1
|
Alu'datt MH, Al-U'datt D, Rababah T, Gammoh S, Alrosan M, Bani-Melhem K, Al-Widyan Y, Kubow S, AbuJalban D, Al Khateeb W, Abubaker M. Recent research directions on functional royal jelly: highlights prospects in food, nutraceutical, and pharmacological industries. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39440352 DOI: 10.1080/10408398.2024.2418892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The food and pharmaceutical industries have utilized royal jelly, an alternative medicinal food, as a natural pharmaceutical product since ancient times. Royal jelly has a unique remarkable composition containing lipids, proteins, carbohydrates, vitamins, minerals, hormones, and phenolic compounds. The rapidly expanding functional food market has coincided with the increasing consumer demand for royal jelly. Over the past two decades, royal jelly, a rich source of certain bioactive components, has been used by humans as a functional and nutritious food due to recent studies of the effect of royal jelly in underlying pathogenic processes in a variety of animal models. Scientific evidence has accumulated supporting a wide variety of health-promoting effects from the intake of royal jelly that supports cardiovascular health, immune and antioxidant function, wound healing, blood lipid, and glucose control in addition to antibacterial and antihypertensive effects. The main bioactive ingredients are Major Royal Jelly Proteins (MRJPs), essential oils, fatty acids, peptides, and phenolics, which are thought to have a significant role in the development of honeybee queens. The health-endorsing qualities of royal jelly make it a significant functional ingredient in the food, and cosmetic industry. Apisin is one of the main proteins in royal jelly that has antibacterial properties. Other bioactive ingredients of royal jelly that have multifunctional health-promoting properties include defensin-1, royalisin, apisimin, apidaecin, jelleins, royalactin and 10-hydroxy-2-decenoic acid (10HDA) in epigenetic diseases. This review highlights the important role that royal jelly plays as an agent in various fields of medicine, paying special attention to its biological features. Additionally, we discuss royal jelly's composition as a possible therapeutic for vital natural sources of bioactive substances.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Yasmeen Al-Widyan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Dana AbuJalban
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Mais Abubaker
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Liao Z, Alrosan M, Alu'datt MH, Tan TC. 10-hydroxy decanoic acid, trans-10-hydroxy-2-decanoic acid, and sebacic acid: Source, metabolism, and potential health functionalities and nutraceutical applications. J Food Sci 2024; 89:3878-3893. [PMID: 38865248 DOI: 10.1111/1750-3841.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
The popularity of royal jelly (RJ) as a functional food has attracted attention from various industries, especially nutraceuticals, due to the increasing demand from health enthusiasts. Sebacic acid, 10-hydroxy decanoic acid, and trans-10-hydroxy-2-decanoic acid are the primary medium-chain fatty acids (MCFAs) within RJ responsible for their health benefits. This review aims to consolidate information on these MCFAs' metabolic relationship and health functionalities in nutraceutical applications. We also investigated the natural characteristics mediated by these MCFAs and their metabolism in organisms. Finally, the production of these MCFAs using conventional (from castor oil) and alternative (from RJ) pathways was also discussed. This review can be a reference for using them as functional ingredients in nutraceutical industries.
Collapse
Affiliation(s)
- Zhengrui Liao
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- College of Health Science, QU Health, Qatar University, Doha, Qatar
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science & Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
3
|
Sergeant K, Goertz S, Halime S, Tietgen H, Heidt H, Minestrini M, Jacquard C, Zimmer S, Renaut J. Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean ( Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra. Molecules 2024; 29:1065. [PMID: 38474577 DOI: 10.3390/molecules29051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
While numerous Fabaceae seeds are a good nutritional source of high-quality protein, the use of some species is hampered by toxic effects caused by exposure to metabolites that accumulate in the seeds. One such species is the faba or broad bean (Vicia faba L.), which accumulates vicine and convicine. These two glycoalkaloids cause favism, the breakdown of red blood cells in persons with a glucose-6-phosphate dehydrogenase deficiency. Because this is the most common enzyme deficiency worldwide, faba bean breeding efforts have focused on developing cultivars with low levels of these alkaloids. Consequently, quantification methods have been developed; however, they quantify vicine and convicine only and not the derivatives of these compounds that potentially generate the same bio-active molecules. Based on the recognition of previously unknown (con)vicine-containing compounds, we screened the fragmentation spectra of LC-MS/MS data from five faba bean cultivars using the characteristic fragments generated by (con)vicine. This resulted in the recognition of more than a hundred derivatives, of which 89 were tentatively identified. (Con)vicine was mainly derivatized through the addition of sugars, hydroxycinnamic acids, and dicarboxylic acids, with a group of compounds composed of two (con)vicine residues linked by dicarboxyl fatty acids. In general, the abundance profiles of the different derivatives in the five cultivars mimicked that of vicine and convicine, but some showed a derivative-specific profile. The description of the (con)vicine diversity will impact the interpretation of future studies on the biosynthesis of (con)vicine, and the content in potentially bio-active alkaloids in faba beans may be higher than that represented by the quantification of vicine and convicine alone.
Collapse
Affiliation(s)
- Kjell Sergeant
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Simon Goertz
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Salma Halime
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
- Université de Reims Champagne-Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Hanna Tietgen
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Hanna Heidt
- Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l (IBLA), 1 Wantergaass, L-7664 Medernach, Luxembourg
| | - Martina Minestrini
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du 11 Sud 4-5/L7.07.03, B-1348 Louvain-la-Neuve, Belgium
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Stephanie Zimmer
- Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l (IBLA), 1 Wantergaass, L-7664 Medernach, Luxembourg
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
| |
Collapse
|
4
|
Alsharif B, Hante N, Govoni B, Verli H, Kukula-Koch W, Jose Santos-Martinez M, Boylan F. Capparis cartilaginea decne (capparaceae): isolation of flavonoids by high-speed countercurrent chromatography and their anti-inflammatory evaluation. Front Pharmacol 2023; 14:1285243. [PMID: 37927588 PMCID: PMC10620733 DOI: 10.3389/fphar.2023.1285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Capparis cartilaginea Decne. (CC) originates from the dry regions of Asia and the Mediterranean basin. In traditional medicine, tea of CC leaves is commonly used to treat inflammatory conditions such as rheumatism, arthritis, and gout. Due to the limited studies on the phytochemistry and biological activity of CC compared to other members of the Capparaceae family, this work aims to: 1) Identify the chemical composition of CC extract and 2) Investigate the potential anti-inflammatory effect of CC extract, tea and the isolated compounds. Methods: To guarantee aim 1, high-speed countercurrent chromatography (HSCC) method; Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESIQTOF-MS/MS) were employed for this purpose. To guarantee aim 2, we studied the effect of the isolated flavonoids on matrix metalloproteinases (MMPs) -9 and -2 in murine macrophages. Molecular docking was initially performed to assess the binding affinity of the isolated flavonoids to the active site of MMP-9. Results and discussion: In silico model was a powerful tool to predict the compounds that could strongly bind and inhibit MMPs. CC extract and tea have shown to possess a significant antioxidant and anti-inflammatory effect, which can partially explain their traditional medicinal use.
Collapse
Affiliation(s)
- Bashaer Alsharif
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadhim Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, University of Kufa, Al-Najaf, Iraq
| | - Bruna Govoni
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hugo Verli
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - María Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Leponiemi M, Freitak D, Moreno-Torres M, Pferschy-Wenzig EM, Becker-Scarpitta A, Tiusanen M, Vesterinen EJ, Wirta H. Honeybees' foraging choices for nectar and pollen revealed by DNA metabarcoding. Sci Rep 2023; 13:14753. [PMID: 37679501 PMCID: PMC10484984 DOI: 10.1038/s41598-023-42102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.
Collapse
Affiliation(s)
- Matti Leponiemi
- Institute of Biology, Karl-Franzen University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Dalial Freitak
- Institute of Biology, Karl-Franzen University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Miguel Moreno-Torres
- Institute of Environmental Systems Science, Karl-Franzens-Universität Graz, Merangasse 18/I, 8010, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstraße 8, Graz, Austria
| | | | - Mikko Tiusanen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Vesilinnantie 5, Turku, Finland
| | - Helena Wirta
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Targeted and Suspect Fatty Acid Profiling of Royal Jelly by Liquid Chromatography—High Resolution Mass Spectrometry. Biomolecules 2023; 13:biom13030424. [PMID: 36979357 PMCID: PMC10046394 DOI: 10.3390/biom13030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Royal jelly (RJ) is a bee product produced by the mandibular and hypopharyngeal glands of worker honeybees which has attracted special attention because of its numerous pharmacological activities and its applications to dermatology and cosmetics. In 2020, we demonstrated a liquid chromatography–high resolution mass spectrometry (LC–HRMS) method for the determination of seven medium-chain FFAs in RJ samples. The aim of the present work was to extend our studies on FA profiling of RJ, exploring the presence of common long-chain saturated, mono-unsaturated and poly-unsaturated free FAs in RJ samples using this LC–HRMS method. Among twenty common FAs studied by a targeted approach, palmitic acid, stearic acid and oleic acid were found at concentrations higher than the rest of the FAs (the concentrations of these three acids ranged from 37.4 to 48.0, from 17.7 to 24.0 and from 9.4 to 11.1 mg/100 g of fresh RJ, respectively). The high mass accuracy of LC–HRMS allowed the application of a suspect approach, which enabled the exploration of various C9 and C11 FAs, as well as hydroxylated C12 FAs. Nonenoic acid was indicated as the most abundant among these acids. In addition, for the first time, the presence of a variety of regio-isomers of hydroxymyristic, hydroxypalmitic and hydroxystearic acids was demonstrated in RJ samples.
Collapse
|
7
|
Investigation of the lipidomic profile of royal jelly from different botanical origins using UHPLC-IM-Q-TOF-MS and GC-MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Mohammadi M, Kharazian N. Untargeted metabolomics study and identification of potential biomarkers in the six sections of the genus Stachys L. (Lamiaceae) using HPLC-MQ-API-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:915-942. [PMID: 35670362 DOI: 10.1002/pca.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The genus Stachys L., belonging to the family Lamiaceae, is one of the largest genera with remarkable medicinal properties. Plants of this genus produce a broad range of secondary metabolites. OBJECTIVES Due to the incomplete comprehensive assessment of chemical profiles in Stachys species, we conducted an untargeted metabolomics study and identified potential biomarkers in the six sections of Stachys with chemotaxonomic importance. MATERIAL AND METHODS Dried leaves of 17 taxa were utilized for analysis of all the constituents using HPLC-MQ-API-MS. The obtained data were processed and analyzed using multivariate statistical methods, including heatmaps, PLS-DA score plots, functional analysis of metabolic pathways, metabolite set enrichment analysis, and biomarker and network analysis. RESULTS Among the 129 metabolites, 111 flavonoids and 18 non-flavonoids were recognized. The most represented flavonoids, including 41 flavones and 20 flavonols, displayed remarkable abundance. In non-flavonoid compounds, a total of six coumarins and six phenolic acids were present at high levels. In terms of approved markers in six sections, 76 chemical compounds, mainly flavonoids, coumarins, quinic acids, and cinnamic acids, were identified as potential biomarkers or chemotaxonomic indicators. Accordingly, the taxonomic complexities of some Stachys species in sections Fragilicaulis, Aucheriana, and Setifolia were properly resolved. CONCLUSION An HPLC-MS/MS-based metabolomics approach integrated with multivariate statistical methods was employed to identify (1) valuable markers and analyze metabolic diversity and (2) predict the pharmaceutical properties of Stachys species. The obtained chemical profiles provide a new perspective for investigation of the Stachys genus.
Collapse
Affiliation(s)
- Mozhgan Mohammadi
- Department of Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Navaz Kharazian
- Department of Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Functional probiotic yoghurt production with royal jelly fortification and determination of some properties. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Luo X, Dong Y, Gu C, Zhang X, Ma H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front Nutr 2021; 8:727181. [PMID: 34805239 PMCID: PMC8595947 DOI: 10.3389/fnut.2021.727181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Increased demand for a more balanced, healthy, and safe diet has accelerated studies on natural bee products (including honey, bee bread, bee collected pollen royal jelly, propolis, beeswax, and bee venom) over the past decade. Advanced food processing techniques, such as ultrasonication and microwave and infrared (IR) irradiation, either has gained popularity as alternatives or combined with conventional processing techniques for diverse applications in apiculture products at laboratory or industrial scale. The processing techniques used for each bee products have comprehensively summarized in this review, including drying (traditional drying, infrared drying, microwave-assisted traditional drying or vacuum drying, and low temperature high velocity-assisted fluidized bed drying), storage, extraction, isolation, and identification; the assessment methods related to the quality control of bee products are also fully mentioned. The different processing techniques applied in bee products aim to provide more healthy active ingredients largely and effectively. Furthermore, improved the product quality with a shorter processing time and reduced operational cost are achieved using conventional or emerging processing techniques. This review will increase the positive ratings of the combined new processing techniques according to the needs of the bee products. The importance of the models for process optimization on a large scale is also emphasized in the future.
Collapse
Affiliation(s)
- Xuan Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, Dong Y. Active components and biological functions of royal jelly. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Ibrahim RS, El-Banna AA. Royal jelly fatty acids bioprofiling using TLC-MS and digital image analysis coupled with chemometrics and non-parametric regression for discovering efficient biomarkers against melanoma. RSC Adv 2021; 11:18717-18728. [PMID: 35478617 PMCID: PMC9033460 DOI: 10.1039/d1ra00580d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023] Open
Abstract
A comprehensive approach of untargeted and targeted fatty acid bioprofiling of different royal jelly commercial and pharmaceutical products based on HPTLC-image analysis and melanoma cytotoxic activity together with chemometric analysis was applied in this study for discovering efficient biomarkers. Principal component analysis based on HPTLC-image analysis fingerprints of fatty acid loading plots were used to determine the chemical markers responsible for classification of royal jelly samples into fresh and lyophilized ones. These markers were identified using the HPTLC-MS technique as 8-hydroxyoctanoic acid, 3,10-dihydroxydecanoic acid, 10-hydroxy-2-decenoic acid, decanedioic acid and 10-hydroxydecanoic acid. These discriminating markers were quantified via the HPTLC-imaging technique for targeted profiling using two different methods: parametric and non-parametric regression. The non-parametric regression method exhibited superiority in terms of linearity, accuracy and precision. Biomarkers were determined from the 3D-loading plot of orthogonal projection to latent structures model based on the fatty acid quantitative data together with the melanoma cytotoxic activity data. 10-Hydroxy-2-decenoic acid showed the greatest reduction in melanoma cell viability followed by decanedioic acid then 8-hydroxyoctanoic acid. The present study is considered the first attempt to discriminate fresh and lyophilized royal jelly samples based on their holistic lipidomic profile to discover efficient fatty acid reducing melanoma cell viability.
Collapse
Affiliation(s)
- Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| |
Collapse
|
13
|
Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021; 10:foods10020428. [PMID: 33669180 PMCID: PMC7919678 DOI: 10.3390/foods10020428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Normal-phase high-performance liquid chromatography (HPLC) is widely used in combination with evaporative light scattering detection (ELSD) for separating and detecting lipids in various food samples. ELSD responses of different lipids were evaluated to elucidate the possibilities and challenges associated with quantification by means of HPLC-ELSD. Not only the number and type of polar functional groups but also the chain length and degree of unsaturation of (free or esterified) fatty acids (FAs) had a significant effect on ELSD responses. Tripalmitin and trilinolein yielded notably different ELSD responses, even if their constituting free FAs produced identical responses. How FA structure impacts ELSD responses of free FAs is thus not predictive for those of triacylglycerols and presumably other lipids containing esterified FAs. Because ELSD responses of lipids depend on the identity of the (esterified) FA(s) which they contain, fully accurate lipid quantification with HPLC-ELSD is challenging and time-consuming. Nonetheless, HPLC-ELSD is a good and fast technique to semi-quantitatively compare the levels of different lipid classes between samples of comparable FA composition. In this way, lipid profiles of different flours from near-isogenic wheat lines could be compared.
Collapse
|
14
|
Bouamama S, Merzouk H, Latrech H, Charif N, Bouamama A. Royal jelly alleviates the detrimental effects of aging on immune functions by enhancing the in vitro cellular proliferation, cytokines, and nitric oxide release in aged human PBMCS. J Food Biochem 2021; 45:e13619. [PMID: 33491244 DOI: 10.1111/jfbc.13619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Aging strongly delays the immunity. Our research aims to assess the in vitro effects of royal jelly (RJ) on the immune function of aged PBMCs. PBMCs were obtained from 10 healthy aged and young donors by the gradient density centrifugation method and further cultured in RPMI-1640 medium supplemented with or without RJ in the presence of Con A. Cell proliferation was assessed by MTT assay along with the measurement of interleukins, Nitric oxide (NO), Glutathione (GSH), and Malondialdehydes (MDA). Our results showed that RJ improved PBMCs proliferation significantly in the elderly subjects, accompanied by the increase in NO (p = .001) and the release of IL-2, IL-4, and IL-6 cytokines. RJ also increased the intracellular GSH (p = .001) and MDA (p = .001) levels in aged PBMCs. In young subjects, RJ enhanced PBMCs proliferation potency, IL-4, IL-6, GSH, and intracellular MDA levels but with a concomitant decrease in NO and IL-2 cytokine secretion as compared with non RJ-treated cells. In conclusion, RJ restored functions of the aged PBMCs as well as the young control subjects, indicating a beneficial effect on immune status during the aging process. PRACTICAL APPLICATIONS: Royal jelly is a well-known edible dietary compound, used traditionally to treat many diseases throughout the world. Since antiquity, it was shown to have medicinal importance. The immuno-enhancing potential of this food was largely and scientifically established by the lipid and protein fractions. The present study illustrates the anti-aging and stimulatory effects of the fresh RJ whole extract, from local Algerian honey bee: Apis mellifera intermissa, on the immunity of aged men. This study provides the experimental evidence supporting anti-immunosenesence effects of royal jelly. RJ supplementation can be used in the old age management and human age-related complications, especially, associated with the weaknesses of the immune response.
Collapse
Affiliation(s)
- Samia Bouamama
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Hafida Merzouk
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Hamidou Latrech
- Institute of Veterinary Sciences, Blida University, Blida, Algeria
| | - Naima Charif
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Amina Bouamama
- Department of Foreign Languages, Literatures and Languages Faculty, Abou-Bekr Belkaid University, Tlemcen, Algeria
| |
Collapse
|
15
|
Md Noh MF, Gunasegavan RDN, Mustafa Khalid N, Balasubramaniam V, Mustar S, Abd Rashed A. Recent Techniques in Nutrient Analysis for Food Composition Database. Molecules 2020; 25:E4567. [PMID: 33036314 PMCID: PMC7582643 DOI: 10.3390/molecules25194567] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
Food composition database (FCD) provides the nutritional composition of foods. Reliable and up-to date FCD is important in many aspects of nutrition, dietetics, health, food science, biodiversity, plant breeding, food industry, trade and food regulation. FCD has been used extensively in nutrition labelling, nutritional analysis, research, regulation, national food and nutrition policy. The choice of method for the analysis of samples for FCD often depends on detection capability, along with ease of use, speed of analysis and low cost. Sample preparation is the most critical stage in analytical method development. Samples can be prepared using numerous techniques; however it should be applicable for a wide range of analytes and sample matrices. There are quite a number of significant improvements on sample preparation techniques in various food matrices for specific analytes highlighted in the literatures. Improvements on the technology used for the analysis of samples by specific instrumentation could provide an alternative to the analyst to choose for their laboratory requirement. This review provides the reader with an overview of recent techniques that can be used for sample preparation and instrumentation for food analysis which can provide wide options to the analysts in providing data to their FCD.
Collapse
Affiliation(s)
- Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia; (R.D.-N.G.); (N.M.K.); (V.B.); (S.M.); (A.A.R.)
| | | | | | | | | | | |
Collapse
|