1
|
Ahmadi SM, Seyedabadi M, Ebrahimnejad P, Abasi M, Nokhodchi A. Efficient Delivery of Gold Nanoparticles and miRNA-33a Via Cationic PEGylated Niosomal Formulation to MCF-7 Breast Cancer Cells. AAPS PharmSciTech 2024; 25:213. [PMID: 39266895 DOI: 10.1208/s12249-024-02906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
To overcome the challenges associated with the co-delivery of AuNPs (gold nanoparticles) and miRNA as an anti-breast cancer combination therapy, niosomal systems were developed using Span 60, cholesterol, and a cationic lipid (CTAB), and the formulations were optimized using Box-Behnken experimental design. The niosomal formulations with the smallest size were selected for further optimization of size, surface charge, entrapment efficiency, and stability. To achieve this, AuNPs and DSPE-PEG2000 (2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000)were added to the formulation. The optimized niosomal formulation could effectively encapsulate AuNPs with an entrapment efficiency of 34.49% ± 0.84 and a spherical particle size of 153.6 ± 4.62 nm. The incorporation of PEG and CTAB led to notable enhancements in the overall characteristics of the delivery system. To evaluate the effectiveness of the combination therapy, various assessments such as cytotoxicity, apoptosis, and gene expression properties were conducted. The results demonstrated that the combination delivery using the new C-PEG-Nio-AuNPs (cationic pegylated niosomal gold nanoparticles) system and miRNA had the lowest IC50, the highest apoptosis rate, and the most significant upregulation of miRNA and BAX/BCL2 expression in MCF-7 cell growth. In conclusion, this innovative co-delivery approach represents a promising breakthrough in the development of therapeutic agents for breast cancer treatment. By combining multiple therapeutic agents within a single delivery system, this method has the potential to enhance treatment efficacy, reduce side effects, and improve patient outcomes.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mozhgan Abasi
- Immunogenetics Research Center, Departmant of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Research Inc., Coral Springs, Florida, USA.
| |
Collapse
|
2
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
3
|
Almostafa MM, Mohamed ME, Younis NS. Ameliorative effects of vanillin against pentylenetetrazole-induced epilepsy and associated memory loss in mice: The role of Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways. Int Immunopharmacol 2024; 129:111657. [PMID: 38335655 DOI: 10.1016/j.intimp.2024.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Epilepsy is a severe neurological disorder associated with substantial morbidity and mortality. Vanillin (Van) is a natural phenolic aldehyde with beneficial pharmacological properties. This study investigated the neuroprotective effects of Van in epilepsy and elucidated its mechanism of action. METHODS Swiss albino mice were divided into the following five groups: "normal group", 0.9 % saline; "pentylenetetrazole (PTZ) group", intraperitoneal administration of 35 mg/kg PTZ on alternate days up to 42 days; and "PTZ + Van 20", "PTZ + Van 40", and "PTZ + sodium valproate (Val)" groups received PTZ injections in conjunction withVan 20 mg, Van 40 mg/kg, and Val 300 mg/kg, respectively. Behavioural tests and hippocampal histopathological analysis were performed in all groups. The Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways, oxidative stress, neuro-inflammation, and apoptotic markers were analysed. Furthermore, brain acetylcholinesterase (AChE) activity and levels of dopamine (DA), gamma-aminobutyric acid GABA, and serotonin 5-HT were assessed. RESULTS Van prolonged seizure manifestations and improved electroencephalogram (EEG)criteriain conjunction with 100 mg/kg PTZ once daily. Van administration increased Nrf2/HO-1/NQO1 levels, with subsequent attenuation of malondialdehyde (MDA) and nitric oxide (NO) levels with elevated glutathione (GSH) levels and intensified superoxide dismutase (SOD) and catalase activities. Van reduced the gene and protein expression of HMGB1/RAGE/TLR4/NFκB and decreased the levels of inflammatory and apoptotic markers. In addition, Van reduced AChE activity, and elevated glial fibrillary acidic proteins (GFAP) increased neurotransmitter and brain-derived neurotrophic factors (BDNF). CONCLUSION By increasing Nrf2/HO-1/NQO1 levels and downregulating the HMGB1/RAGE/TLR4/ NFκB pathway, Van offered protection in PTZ-kindled mice with subsequent attenuation in lipid peroxidation, upregulation in antioxidant enzyme activities, and reduction in inflammation and apoptosis.
Collapse
Affiliation(s)
- Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
4
|
Marchianò V, Duarte AC, Agún S, Luque S, Marcet I, Fernández L, Matos M, Blanco MDC, García P, Gutiérrez G. Phage Lytic Protein CHAPSH3b Encapsulated in Niosomes and Gelatine Films. Microorganisms 2024; 12:119. [PMID: 38257944 PMCID: PMC10819965 DOI: 10.3390/microorganisms12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health challenge, sparking worldwide interest in exploring the antimicrobial potential of natural compounds as an alternative to conventional antibiotics. In recent years, one area of focus has been the utilization of bacteriophages and their derivative proteins. Specifically, phage lytic proteins, or endolysins, are specialized enzymes that induce bacterial cell lysis and can be efficiently produced and purified following overexpression in bacteria. Nonetheless, a significant limitation of these proteins is their vulnerability to certain environmental conditions, which may impair their effectiveness. Encapsulating endolysins in vesicles could mitigate this issue by providing added protection to the proteins, enabling controlled release, and enhancing their stability, particularly at temperatures around 4 °C. In this work, the chimeric lytic protein CHAPSH3b was encapsulated within non-ionic surfactant-based vesicles (niosomes) created using the thin film hydrating method (TFH). These protein-loaded niosomes were then characterized, revealing sizes in the range of 30-80 nm, zeta potentials between 30 and 50 mV, and an encapsulation efficiency (EE) of 50-60%. Additionally, with the objective of exploring their potential application in the food industry, these endolysin-loaded niosomes were incorporated into gelatine films. This was carried out to evaluate their stability and antimicrobial efficacy against Staphylococcus aureus.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Seila Agún
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Luque
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mª del Carmen Blanco
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
5
|
Marcet I. The Characterization of Biodegradable Films and Food Packaging. MEMBRANES 2023; 13:826. [PMID: 37887998 PMCID: PMC10608481 DOI: 10.3390/membranes13100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023]
Abstract
Every year, approximately 300 million tons of petroleum-based plastics is manufactured worldwide, and these plastics cause significant environmental issues due to their non-biodegradable nature and emission of toxic gases upon incineration [...].
Collapse
Affiliation(s)
- Ismael Marcet
- Department of Chemical and Environmental Engineering, Research Group TBR, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Lowry TW, Kusi-Appiah AE, Fadool DA, Lenhert S. Odor Discrimination by Lipid Membranes. MEMBRANES 2023; 13:151. [PMID: 36837654 PMCID: PMC9962961 DOI: 10.3390/membranes13020151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Odor detection and discrimination in mammals is known to be initiated by membrane-bound G-protein-coupled receptors (GPCRs). The role that the lipid membrane may play in odor discrimination, however, is less well understood. Here, we used model membrane systems to test the hypothesis that phospholipid bilayer membranes may be capable of odor discrimination. The effect of S-carvone, R-carvone, and racemic lilial on the model membrane systems was investigated. The odorants were found to affect the fluidity of supported lipid bilayers as measured by fluorescence recovery after photobleaching (FRAP). The effect of odorants on surface-supported lipid multilayer microarrays of different dimensions was also investigated. The lipid multilayer micro- and nanostructure was highly sensitive to exposure to these odorants. Fluorescently-labeled lipid multilayer droplets of 5-micron diameter were more responsive to these odorants than ethanol controls. Arrays of lipid multilayer diffraction gratings distinguished S-carvone from R-carvone in an artificial nose assay. Our results suggest that lipid bilayer membranes may play a role in odorant discrimination and molecular recognition in general.
Collapse
|