, lifestyle, and weight gain contribute to the development of COPD associated with diabetes. Specifically, we outline environmental and genetic confounders linked with these diseases.
Collapse
Affiliation(s)
- Sangmi S. Park
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Jessica L. Perez Perez
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Christina W. Agudelo
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Romy Rodriguez Ortega
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Itsaso Garcia-Arcos
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Cormac McCarthy
- University College Dublin School of Medicine, Education and Research Centre, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
- Correspondence: ; Tel.: +1-718-270-3141
| |
Collapse
|
12
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
13
|
Li RN, Shen PT, Lin HYH, Liang SS. Shotgun proteomic analysis using human serum from type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-01038-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Khoshdel A, Ghoreishi A, Mahmoodi M. Comparison of alpha 1- antitrypsin activity and phenotype in type 1 diabetic patients to healthy individuals. J Family Med Prim Care 2022; 11:1377-1381. [PMID: 35516706 PMCID: PMC9067227 DOI: 10.4103/jfmpc.jfmpc_905_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aims: Alpha 1 antitrypsin (AAT) is an inhibitor of serine protease, which has shown anti-inflammatory reactions in a variety of diseases. It has been thought that that AAT plays a role in prolonging islet allograft survival, preventing the development of type 1 diabetes mellitus (T1DM), and hindering β-cell apoptosis of pancreas. In the current examination, the AAT activity in T1DM and healthy individuals was measured using enzymatic assay. Methods: The present study was conducted on 42 patients with T1DM who referred to the Diabetes Clinic of Rafsanjan, Kerman, Iran, and 42 healthy control individuals who were matched for age, sex and smoking habits. The serum trypsin inhibitory capacity (TIC) was assessed. Plasma samples were analyzed for phenotype, AAT concentration, blood glucose and lipid levels were measured. Results: The activity of plasma AAT and the serum TIC level of patients with T1DM (2.35 ± 0.34 μmol/min/ml) was significantly lower than healthy participants (3.36 ± 0.36 μmol/min/ml). The frequency of phenotype MM in healthy individual was 100%; and in T1DM patients, the prevalence of phenotype MM, MS and MZ was 61.9%, 23.8% and 14.3%, respectively (P < 0.001). Conclusions: It was concluded that that the lack of AAT may be related to the increased risk of T1DM developing.
Collapse
|