1
|
Amer J, Salhab A, Safadi R. Rosuvastatin restores liver tissue-resident NK cell activation in aged mice by improving mitochondrial function. Biomed Pharmacother 2025; 186:118000. [PMID: 40132402 DOI: 10.1016/j.biopha.2025.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND AND AIM Aging has an impact on Natural Killer (NK) cells surveillance against tumors and infections. Our study aims to assess the aging effects on metabolic and mitochondrial markers influencing NK cell activity. METHODS C57BL/6 J mice aged 12, 24, 48, and 72 weeks were used. Liver injury serum and histological markers, pro-inflammatory cytokines [IL-1β, IL-2, IL-6] and chemoattractant markers [CCL2, CXCL8] were assessed. Moreover, cholesterol metabolic markers [HMG-CoA synthetase, HMG-CoA reductase, mevalonate kinase], mitochondrial biogenesis [PGC1α] and functional gene markers [TFAM, HSPA9, Seahorse, apoptosis] in liver trNK cells, were assessed by RT-PCR. Senescence [p16, p21], exhaustion [PD-1, TIGIT, LAG3], activation [CD107a, NKp46], and chemokine receptor [CCR2, CXCR1] markers were assessed in trNK cells using flow cytometry. Liver trNK cells of aged mice were treated with Rosuvastatin [10μM] for 12 h. RESULTS Data showed a linear increase in liver injury markers, pro-inflammatory and chemotaxis along aging. These results were associated with reductions in liver trNK cell counts and activations with a noticeable decrease in their chemoattractant receptor expressions. TrNK cells of aged mice exhibited elevated markers of senescence and exhaustion with a gradual increase in cholesterol accumulation. Mitochondrial biogenesis and functional gene markers showed a decrease in their expressions in aged mice while ameliorated following rosuvastatin treatment. Results were correlated with a decrease in cholesterol metabolism and restoring their NK cell activity. CONCLUSION Our study demonstrates age-related cholesterol accumulation in trNK cells correlated with senescence and functional impairment. Rosuvastatin is suggested to boost, rejuvenate and recover NK cell functionality.
Collapse
Affiliation(s)
- Johnny Amer
- Liver Institute, Hadassah-Hebrew University Hospital, Jerusalem, Israel.
| | - Ahmad Salhab
- Liver Institute, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Rifaat Safadi
- Liver Institute, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
2
|
Shen HC, Tseng CH, Lin YH, Yeh HY, Tsai HC, Hong SY, Li TH, Su CW, Perng DW, Yang YY, Hou MC. Protective effects of statins on pulmonary function in patients with persistent hyperlipidemia: a retrospective cohort study. Ther Adv Respir Dis 2025; 19:17534666251320875. [PMID: 39989019 PMCID: PMC11848893 DOI: 10.1177/17534666251320875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Pulmonary function tests offer crucial parameters for evaluating lung health and predicting clinical outcomes. Hyperlipidemia, a prevalent metabolic disorder, has been linked to declining pulmonary function. Statins are an essential therapy for lowering lipid levels in hyperlipidemia. OBJECTIVES This study aims to investigate the therapeutic potential of statins in mitigating the decline in pulmonary function. DESIGN This is a retrospective cohort study. METHODS Out of 8286 patients who underwent spirometry testing from January 2018 to December 2020, 492 patients were included in the final analysis. The relationship between statin usage, dosage, along with other biometric indices and spirometry parameters were evaluated. Multivariate logistic regression analyses were employed to assess the association between statin use and the decline in pulmonary function. RESULTS In patients with persistent hyperlipidemia, the use of statins was associated with a higher predicted percentage of forced expiratory volume in 1 second (FEV1) compared to non-users (84.0% vs 78.0%, p = 0.015). Logistic regression models further revealed that statin use independently prevented FEV1 decline, irrespective of dosage (adjusted OR 0.036, 95% CI: 0.002-0.618 in lower statins dose group and adjusted OR 0.170, 95% CI: 0.019-1.552 in higher statins dose group). CONCLUSION The findings suggested that statin usage, regardless of dosage, independently mitigated the decline in pulmonary function among patients with persistent hyperlipidemia. Early initiation of statin therapy may hold promise for individuals experiencing hyperlipidemia and declining pulmonary function.
Collapse
Affiliation(s)
- Hsiao-Chin Shen
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Chest, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Che-Hao Tseng
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsuan Lin
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Yun Yeh
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Cheng Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiao-Ya Hong
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hao Li
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Foundation Hospital
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Wei Su
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Diahn-Warng Perng
- Department of Chest, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medical Education, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, #201, Sec. Shih-Pai Road, Taipei 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Ma Y, Wang Y, Xie A, Wang L, Zhang Y, Tao M, Deng X, Bao Z, Yu R. Activation of LXR signaling ameliorates apoptosis of alveolar epithelial cells in Bronchopulmonary dysplasia. Respir Res 2024; 25:399. [PMID: 39511537 PMCID: PMC11545640 DOI: 10.1186/s12931-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND AND PURPOSES Liver X receptors (LXRs) are specialized nuclear receptors essential for maintaining cholesterol homeostasis, modulating LXR activity could have therapeutic potential in lung diseases. Bronchopulmonary dysplasia (BPD) is a chronic lung disease characterized by impaired alveolar development, in which apoptosis of alveolar epithelial cells is a key contributing factor. The current research focuses on exploring the potential mechanism by which the LXR pathway regulating alveolar epithelial type II cell apoptosis in response to hyperoxia exposure. METHODS BPD infants and non-BPD preterm infants were enrolled to measure serum total cholesterol (TC) levels. To further investigate the role of cholesterol metabolism in BPD, a neonatal rat model of BPD was established, and in vitro studies were conducted using mouse lung epithelial cells (MLE12). These experiments aimed to explore the impact of hyperoxia on cholesterol metabolism and assess the effects of LXR agonist intervention. RESULTS Elevated serum TC levels in BPD infants were observed, accompanied by lung cholesterol overload in BPD rats. Hyperoxia exposure also led to intracellular cholesterol accumulation in MLE12 cells, which may be attributed to the downregulated LXR signaling pathway. Activation of the LXR pathway prevented apoptosis and mitochondrial dysfunction in MLE12 cell. In BPD rats, intervention with the LXR agonist restored alveolar architecture and reduced alveolar epithelial type II cell apoptosis, which was associated with decreased oxidative stress and lung cholesterol accumulation. CONCLUSIONS Disrupted cholesterol metabolism and impaired homeostasis in premature infants may contribute to the development of BPD. Targeting LXR signaling may provide potential therapeutic targets in BPD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yizhe Ma
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Yameng Wang
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Luchun Wang
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Yuqiong Zhang
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Mingyan Tao
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Zhidan Bao
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China.
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Akhmetshina A, Bianco V, Bradić I, Korbelius M, Pirchheim A, Kuentzel KB, Eichmann TO, Hinteregger H, Kolb D, Habisch H, Liesinger L, Madl T, Sattler W, Radović B, Sedej S, Birner-Gruenberger R, Vujić N, Kratky D. Loss of lysosomal acid lipase results in mitochondrial dysfunction and fiber switch in skeletal muscles of mice. Mol Metab 2024; 79:101869. [PMID: 38160938 PMCID: PMC7615526 DOI: 10.1016/j.molmet.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.
Collapse
Affiliation(s)
- Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Helga Hinteregger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- BioTechMed-Graz, Graz, Austria; Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria; Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Hansjoerg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Branislav Radović
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- BioTechMed-Graz, Graz, Austria; Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|