1
|
Fisher CG, Falk MM. Endocytosis and Endocytic Motifs across the Connexin Gene Family. Int J Mol Sci 2023; 24:12851. [PMID: 37629031 PMCID: PMC10454166 DOI: 10.3390/ijms241612851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins fated to be internalized by clathrin-mediated endocytosis require an endocytic motif, where AP-2 or another adaptor protein can bind and recruit clathrin. Tyrosine and di-leucine-based sorting signals are such canonical motifs. Connexin 43 (Cx43) has three canonical tyrosine-based endocytic motifs, two of which have been previously shown to recruit clathrin and mediate its endocytosis. In addition, di-leucine-based motifs have been characterized in the Cx32 C-terminal domain and shown to mediate its endocytosis. Here, we examined the amino acid sequences of all 21 human connexins to identify endocytic motifs across the connexin gene family. We find that although there is limited conservation of endocytic motifs between connexins, 14 of the 21 human connexins contain one or more canonical tyrosine or di-leucine-based endocytic motif in their C-terminal or intracellular loop domain. Three connexins contain non-canonical (modified) di-leucine motifs. However, four connexins (Cx25, Cx26, Cx31, and Cx40.1) do not harbor any recognizable endocytic motif. Interestingly, live cell time-lapse imaging of different GFP-tagged connexins that either contain or do not contain recognizable endocytic motifs readily undergo endocytosis, forming clearly identifiable annular gap junctions when expressed in HeLa cells. How connexins without defined endocytic motifs are endocytosed is currently not known. Our results demonstrate that an array of endocytic motifs exists in the connexin gene family. Further analysis will establish whether the sites we identified in this in silico analysis are legitimate endocytic motifs.
Collapse
Affiliation(s)
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Cao T, Wang S, Qian L, Wu C, Huang T, Wang Y, Li Q, Wang J, Xia Y, Xu L, Wang L, Huang X. NPRA promotes fatty acid metabolism and proliferation of gastric cancer cells by binding to PPARα. Transl Oncol 2023; 35:101734. [PMID: 37418841 DOI: 10.1016/j.tranon.2023.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Among cancers, gastric cancer (GC) ranks third globally in morbidity and mortality, particularly in East Asia. Natriuretic peptide receptor A (NPRA), a receptor for guanylate cyclase, plays important roles in regulating water and sodium balance. Recent studies have suggested that NPRA is involved in tumorigenesis, but its role in GC development remains unclear. Herein, we showed that the expression level of NPRA was positively correlated with gastric tumor size and clinical stage. Patients with high NPRA expression had a lower five-year survival rate than those with low expression, and NPRA was identified as an independent predictor of GC prognosis. NPRA knockdown suppressed GC cell proliferation, migration and invasion. NPRA overexpression enhanced cell malignant behavior. Immunohistochemistry of collected tumor samples showed that tumors with high NPRA expression had higher peroxisome proliferator-activated receptor α (PPARα) levels. In vivo and in vitro studies showed that NPRA promotes fatty acid oxidation and tumor cell metastasis. Co-IP showed that NPRA binds to PPARα and prevents PPARα degradation. PPARα upregulation under NPRA protection activates arnitine palmitoyl transferase 1B (CPT1B) to promote fatty acid oxidation. In this study, new mechanisms by which NPRA promotes the development of GC and new regulatory mechanisms of PPARα were identified.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China; General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Tao Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Qian Li
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China.
| |
Collapse
|
3
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
5
|
Khurana ML, Mani I, Kumar P, Ramasamy C, Pandey KN. Ligand-Dependent Downregulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Role of miR-128 and miR-195. Int J Mol Sci 2022; 23:ijms232113381. [PMID: 36362173 PMCID: PMC9657974 DOI: 10.3390/ijms232113381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Cardiac hormones act on the regulation of blood pressure (BP) and cardiovascular homeostasis. These hormones include atrial and brain natriuretic peptides (ANP, BNP) and activate natriuretic peptide receptor-A (NPRA), which enhance natriuresis, diuresis, and vasorelaxation. In this study, we established the ANP-dependent homologous downregulation of NPRA using human embryonic kidney-293 (HEK-293) cells expressing recombinant receptor and MA-10 cells harboring native endogenous NPRA. The prolonged pretreatment of cells with ANP caused a time- and dose-dependent decrease in 125I-ANP binding, Guanylyl cyclase (GC) activity of receptor, and intracellular accumulation of cGMP leading to downregulation of NPRA. Treatment with ANP (100 nM) for 12 h led to an 80% decrease in 125I-ANP binding to its receptor, and BNP decreased it by 62%. Neither 100 nM c-ANF (truncated ANF) nor C-type natriuretic peptide (CNP) had any effect. ANP (100 nM) treatment also decreased GC activity by 68% and intracellular accumulation cGMP levels by 45%, while the NPRA antagonist A71915 (1 µM) almost completely blocked ANP-dependent downregulation of NPRA. Treatment with the protein kinase G (PKG) stimulator 8-(4-chlorophenylthio)-cGMP (CPT-cGMP) (1 µM) caused a significant increase in 125I-ANP binding, whereas the PKG inhibitor KT 5823 (1 µM) potentiated the effect of ANP on the downregulation of NPRA. The transfection of miR-128 significantly reduced NPRA protein levels by threefold compared to control cells. These results suggest that ligand-dependent mechanisms play important roles in the downregulation of NPRA in target cells.
Collapse
|
6
|
Pleiotropic Roles of Atrial Natriuretic Peptide in Anti-Inflammation and Anti-Cancer Activity. Cancers (Basel) 2022; 14:cancers14163981. [PMID: 36010974 PMCID: PMC9406604 DOI: 10.3390/cancers14163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The relationship between inflammation and carcinogenesis, as well as the response to anti-tumor therapy, is intimate. Atrial natriuretic peptides (ANPs) play a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance. In addition, ANPs exert immune-modulatory effects in the tissue microenvironment, thus exhibiting a fascinating ability to prevent inflammation-related tumorigenesis and cancer recurrence. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs have potential therapeutic value in tumors. Here, we summarized the roles of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs, contributing to the development of ANP-based anti-cancer agents. Abstract The atrial natriuretic peptide (ANP), a cardiovascular hormone, plays a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance and is approved to treat congestive heart failure. In addition, there is a growing realization that ANPs might be related to immune response and tumor growth. The anti-inflammatory and immune-modulatory effects of ANPs in the tissue microenvironment are mediated through autocrine or paracrine mechanisms, which further suppress tumorigenesis. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs act on several hallmarks of cancer, such as inflammation, angiogenesis, sustained tumor growth, and metastasis. In this review, we summarized the contributions of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs.
Collapse
|
7
|
Li Z, Fan H, Cao J, Sun G, Sen Wang, Lv J, Xuan Z, Xia Y, Wang L, Zhang D, Xu H, Xu Z. Natriuretic peptide receptor a promotes gastric malignancy through angiogenesis process. Cell Death Dis 2021; 12:968. [PMID: 34671022 PMCID: PMC8528824 DOI: 10.1038/s41419-021-04266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) ranks the third among global cancer-related mortality, especially in East Asia. Angiogenesis plays an important role in promoting tumor progression, and clinical trials have demonstrated that anti-angiogenesis therapy is effective in GC management. Natriuretic peptide receptor A (NPRA) functions significantly in promoting GC development and progression. Whether NPRA can promote angiogenesis of GC remains unclear. Tumor samples collection and immunohistochemical experiment showed that the expression of NPRA was positively correlated with the expression of CD31 and vessel density. In vivo and in vitro analysis showed that NPRA could promote GC-associated angiogenesis and tumor metastasis. Results of Co-IP/MS showed that NPRA could prevent HIF-1α from being degraded by binding to HIF-1α. Protection of HIF-1α improved VEGF levels and thus promoted angiogenesis. In summary, NPRA protected HIF-1α from proteolysis by binding to HIF-1α, increased the expression of HIF-1α, and promoted GC angiogenesis. This study has discovered a new mechanism for NPRA to promote gastric cancer development and a new regulatory mechanism for HIF-1α.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice, Nude
- Models, Biological
- Neoplasm Staging
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prognosis
- Proteolysis
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
- Stomach Neoplasms/blood supply
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Up-Regulation/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Grants
- Youth Fund of Jiangsu Natural Science Foundation (BK20181081), Youth Program of National Natural Science Foundation of China (82002562), National Natural Science Foundation of China (81871946, 81902515, 81802917), Support Program for Young and Middle-aged Teachers of Nanjing Medical University, the Primary Research & Development Plan of Jiangsu Province (BE2016786), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801), Jiangsu Key Medical Discipline (General Surgery) (ZDXKA2016005), 511 Project of the First Affiliated Hospital of Nanjing Medical University.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiacheng Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zhe Xuan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
8
|
Brignone J, Assersen KB, Jensen M, Jensen BL, Kloster B, Jønler M, Lund L. Protection of kidney function and tissue integrity by pharmacologic use of natriuretic peptides and neprilysin inhibitors. Pflugers Arch 2021; 473:595-610. [PMID: 33844072 DOI: 10.1007/s00424-021-02555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
With variable potencies atrial-, brain-type and c-type natriuretic peptides (NP)s, best documented for ANP and its analogues, promote sodium and water excretion, renal blood flow, lipolysis, lower blood pressure, and suppress renin and aldosterone secretion through interaction predominantly with cGMP-coupled NPR-A receptor. Infusion of especially ANP and its analogues up to 50 ng/kg/min in patients with high risk of acute kidney injury (cardiac vascular bypass surgery, intraabdominal surgery, direct kidney surgery) protects kidney function (GFR, plasma flow, medullary flow, albuminuria, renal replacement therapy, tissue injury) at short term and also long term and likely additively with the diuretic furosemide. This documents a pharmacologic potential for the pathway. Neprilysin (NEP, neutral endopeptidase) degrades NPs, in particular ANP, and angiotensin II. The drug LCZ696, a mixture of the neprilysin inhibitor sacubitril and the ANGII-AT1 receptor blocker valsartan, was FDA approved in 2015 and marketed as Entresto®. In preclinical studies of kidney injury, LCZ696 and NPs lowered plasma creatinine, countered hypoxia and oxidative stress, suppressed proinflammatory cytokines, and inhibited fibrosis. Few randomized clinical studies exist and were designed with primary cardiac outcomes. The studies showed that LCZ696/entresto stabilized and improved glomerular filtration rate in patients with chronic kidney disease. LCZ696 is safe to use concerning kidney function and stabilizes or increases GFR. In perspective, combined AT1 and neprilysin inhibition is a promising approach for long-term renal protection in addition to AT1 receptor blockers in acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Juan Brignone
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Kasper Bostlund Assersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mia Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Brian Kloster
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Jønler
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Lund
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
9
|
Wang YJ, Li SY, Zhao JY, Li K, Xu J, Xu XY, Wu WM, Yang R, Xiao Y, Ye MQ, Liu JP, Zhong YJ, Cao Y, Yi HY, Tian L. Clathrin-dependent endocytosis predominantly mediates protein absorption by fat body from the hemolymph in Bombyx mori. INSECT SCIENCE 2020; 27:675-686. [PMID: 30912872 DOI: 10.1111/1744-7917.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
During insect larval-pupal metamorphosis, proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis; however, the type of proteins and how these proteins are internalized into the fat body are unclear. In Bombyx mori, the developmental profiles of total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands (55-100 kDa) were in accordance with those protein bands that increased in the fat body. Inhibition of clathrin-dependent endocytosis predominantly blocked the transportation of 55-100 kDa proteins from the hemolymph into the fat body, which was further verified by RNA interference treatment of Bmclathrin. Six hexamerins were shown to comprise ∼90% of the total identified proteins in both the hemolymph and fat body by mass spectrum (MS) analysis. In addition, hemolymph-specific proteins were mainly involved in material transportation, while fat body-specific proteins particularly participated in metabolism. In this paper, four hexamerins were found for the first time, and potential proteins absorbed by the fat body from the hemolymph through clathrin-dependent endocytosis were identified. This study sheds light on the protein absorption mechanism during insect metamorphosis.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shu-Yan Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jia-Ye Zhao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jing Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian-Ying Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Mei Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rong Yang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Xiao
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ming-Qiang Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ji-Ping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang-Jin Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Cao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui-Yu Yi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Chen P, Wang YZ, Liu QZ, Li WH, Li HQ, Li XY, Zhang YT. Transcriptomic analysis reveals recovery strategies in strawberry roots after using a soil amendment in continuous cropping soil. BMC PLANT BIOLOGY 2020; 20:5. [PMID: 31900117 PMCID: PMC6942283 DOI: 10.1186/s12870-019-2216-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In strawberry cultivation, continuous cropping (CC) obstacles seriously threaten production. A patented soil amendment (SA) can effectively relieve the CC obstacles to strawberry cultivation, but knowledge of the recovery mechanisms underlying this phenomenon is limited. RESULTS In this study, transcriptomic profiling of strawberry roots in soil with and without the SA was conducted using RNA-Seq technology to reveal gene expression changes in response to SA treatment. In total, 188 differentially expressed genes (DEGs), including 144 upregulated and 44 downregulated DEGs, were identified. SA treatment resulted in genotype-dependent responses, and the response pattern, including an overall increase in the expression of nutrient transport genes and a decrease in the expression of defense response genes, may be a possible mechanism underlying recovery strategies in strawberry roots after the application of the SA to CC soil. We also found that 9 Hsp genes involved in plant defense pathways were all downregulated in the SA-treated roots. CONCLUSIONS This research indicated that strawberry plants reallocated defense resources to development when SA treatment alleviated the stress caused by a CC soil environment. The present study provides an opportunity to reveal the fundamental mechanisms of the tradeoff between growth and defense in strawberry.
Collapse
Affiliation(s)
- Peng Chen
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
| | - Yu-zhu Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China
| | - Qi-zhi Liu
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
| | - Wei-hua Li
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - He-qin Li
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
- Shandong Provincial Key Laboratory of Dryland Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xing-yue Li
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, 610066 China
| | - Yun-tao Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China
| |
Collapse
|
11
|
Vandenwijngaert S, Ledsky CD, Lahrouchi N, Khan MAF, Wunderer F, Ames L, Honda T, Diener JL, Bezzina CR, Buys ES, Bloch DB, Newton-Cheh C. Blood Pressure-Associated Genetic Variants in the Natriuretic Peptide Receptor 1 Gene Modulate Guanylate Cyclase Activity. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002472. [PMID: 31430210 DOI: 10.1161/circgen.119.002472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human genetic variation in the NPR1 (natriuretic peptide receptor 1 gene, encoding NPR-A, atrial natriuretic peptide receptor 1) was recently shown to affect blood pressure (BP). NPR-A catalyzes the intracellular conversion of guanosine triphosphate to cGMP (cyclic 3',5'-guanosine monophosphate) on binding of ANP, BNP (atrial or brain natriuretic peptide). Increased levels of cGMP decrease BP by inducing natriuresis, diuresis, and vasodilation. METHODS We performed a meta-analysis of low-frequency and rare NPR1 variants for BP association in up to 491 584 unrelated individuals. To examine whether the identified BP-associated variants affect NPR-A function, the cGMP response to ANP and BNP was measured in cells expressing wild-type NPR1 and cells expressing the NPR1 variants. RESULTS In this study, we identified BP associations of 3 amino acid altering variants of NPR1. The minor alleles of rs35479618 (p.E967K, gnomAD non-Finnish European allele frequency 0.017) and rs116245325 (p.L1034F, allele frequency 0.0007) were associated with higher BP (P=4.0×10-25 and P=9.9×10-8, respectively), while the minor allele of rs61757359 (p.G541S, allele frequency 0.003) was associated with lower BP (P=1.8×10-9). Cells transiently expressing 967K or 1034F NPR-A displayed decreased cGMP production in response to ANP and BNP (all P<10-6), while cells expressing 541S NPR-A produced more cGMP compared with cells expressing wild-type NPR-A (P≤4.13×10-5 for ANP and P≤4.24×10-3 for BNP). CONCLUSIONS In summary, the loss or gain of guanylate cyclase activity for these NPR1 allelic variants could explain the higher or lower BP observed for carriers in large population-based studies.
Collapse
Affiliation(s)
- Sara Vandenwijngaert
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Clara D Ledsky
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Najim Lahrouchi
- Center for Genomic Medicine (N.L., C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Mohsin A F Khan
- Amsterdam UMC, University of Amsterdam, Heart Center (M.A.F.K., C.R.B.).,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Florian Wunderer
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, UniversityHospital Frankfurt, Germany (F.W.)
| | - Lisa Ames
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - Toshiyuki Honda
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - John L Diener
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - Connie R Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center (M.A.F.K., C.R.B.).,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Donald B Bloch
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Christopher Newton-Cheh
- Center for Genomic Medicine (N.L., C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Cardiovascular Research Center, Department of Medicine (C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (C.N.-C.)
| | | |
Collapse
|
12
|
Mani I, Pandey KN. Emerging concepts of receptor endocytosis and concurrent intracellular signaling: Mechanisms of guanylyl cyclase/natriuretic peptide receptor-A activation and trafficking. Cell Signal 2019; 60:17-30. [PMID: 30951863 DOI: 10.1016/j.cellsig.2019.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.
Collapse
Affiliation(s)
- Indra Mani
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States.
| |
Collapse
|
13
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
14
|
Somanna NK, Mani I, Tripathi S, Pandey KN. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A. Mol Cell Biochem 2017; 441:135-150. [PMID: 28900772 DOI: 10.1007/s11010-017-3180-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022]
Abstract
Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.
Collapse
Affiliation(s)
- Naveen K Somanna
- Department of Physiology, SL-39, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Indra Mani
- Department of Physiology, SL-39, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Satyabha Tripathi
- Department of Physiology, SL-39, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Kailash N Pandey
- Department of Physiology, SL-39, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Gadila SKG, Kim K. Cargo trafficking from the trans-Golgi network towards the endosome. Biol Cell 2016; 108:205-18. [DOI: 10.1111/boc.201600001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology; Missouri State University; Springfield MO 65807 USA
| |
Collapse
|
16
|
Kalaiarasu LP, Subramanian V, Sowndharrajan B, Vellaichamy E. Insight into the Anti-Inflammatory Mechanism of Action of Atrial Natriuretic Peptide, a Heart Derived Peptide Hormone: Involvement of COX-2, MMPs, and NF-kB Pathways. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|