1
|
de Souza A, S. Martignago CC, Assis L, Vieira Botelho Delpupo F, Assis M, S. J. Sousa K, Souza e Silva LC, Líbero LO, de Oliveira F, Renno ACM. Casting Skin Dressing Containing Extractions of the Organic Part of Marine Sponges for Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:617-627. [PMID: 39705707 PMCID: PMC11752525 DOI: 10.1021/acsabm.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024]
Abstract
Skin wounds are extremely frequent injuries related to many etiologies. They are a burden on healthcare systems worldwide. Skin dressings are the most popular therapy, and collagen is the most commonly used biomaterial, although new sources of collagen have been studied, especially spongin-like from marine sponges (SPG), as a promising source due to a similar composition to vertebrates and the ability to function as a cell-matrix adhesion framework. Despite evidence showing the positive effects of SPG for tissue healing, the effects of skin dressings manufactured are still limited. In this context, this study aimed at investigating the effects of collagen skin dressings in an experimental model of skin wounds in rats. For this purpose, SEM, FTIR, cell viability, morphological and morphometric aspects, collagen deposition, and immunostaining of TGF-β and FGF were evaluated. The results demonstrated micro- and macropores on the rough surface, peak characteristics of collagen, and no cytotoxicity for the skin dressing. Also, the control group (CG) after 5 and 10 days exhibited an intense inflammatory process and the presence of granulation tissue, while the treated group (TG) exhibited re-epithelialization after 10 days. The evaluation of granulation tissue and neoepithelial length had an intragroup statistical difference (p = 0.0216) and no intergroup difference. Birefringence demonstrated an organized mesh arranged in a network pattern, presenting type I and type III collagen fibers in all groups. Moreover, in the morphometric evaluation, there were no statistical differences in intergroups or time points for the different types of collagen evaluated. In conclusion, these findings may indicate that the dressing has not exacerbated the inflammatory process and may allow faster healing. However, further studies using a critical wound healing injury model should be used, associated with longer experimental periods of evaluation, to further investigate the effects of these promising therapeutic approaches throughout the skin repair process.
Collapse
Affiliation(s)
- Amanda de Souza
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Cintia C. S. Martignago
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Lívia Assis
- Scientific
Institute and Technological Department, University Brazil, São
Paulo-Itaquera, SP 04021-001,Brazil
| | - Fernanda Vieira Botelho Delpupo
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Marcelo Assis
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Karolyne S. J. Sousa
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Lais Caroline Souza e Silva
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Laura O. Líbero
- CDMF
- Department of Chemistry, Federal University
of São Carlos (UFSCar), Washington Luís Road, São Carlos, SP 13565-905, Brazil
| | - Flavia de Oliveira
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| | - Ana Claudia Muniz Renno
- Department
of Biosciences, Federal University of São
Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil
| |
Collapse
|
2
|
Ghadimi T, Latifi N, Hivechi A, Hosseinpour Sarmadi V, Bayat Shahbazi S, Amini N, B Milan P, Abbaszadeh A, Larijani G, Fathalian H, Mortazavi S, Latifi F, Ghadimi F, Farokh Forghani S, Naderi Gharahgheshlagh S. Sargassum glaucescens Extract/Marine-Derived Collagen Blend Sponge and Their Properties for Wound Healing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:25. [PMID: 39751891 DOI: 10.1007/s10126-024-10402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S. glaucescens) extract (SGE) to promote burn wound healing was assessed in this work. Synthesized collagen (40 mg/ml)/SGE (1-3 mg/ml) samples were then characterized physiochemically and physiologically. The physicochemical examination validated the bioactive component of SGE, the type of collagen (type I, α1, and α2), the successful incorporation of SGE into collagen scaffolds (Col/SGE), the thermal stability, and excellent hydrophilicity and water absorption capacity of produced scaffolds. Moreover, biological experiments approved the excellent antioxidant and antibacterial activity of SGE, structural stability improvement against degradation, and cell proliferation enhancement without cell toxicity. The results showed the Col/SGE 3 mg/ml sample also had the highest level of cell activity, according to the antibacterial and cell viability assays. Additionally, using Col/SGE in vivo on burn wounds in rat models demonstrated a quicker rate of wound healing with stronger re-epithelialization and dermal remodeling, fewer inflammatory cells, more fibroblast cells, and great collagen buildup. Therefore, since the collagen/SGE scaffold is structurally stable and can potentially promote cell proliferation without causing cell toxicity, the acquired results suggested that it may significantly impact wound healing.
Collapse
Affiliation(s)
- Tayyeb Ghadimi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noorahmad Latifi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hivechi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman B Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Abbaszadeh
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Fathalian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shokoufeh Mortazavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Latifi
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghadimi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Almeida M, Silva T, Solstad RG, Lillebø AI, Calado R, Vieira H. How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation. Mar Drugs 2024; 23:2. [PMID: 39852504 PMCID: PMC11766948 DOI: 10.3390/md23010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges. Co-word analysis of the literature highlights applications in regenerative medicine, the properties of hydrolysates, and biology and biochemistry studies. Innovation and the technological landscape, however, focus on fewer taxonomic groups, possibly reflecting the challenge of sustainably sourcing raw materials, with a higher number of patents coming from Asia. Globally, jellyfish collagen is the most prominent marine invertebrate source, while Asia also emphasizes the use of collagens derived from molluscs and sea cucumbers. Europe, despite fewer patents, explores a broader range of taxonomic groups. Globally, key applications registered are mostly in medical, dental and toiletry areas, with peptide preparations spanning multiple animal groups. The food domain is notably relevant for molluscs and sea cucumbers. Market trends show a strong presence of cosmetic and supplement products, aligning with market reports that predict a growing demand for marine collagens in cosmetics and personalized nutrition, particularly in targeted health supplements.
Collapse
Affiliation(s)
- Mariana Almeida
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, 4805-694 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Runar Gjerp Solstad
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway;
| | - Ana I. Lillebø
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Barzkar N, Sukhikh S, Babich O. A comprehensive review of marine sponge metabolites, with emphasis on Neopetrosia sp. Int J Biol Macromol 2024; 280:135823. [PMID: 39313052 DOI: 10.1016/j.ijbiomac.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The secondary metabolites that marine sponges create are essential to the advancement of contemporary medicine and are often employed in clinical settings. Over the past five years, microbes associated with sponges have yielded the identification of 140 novel chemicals. Statistics show that most are derived from actinomycetes (bacteria) and ascomycotes (fungi). The aim of this study was to investigate the biological activity of metabolites from marine sponges. Chlocarbazomycins A-D, which are a group of novel chlorinated carbazole alkaloids isolated from the sponge Neopetrosia fennelliae KUFA 0811, exhibit antimicrobial, cytotoxic, and enzyme inhibitory activities. Recently, marine sponges of the genus Neopetrosia have attracted attention due to the unique chemical composition of the compounds they produce, including alkaloids of potential importance in drug discovery. Fridamycin H and fridamycin I are two novel type II polyketides synthesized by sponge-associated bacteria exhibit antitrypanosomal activity. Fintiamin, composed of amino acids and terpenoid moieties, shows affinity for the cannabinoid receptor CB 1. It was found that out of 27 species of Neopetrosia sponges, the chemical composition of only 9 species has been studied. These species mainly produce bioactive substances such as alkaloids, quinones, sterols, and terpenoids. The presence of motuporamines is a marker of the species Neopetrosia exigua. Terpenoids are specific markers of Neopetrosia vanilla species. Although recently discovered, secondary metabolites from marine sponges have been shown to have diverse biological activities, antimicrobial, antiviral, antibacterial, antimicrobial, antioxidant, antimalarial, and anticancer properties, providing many lead compounds for drug development. The data presented in this review on known and future natural products derived from sponges will further clarify the role and importance of microbes in marine sponges and trace the prospects of their applications, especially in medicine, cosmeceuticals, environmental protection, and manufacturing industries.
Collapse
Affiliation(s)
- Noora Barzkar
- Higher Institution Center of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Stanislav Sukhikh
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Olga Babich
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| |
Collapse
|
5
|
Hayashi R, Kamata K, Gerdol M, Fujii Y, Hayashi T, Onoda Y, Kobayashi N, Furushima S, Ishiwata R, Ohkawa M, Masuda N, Niimi Y, Yamada M, Adachi D, Kawsar SMA, Rajia S, Hasan I, Padma S, Chatterjee BP, Ise Y, Chida R, Hasehira K, Miyanishi N, Kawasaki T, Ogawa Y, Fujita H, Pallavicini A, Ozeki Y. Novel Galectins Purified from the Sponge Chondrilla australiensis: Unique Structural Features and Cytotoxic Effects on Colorectal Cancer Cells Mediated by TF-Antigen Binding. Mar Drugs 2024; 22:400. [PMID: 39330281 PMCID: PMC11433124 DOI: 10.3390/md22090400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
We here report the purification of a novel member of the galectin family, the β-galactoside-binding lectin hRTL, from the marine sponge Chondrilla australiensis. The hRTL lectin is a tetrameric proto-type galectin with a subunit molecular weight of 15.5 kDa, consisting of 141 amino acids and sharing 92% primary sequence identity with the galectin CCL from the congeneric species C. caribensis. Transcriptome analysis allowed for the identification of additional sequences belonging to the same family, bringing the total number of hRTLs to six. Unlike most other galectins, hRTLs display a 23 amino acid-long signal peptide that, according to Erdman degradation, is post-translationally cleaved, leaving an N-terminal end devoid of acetylated modifications, unlike most other galectins. Moreover, two hRTLs display an internal insertion, which determines the presence of an unusual loop region that may have important functional implications. The characterization of the glycan-binding properties of hRTL revealed that it had high affinity towards TF-antigen, sialyl TF, and type-1 N-acetyl lactosamine with a Galβ1-3 structure. When administered to DLD-1 cells, a colorectal carcinoma cell line expressing mucin-associated TF-antigen, hRTL could induce glycan-dependent cytotoxicity.
Collapse
Affiliation(s)
- Ryuhei Hayashi
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Kenichi Kamata
- Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium;
- Graduate School of Biomedical Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy;
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan; (T.K.); (Y.O.); (H.F.)
| | - Takashi Hayashi
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
- School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan
| | - Yuto Onoda
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
- School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan
| | - Nanae Kobayashi
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
- School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan
| | - Satoshi Furushima
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
- School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan
| | - Ryuya Ishiwata
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Mayuka Ohkawa
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Naoko Masuda
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Yuka Niimi
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Masao Yamada
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
- emukk LLC, Kuwana 511-0902, Japan
| | - Daisuke Adachi
- Graduate School of Biomedical Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Sarkar M. A. Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Sultana Rajia
- Center for Interdisciplinary Research, Varendra University, Rajshahi 6204, Bangladesh;
| | - Imtiaj Hasan
- Department of Microbiology, Faculty of Biological Science, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Somrita Padma
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata 700026, India (B.P.C.)
| | - Bishnu Pada Chatterjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata 700026, India (B.P.C.)
| | - Yuji Ise
- Kuroshio Biological Research Foundation, 560 Nishidomar, Otsuki, Hata, Kochi 788-0333, Japan;
| | - Riku Chida
- Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, Asaka, Saitama 351-8510, Japan; (R.C.); (K.H.); (N.M.)
| | - Kayo Hasehira
- Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, Asaka, Saitama 351-8510, Japan; (R.C.); (K.H.); (N.M.)
| | - Nobumitsu Miyanishi
- Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, Asaka, Saitama 351-8510, Japan; (R.C.); (K.H.); (N.M.)
| | - Tatsuya Kawasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan; (T.K.); (Y.O.); (H.F.)
| | - Yukiko Ogawa
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan; (T.K.); (Y.O.); (H.F.)
| | - Hideaki Fujita
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan; (T.K.); (Y.O.); (H.F.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy;
| | - Yasuhiro Ozeki
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| |
Collapse
|
6
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
7
|
Sales AFS, Dos Santos Jorge Sousa K, de Souza A, Bonifacio M, Araújo TAT, de Almeida Cruz M, Costa MB, Ribeiro DA, Assis L, Martignago CCS, Rennó AC. Association of a Skin Dressing Made With the Organic Part of Marine Sponges and Photobiomodulation on the Wound Healing in an Animal Model. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:276-287. [PMID: 38441733 DOI: 10.1007/s10126-024-10295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/02/2024] [Indexed: 04/25/2024]
Abstract
The present study aims to characterize and to evaluate the biological effects of a skin dressing manufactured with the organic part of the Chondrilla caribensis marine sponge (called spongin-like collagen (SC)) associated or not to photobiomodulation (PBM) on the skin wound healing of rats. Skin dressings were manufactured with SC and it was characterized using scanning electron microscopy (SEM) and a tensile assay. In order to evaluate its biological effects, an experimental model of cutaneous wounds was surgically performed. Eighteen rats were randomly distributed into three experimental groups: control group (CG): animals with skin wounds but without any treatment; marine collagen dressing group (DG): animals with skin wounds treated with marine collagen dressing; and the marine collagen dressing + PBM group (DPG): animals with skin wounds treated with marine collagen dressing and PBM. Histopathological, histomorphometric, and immunohistochemical evaluations (qualitative and semiquantitative) of COX2, TGFβ, FGF, and VEGF were done. SEM demonstrates that the marine collagen dressing presented pores and interconnected fibers and adequate mechanical strength. Furthermore, in the microscopic analysis, an incomplete reepithelialization and the presence of granulation tissue with inflammatory infiltrate were observed in all experimental groups. In addition, foreign body was identified in the DG and DPG. COX2, TGFβ, FGF, and VEGF immunostaining was observed predominantly in the wound area of all experimental groups, with a statistically significant difference for FGF immunostaining score of DPG in relation to CG. The marine collagen dressing presented adequate physical characteristics and its association with PBM presented favorable biological effects to the skin repair process.
Collapse
Affiliation(s)
- Abdias Fernando Simon Sales
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Mirian Bonifacio
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Tiago Akira Tashiro Araújo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Márcia Busanello Costa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Lívia Assis
- Scientific Institute and Technological Department, University Brazil, São Paulo-Itaquera, SP, Brazil
| | - Cintia Cristina Santi Martignago
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Ana Cláudia Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, Rua Silva Jardim 136, Vila Matias, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil.
| |
Collapse
|
8
|
Rocha MS, Marques CF, Carvalho AC, Martins E, Ereskovsky A, Reis RL, Silva TH. The Characterization and Cytotoxic Evaluation of Chondrosia reniformis Collagen Isolated from Different Body Parts (Ectosome and Choanosome) Envisaging the Development of Biomaterials. Mar Drugs 2024; 22:55. [PMID: 38393026 PMCID: PMC10889977 DOI: 10.3390/md22020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.
Collapse
Affiliation(s)
- Miguel S. Rocha
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Catarina F. Marques
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Ana C. Carvalho
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Eva Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 13007 Marseille, France;
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimaraes, Portugal; (M.S.R.); (C.F.M.); (A.C.C.); (E.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimaraes, Portugal
| |
Collapse
|
9
|
Ghadimi T, Naderi Gharahgheshlagh S, Latifi N, Hivechi A, Hosseinpour Sarmadi V, Farokh Forghani S, Amini N, B Milan P, Latifi F, Hamidi M, Larijani G, Haramshahi SMA, Abdollahi M, Ghadimi F, Nezari S. The Effect of Rainbow Trout (Oncorhynchus mykiss) Collagen Incorporated with Exo-Polysaccharides Derived from Rhodotorula mucilaginosa sp. on Burn Healing. Macromol Biosci 2023; 23:e2300033. [PMID: 37120148 DOI: 10.1002/mabi.202300033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1-3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds.
Collapse
Affiliation(s)
- Tayyeb Ghadimi
- Burn Research Center, Iran University of Medical Sciences, Shahid Motahari Hospital, Shahid Yasemi Street, Valiasr Street, Tehran, 1996714353, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Shahid Motahari Hospital, Shahid Yasemi Street, Valiasr Street, Tehran, 1996714353, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Noorahmad Latifi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Ahmad Hivechi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, 6099, Halle (Saale), Germany
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Vahid Hosseinpour Sarmadi
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Shahid Motahari Hospital, Shahid Yasemi Street, Valiasr Street, Tehran, 1996714353, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Naser Amini
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Peiman B Milan
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Fatemeh Latifi
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Masoud Hamidi
- Faculty of Paramedicine, Department of Medical Biotechnology, Guilan University of Medical Sciences, Rasht, 4188794755, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Seyed Mohammad Amin Haramshahi
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Motahareh Abdollahi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Fatemeh Ghadimi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Saeed Nezari
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| |
Collapse
|
10
|
Martignago CCS, Soares-Silva B, Parisi JR, Silva LCSE, Granito RN, Ribeiro AM, Renno ACM, de Sousa LRF, Aguiar ACC. Terpenes extracted from marine sponges with antioxidant activity: a systematic review. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:23. [PMID: 37553481 PMCID: PMC10409963 DOI: 10.1007/s13659-023-00387-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023]
Abstract
Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms. The sponge's secondary metabolites demonstrated various bioactivities and potential pharmacological properties. This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro. The review was performed in accordance with PRISMA guidelines. The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro. Searching in three different databases, two hundred articles were selected. After screening abstracts, titles and evaluating for eligibility of manuscripts 14 articles were included. The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl (DPPH) and measurement of intracellular reactive oxygen species (ROS). It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro. Scientific evidence of the studies included in this review was accessed by the GRADE analysis. Terpenes play an important ecological role, moreover these molecules have a pharmaceutical and industrial application.
Collapse
Affiliation(s)
- Cintia Cristina Santi Martignago
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Beatriz Soares-Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Julia Risso Parisi
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Lais Caroline Souza E Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Renata Neves Granito
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Alessandra Mussi Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Ana Cláudia Muniz Renno
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil
| | - Lorena Ramos Freitas de Sousa
- Institute of Chemistry, Federal University of Catalão (UFCAT), Av. Dr. Lamartine Pinto de Avelar, 1120 Vila Chaud, Catalão, GO, 75704-020, Brazil.
| | - Anna Caroline Campos Aguiar
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
11
|
Duan Y, Cheng H. Preparation of immobilized pepsin for extraction of collagen from bovine hide. RSC Adv 2022; 12:34548-34556. [PMID: 36545603 PMCID: PMC9713359 DOI: 10.1039/d2ra05744a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
In the extraction of collagens from mammalian tissues, the free pepsin used in the acid-pepsin extraction system is hard to recycle, and there is a risk of enzyme protein contamination in the extracted collagen products, which limits their applications. To solve this problem, an immobilized pepsin was successfully prepared via the covalent crosslinking of glutaraldehyde using a 3-aminopropyltriethoxysilane (APTES) surface modified silica clay as the support. The immobilized pepsin was applied for the extraction of collagen from bovine hide. The optimal immobilization process involves incubating pepsin with an initial concentration of 35 mg mL-1 and glutaraldehyde with 5% activated APTES modified silica clay at 25 °C for 60 min, by which the loading amount of pepsin was 220 mg g-1 and the activity of the immobilized pepsin was 4.2 U mg-1. The collagen extracted using acetic acid and the immobilized pepsin method retained its complete triple helix structure. This research thus details an effective separation method using pepsin for extraction of collagen via an acetic acid-enzyme method, where the extracted collagen may be a candidate for use in biomaterial applications.
Collapse
Affiliation(s)
- Youdan Duan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan UniversityChengdu610065China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan UniversityChengdu610065China,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan UniversityChengdu 610065China
| |
Collapse
|