1
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
2
|
Accioni F, Rassu G, Begines B, Rodríguez-Albelo LM, Torres Y, Alcudia A, Gavini E. Novel Utilization of Therapeutic Coatings Based on Infiltrated Encapsulated Rose Bengal Microspheres in Porous Titanium for Implant Applications. Pharmaceutics 2022; 14:pharmaceutics14061244. [PMID: 35745816 PMCID: PMC9230760 DOI: 10.3390/pharmaceutics14061244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the increasing progress achieved in the last 20 years in both the fabrication of porous dental implants and the development of new biopolymers for targeting drug therapy, there are important issues such as bone resorption, poor osseointegration, and bacterial infections that remain as critical challenges to avoid clinical failure problems. In this work, we present a novel microtechnology based on polycaprolactone microspheres that can adhere to porous titanium implant models obtained by the spacer holder technique to allow a custom biomechanical and biofunctional balance. For this purpose, a double emulsion solvent evaporation technique was successfully employed for the fabrication of the microparticles properly loaded with the antibacterial therapeutic agent, rose bengal. The resulting microspheres were infiltrated into porous titanium substrate and sintered at 60 °C for 1 h, obtaining a convenient prophylactic network. In fact, the sintered polymeric microparticles were demonstrated to be key to controlling the drug dissolution rate and favoring the early healing process as consequence of a better wettability of the porous titanium substrate to promote calcium phosphate nucleation. Thus, this joint technology proposes a suitable prophylactic tool to prevent both early-stage infection and late-stage osseointegration problems.
Collapse
Affiliation(s)
- Francesca Accioni
- Departmento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.A.); (B.B.)
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Giovanna Rassu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Correspondence: (G.R.); (A.A.)
| | - Belén Begines
- Departmento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.A.); (B.B.)
| | - Luisa Marleny Rodríguez-Albelo
- Departmento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41004 Sevilla, Spain; (L.M.R.-A.); (Y.T.)
| | - Yadir Torres
- Departmento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41004 Sevilla, Spain; (L.M.R.-A.); (Y.T.)
| | - Ana Alcudia
- Departmento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.A.); (B.B.)
- Correspondence: (G.R.); (A.A.)
| | - Elisabetta Gavini
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Wu MH, Lee MH, Wu C, Tsai PI, Hsu WB, Huang SI, Lin TH, Yang KY, Chen CY, Chen SH, Lee CY, Huang TJ, Tsau FH, Li YY. In Vitro and In Vivo Comparison of Bone Growth Characteristics in Additive-Manufactured Porous Titanium, Nonporous Titanium, and Porous Tantalum Interbody Cages. MATERIALS 2022; 15:ma15103670. [PMID: 35629694 PMCID: PMC9147460 DOI: 10.3390/ma15103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Autogenous bone grafts are the gold standard for interbody fusion implant materials; however, they have several disadvantages. Tantalum (Ta) and titanium (Ti) are ideal materials for interbody cages because of their biocompatibility, particularly when they are incorporated into a three-dimensional (3D) porous structure. We conducted an in vitro investigation of the cell attachment and osteogenic markers of self-fabricated uniform porous Ti (20%, 40%, 60%, and 80%), nonporous Ti, and porous Ta cages (n = 6) in each group. Cell attachment, osteogenic markers, and alkaline phosphatase (ALP) were measured. An in vivo study was performed using a pig-posterior-instrumented anterior interbody fusion model to compare the porous Ti (60%), nonporous Ti, and porous Ta interbody cages in 12 pigs. Implant migration and subsidence, determined using plain radiographs, were recorded before surgery, immediately after surgery, and at 1, 3, and 6 months after surgery. Harvested implants were assessed for bone ingrowth and attachment. Relative to the 20% and 40% porous Ti cages, the 60% and 80% cages achieved superior cellular migration into cage pores. Among the cages, osteogenic marker and ALP activity levels were the highest in the 60% porous Ti cage, osteocalcin expression was the highest in the nonporous Ti cage, and the 60% porous Ti cage exhibited the lowest subsidence. In conclusion, the designed porous Ti cage is biocompatible and suitable for lumbar interbody fusion surgery and exhibits faster fusion with less subsidence compared with porous Ta and nonporous Ti cages.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 110301, Taiwan
| | - Ming-Hsueh Lee
- Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Christopher Wu
- College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan;
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Chih-Yu Chen
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- TMU Biodesign Center, Taipei Medical University, Taipei 110301, Taiwan
- Department of Orthopedics, Shuang-Ho Hospital, Taipei Medical University, Taipei 235041, Taiwan
| | - Shih-Hao Chen
- Department of Orthopedic Surgery, Buddhist Tzu-Chi General Hospital, Taichung Branch, Taichung 427213, Taiwan;
- Department of Orthopedic Surgery, Tzu-Chi University, Hualien 970374, Taiwan
| | - Ching-Yu Lee
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Fang-Hei Tsau
- Laser and Additive Manufacturing Technology Center, Southern Region Campus, Industrial Technology Research Institute, Tainan 734045, Taiwan;
| | - Yen-Yao Li
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Correspondence: ; Tel.: +88653621000 (ext. 2855)
| |
Collapse
|
4
|
Influence of Femtosecond Laser Modification on Biomechanical and Biofunctional Behavior of Porous Titanium Substrates. MATERIALS 2022; 15:ma15092969. [PMID: 35591307 PMCID: PMC9099494 DOI: 10.3390/ma15092969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
Bone resorption and inadequate osseointegration are considered the main problems of titanium implants. In this investigation, the texture and surface roughness of porous titanium samples obtained by the space holder technique were modified with a femtosecond Yb-doped fiber laser. Different percentages of porosity (30, 40, 50, and 60 vol.%) and particle range size (100–200 and 355–500 μm) were compared with fully-dense samples obtained by conventional powder metallurgy. After femtosecond laser treatment the formation of a rough surface with micro-columns and micro-holes occurred for all the studied substrates. The surface was covered by ripples over the micro-metric structures. This work evaluates both the influence of the macro-pores inherent to the spacer particles, as well as the micro-columns and the texture generated with the laser, on the wettability of the surface, the cell behavior (adhesion and proliferation of osteoblasts), micro-hardness (instrumented micro-indentation test, P–h curves) and scratch resistance. The titanium sample with 30 vol.% and a pore range size of 100–200 μm was the best candidate for the replacement of small damaged cortical bone tissues, based on its better biomechanical (stiffness and yield strength) and biofunctional balance (bone in-growth and in vitro osseointegration).
Collapse
|
5
|
Chávez-Vásconez R, Lascano S, Sauceda S, Reyes-Valenzuela M, Salvo C, Mangalaraja RV, Gotor FJ, Arévalo C, Torres Y. Effect of the Processing Parameters on the Porosity and Mechanical Behavior of Titanium Samples with Bimodal Microstructure Produced via Hot Pressing. MATERIALS (BASEL, SWITZERLAND) 2021; 15:136. [PMID: 35009282 PMCID: PMC8746005 DOI: 10.3390/ma15010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Commercially pure (c.p.) titanium grade IV with a bimodal microstructure is a promising material for biomedical implants. The influence of the processing parameters on the physical, microstructural, and mechanical properties was investigated. The bimodal microstructure was achieved from the blends of powder particles with different sizes, while the porous structure was obtained using the space-holder technique (50 vol.% of ammonium bicarbonate). Mechanically milled powders (10 and 20 h) were mixed in 50 wt.% or 75 wt.% with c.p. titanium. Four different mixtures of powders were precompacted via uniaxial cold pressing at 400 MPa. Then, the specimens were sintered at 750 °C via hot pressing in an argon gas atmosphere. The presence of a bimodal microstructure, comprised of small-grain regions separated by coarse-grain ones, was confirmed by optical and scanning electron microscopies. The samples with a bimodal microstructure exhibited an increase in the porosity compared with the commercially available pure Ti. In addition, the hardness was increased while the Young's modulus was decreased in the specimens with 75 wt.% of the milled powders (20 h).
Collapse
Affiliation(s)
- Ricardo Chávez-Vásconez
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Sheila Lascano
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Sergio Sauceda
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Mauricio Reyes-Valenzuela
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Christopher Salvo
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad del Bío-Bío, Avda. Collao 1202, Casilla 5-C, Concepción 4081112, Chile;
| | | | - Francisco José Gotor
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Cristina Arévalo
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Poliécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (C.A.); (Y.T.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Poliécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (C.A.); (Y.T.)
| |
Collapse
|
6
|
García-Cabezón C, Godinho V, Salvo-Comino C, Torres Y, Martín-Pedrosa F. Improved Corrosion Behavior and Biocompatibility of Porous Titanium Samples Coated with Bioactive Chitosan-Based Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6322. [PMID: 34771848 PMCID: PMC8585141 DOI: 10.3390/ma14216322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
Porous titanium implants can be a good solution to solve the stress shielding phenomenon. However, the presence of pores compromises mechanical and corrosion resistance. In this work, porous titanium samples obtained using a space-holder technique are coated with Chitosan, Chitosan/AgNPs and Chitosan/Hydroxyapatite using only one step and an economic electrodeposition method. The coatings' topography, homogeneity and chemical composition were analyzed. A study of the effect of the porosity and type of coating on corrosion resistance and cellular behavior was carried out. The electrochemical studies reveal that porous samples show high current densities and an unstable oxide film; therefore, there is a need for surface treatments to improve corrosion resistance. The Chitosan coatings provide a significant improvement in the corrosion resistance, but the Chitosan/AgNPs and Chitosan/HA coatings showed the highest protection efficiency, especially for the more porous samples. Furthermore, these coatings have better adherence than the chitosan coatings, and the higher surface roughness obtained favors cell adhesion and proliferation. Finally, a combination of coating and porous substrate material with the best biomechanical balance and biofunctional behavior is proposed as a potential candidate for the replacement of small, damaged bone tissues.
Collapse
Affiliation(s)
- Cristina García-Cabezón
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Escuela de Ingenierías Industriales, Universidad de Valladolid, Calle Paseo del Cace 59, 47011 Valladolid, Spain;
| | - Vanda Godinho
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Calle Virgen de África 7, 41011 Sevilla, Spain; (V.G.); (Y.T.)
| | - Coral Salvo-Comino
- Departamento de Química Inorgánica, Escuela de Ingenierías Industriales, Universidad de Valladolid, Calle Paseo del Cace 59, 47011 Valladolid, Spain;
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Calle Virgen de África 7, 41011 Sevilla, Spain; (V.G.); (Y.T.)
| | - Fernando Martín-Pedrosa
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Escuela de Ingenierías Industriales, Universidad de Valladolid, Calle Paseo del Cace 59, 47011 Valladolid, Spain;
| |
Collapse
|
7
|
Characterization of Titanium Surface Modification Strategies for Osseointegration Enhancement. METALS 2021. [DOI: 10.3390/met11040618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As biocompatible metallic materials, titanium and its alloys have been widely used in the orthopedic field due to their superior strength, low density, and ease of processing. However, further improvement in biological response is still required for rapid osseointegration. Here, various Ti surface-treatment technologies were applied: hydroxyapatite blasting, sand blasting and acid etching, anodic oxidation, and micro-arc oxidation. The surface characteristics of specimens subjected to these techniques were analyzed in terms of structure, elemental composition, and wettability. The adhesion strength of the coating layer was also assessed for the coated specimens. Biocompatibility was compared via tests of in vitro attachment and proliferation of pre-osteoblast cells.
Collapse
|
8
|
Surface Modification of Porous Titanium Discs Using Femtosecond Laser Structuring. METALS 2020. [DOI: 10.3390/met10060748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The failure of titanium implants is associated with two main problems that include the bone resorption and fracture of the surrounding bone tissue (stiffness incompatibility) and implant loosening (poor osseointegration). The development of porous titanium implants with low Young modulus solve the stress shielding phenomenon, while the modification of the implant surface must be implemented to promote a fast bond between the implant and bone. In this work, femtosecond laser micromachining was applied to modify the topography of the surface of Ti porous samples obtained by a space-holder technique to obtain hierarchical structures (micro and nano roughness patterns) to enhance osseointegration. Scanning electron microscopy, confocal laser microscopy, and image analysis were used for characterization of the surface morphology, roughness, and porosity before and after performing the laser treatment. Based on these results, the effect of the treatment on the mechanical behavior of the samples was estimated. In addition, a preliminary in-vitro test was performed to verify the adhesion of osteoblasts (filopodia presence) on modified titanium surface. Results revealed that laser texturing generated clusters of micro-holes and micro-columns both on the flat surface of the samples and inside the macro-pores, and periodic nanometric structures across the entire surface. The porous substrate offers suitable biomechanics (stiffness and yield strength) and bio-functional behavior (bone ingrowth and osseointegration), which improves the clinic success of titanium implants.
Collapse
|