1
|
Frańska M, Frański R. Application of Mass Spectrometry for Analysis of Nucleobases, Nucleosides and Nucleotides in Tea and Selected Herbs: A Critical Review of the Mass Spectrometric Data. Foods 2024; 13:2959. [PMID: 39335888 PMCID: PMC11431637 DOI: 10.3390/foods13182959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The main and most commonly known biological function of nucleobases, nucleosides, and nucleotides is usually associated with the fact that they are the building blocks of nucleic acids. However, these compounds also belong to plant secondary metabolites, although in that role they have attracted less attention than the others, e.g., terpenes, phenolics, or alkaloids. The former compounds are also important constituents of the human diet, e.g., as ingredients of tea and herbs, endowing them with specific taste qualities and pharmacological activities. Liquid chromatography-mass spectrometry seems to be the most important analytical method that permits the identification and determination of nucleobases, nucleosides, and nucleotides, along with the other metabolites. The main goal of this review is to discuss in detail the aspects of mass spectrometric detection of nucleobases, nucleosides, and nucleotides in tea and selected herbs. An important conclusion is that the identification of the compounds of interest should be performed not only on the basis of [M + H]+/[M - H]- ions but should also be confirmed by the respective product ions; however, as discussed in detail in this review, it may sometimes be problematic. It also clear that all difficulties that may be encountered when analyzing plant material are caused by the complexity of the analyzed samples and the need to analyze different classes of compounds, and this review absolutely does not debase any of the mentioned papers.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Li L, Yang J, Zhang Q, Xue Q, Li M, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification of Ankyrin (ANK) repeat gene families in three Dendrobium species and the expression of ANK genes in D. officinale under gibberellin and abscisic acid treatments. BMC PLANT BIOLOGY 2024; 24:762. [PMID: 39123107 PMCID: PMC11316315 DOI: 10.1186/s12870-024-05461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Dendrobium Sw. represents one of the most expansive genera within the Orchidaceae family, renowned for its species' high medicinal and ornamental value. In higher plants, the ankyrin (ANK) repeat protein family is characterized by a unique ANK repeat domain, integral to a plethora of biological functions and biochemical activities. The ANK gene family plays a pivotal role in various plant physiological processes, including stress responses, hormone signaling, and growth. Hence, investigating the ANK gene family and identifying disease-resistance genes in Dendrobium is of paramount importance. RESULTS This research identified 78 ANK genes in Dendrobium officinale Kimura et Migo, 77 in Dendrobium nobile Lindl., and 58 in Dendrobium chrysotoxum Lindl. Subsequently, we conducted comprehensive bioinformatics analyses on these ANK gene families, encompassing gene classification, chromosomal localization, phylogenetic relationships, gene structure and motif characterization, cis-acting regulatory element identification, collinearity assessment, protein-protein interaction network construction, and gene expression profiling. Concurrently, three DoANK genes (DoANK14, DoANK19, and DoANK47) in D. officinale were discerned to indirectly activate the NPR1 transcription factor in the ETI system via SA, thereby modulating the expression of the antibacterial PR gene. Hormonal treatments with GA3 and ABA revealed that 17 and 8 genes were significantly up-regulated, while 4 and 8 genes were significantly down-regulated, respectively. DoANK32 was found to localize to the ArfGAP gene in the endocytosis pathway, impacting vesicle transport and the polar movement of auxin. CONCLUSION Our findings provide a robust framework for the taxonomic classification, evolutionary analysis, and functional prediction of Dendrobium ANK genes. The three highlighted ANK genes (DoANK14, DoANK19, and DoANK47) from D. officinale may prove valuable in disease resistance and stress response research. DoANK32 is implicated in the morphogenesis and development of D. officinale through its role in vesicular transport and auxin polarity, with subcellular localization studies confirming its presence in the nucleus and cell membrane. ANK genes displaying significant expression changes in response to hormonal treatments could play a crucial role in the hormonal response of D. officinale, potentially inhibiting its growth and development through the modulation of plant hormones such as GA3 and ABA.
Collapse
Affiliation(s)
- Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qian Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qiqian Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Meiqian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China.
| |
Collapse
|
3
|
Zhao M, Zhao Y, Yang Z, Ming F, Li J, Kong D, Wang Y, Chen P, Wang M, Wang Z. Metabolic Pathway Engineering Improves Dendrobine Production in Dendrobium catenatum. Int J Mol Sci 2023; 25:397. [PMID: 38203567 PMCID: PMC10778673 DOI: 10.3390/ijms25010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine through the screening and pyramiding of key biosynthesis genes. Initially, previously predicted upstream key genes in the methyl-D-erythritol 4-phosphate (MEP) pathway for dendrobine synthesis, including 4-(Cytidine 5'-Diphospho)-2-C-Methyl-d-Erythritol Kinase (CMK), 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (DXR), 2-C-Methyl-d-Erythritol 4-Phosphate Cytidylyltransferase (MCT), and Strictosidine Synthase 1 (STR1), and a few downstream post-modification genes, including Cytochrome P450 94C1 (CYP94C1), Branched-Chain-Amino-Acid Aminotransferase 2 (BCAT2), and Methyltransferase-like Protein 23 (METTL23), were chosen due to their deduced roles in enhancing dendrobine production. The seven genes (SG) were then stacked and transiently expressed in the leaves of D. catenatum, resulting in a dendrobine yield that was two-fold higher compared to that of the empty vector control (EV). Further, RNA-seq analysis identified Copper Methylamine Oxidase (CMEAO) as a strong candidate with predicted functions in the post-modification processes of alkaloid biosynthesis. Overexpression of CMEAO increased dendrobine content by two-fold. Additionally, co-expression analysis of the differentially expressed genes (DEGs) by weighted gene co-expression network analysis (WGCNA) retrieved one regulatory transcription factor gene MYB61. Overexpression of MYB61 increased dendrobine levels by more than two-fold in D. catenatum. In short, this work provides an efficient strategy and prospective candidates for the genetic engineering of D. catenatum to produce dendrobine, thereby improving its medicinal value.
Collapse
Affiliation(s)
- Meili Zhao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Zhenyu Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jian Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Demin Kong
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Yu Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Peng Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Zhicai Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| |
Collapse
|
4
|
Liu P, Fan B, Mu Y, Tong L, Lu C, Li L, Liu J, Sun J, Wang F. Plant-Wide Target Metabolomics Provides a Novel Interpretation of the Changes in Chemical Components during Dendrobium officinale Traditional Processing. Antioxidants (Basel) 2023; 12:1995. [PMID: 38001848 PMCID: PMC10669339 DOI: 10.3390/antiox12111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The traditional processing of Dendrobium officinale (DO) is performed in five necessary processing steps: processing fresh strips, drying at 85 °C, curling, molding, and drying at 35 °C (Fengdou). The antioxidant activity of DO is increased after it is processed into Fengdou. To comprehensively analyze the changes in the functional components, a plant-wide target metabolomics approach was employed. In total, 739 differential chemical components were identified in five processing treatments, mainly highlighting differences in the levels of phenolic acids, flavonoids, lipids, and amino acids and their derivatives, and the glycosylation of aglycone resulted in the upregulation of flavonoid glycoside levels. Temperature is a key factor in DO processing during production. In addition, the enrichment of specific differential chemical components was found mainly in five different metabolic pathways: glucosinolate biosynthesis, linoleic acid metabolism, flavonoid biosynthesis, phenylpropanoid biosynthesis, and ubiquinone and other terpene quinone biosynthesis. A correlation analysis clarified that total phenols and flavonoids show a significant positive correlation with antioxidant capacity. This study provides new insights into the influence of the processing processes on DO quality, which may provide guidance for the high-quality production of DO.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (P.L.); (B.F.); (Y.M.); (L.T.); (C.L.); (L.L.); (J.L.)
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (P.L.); (B.F.); (Y.M.); (L.T.); (C.L.); (L.L.); (J.L.)
| |
Collapse
|
5
|
Cai G, Dong H, Liu S, Wu W, Yang H. Comparative Evaluation of the Physiochemical Properties, and Antioxidant and Hypoglycemic Activities of Dendrobium officinale Leaves Processed Using Different Drying Techniques. Antioxidants (Basel) 2023; 12:1911. [PMID: 38001764 PMCID: PMC10669270 DOI: 10.3390/antiox12111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Dendrobium officinale leaves have the potential to be processed into natural antioxidants, functional foods, and food additives. To maximally maintain their quality, fresh D. officinale leaves were dehydrated using different drying methods, i.e., hot air drying (HD), microwave drying (MD), infrared drying (IRD), and freeze drying (FD), and then the physicochemical properties, microstructure, and biological activities of the dried samples were compared. The results showed that, with the FD method, the samples had a porous microstructure, maintained the highest phenolic content, and demonstrated the highest antioxidant and hypoglycemic activities. Among the three thermal drying methods, with the IRD method, the samples retained higher phenolic contents, showed stronger DPPH free-radical scavenging, ferric ion reducing, ferrous ion chelating, and α-glucosidase inhibitory abilities, and more strongly promoted glucose metabolism in insulin-resistant HL-7702 cells than the samples with the MD and HD methods. These results suggested that FD was the most suitable method. However, IRD might be a promising alternative, owing to the high cost and long time needed for FD for the large-scale drying of D. officinale leaves.
Collapse
Affiliation(s)
- Gonglin Cai
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (G.C.); (H.D.); (S.L.)
| | - Hangmeng Dong
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (G.C.); (H.D.); (S.L.)
| | - Shoulong Liu
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (G.C.); (H.D.); (S.L.)
| | - Weijie Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hailong Yang
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (G.C.); (H.D.); (S.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Li Y, Li L, Yang J, Niu Z, Liu W, Lin Y, Xue Q, Ding X. Genome-Wide Identification and Analysis of TCP Gene Family among Three Dendrobium Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3201. [PMID: 37765364 PMCID: PMC10538224 DOI: 10.3390/plants12183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Dendrobium orchids, which are among the most well-known species of orchids, are appreciated for their aesthetic appeal across the globe. Furthermore, due to their strict living conditions, they have accumulated high levels of active ingredients, resulting not only in their medicinal value but also in their strong ability to respond to harsh environments. The TCP gene family plays an important role in plant growth and development, and signal transduction. However, these genes have not been systematically investigated in Dendrobium species. In this study, we detected a total of 24, 23, and 14 candidate TCP members in the genome sequences of D. officinale, D. nobile, and D. chrysotoxum, respectively. These genes were classified into three clades on the basis of a phylogenetic analysis. The TCP gene numbers among Dendrobium species were still highly variable due to the independent loss of genes in the CIN clade. However, only three gene duplication events were detected, with only one tandem duplication event (DcTCP9/DcTCP10) in D. chrysotoxum and two pairs of paralogous DoTCP gene duplication events (DoTCP1/DoTCP23 and DoTCP16/DoTCP24) in D. officinale. A total of 25 cis-acting elements of TCPs related to hormone/stress and light responses were detected. Among them, the proportions of hormone response, light response, and stress response elements in D. officinale (100/421, 127/421, and 171/421) were similar to those in D. nobile (83/352, 87/352, and 161/352). Using qRT-PCR to determine their expression patterns under MeJA treatment, four DoTCPs (DoTCP2, DoTCP4, DoTCP6, and DoTCP14) were significantly upregulated under MeJA treatment, which indicates that TCP genes may play important roles in responding to stress. Under ABA treatment, seven DoTCPs (DoTCP3, DoTCP7, DoTCP9, DoTCP11, DoTCP14, DoTCP15, and DoTCP21) were significantly upregulated, indicating that TCP genes may also play an important role in hormone response. Therefore, these results can provide useful information for studying the evolution and function of TCP genes in Dendrobium species.
Collapse
Affiliation(s)
- Yaoting Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (Y.L.); (Y.L.)
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (Y.L.); (Y.L.)
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| |
Collapse
|
7
|
Wu L, Sun M, Chen X, Si D, Si J. Hormonal and Metabolomic Responses of Dendrobium catenatum to Infection with the Southern Blight Pathogen Sclerotium delphinii. PHYTOPATHOLOGY 2023; 113:70-79. [PMID: 35876764 DOI: 10.1094/phyto-05-22-0178-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Southern blight caused by Sclerotium delphinii has a devastating effect on Dendrobium catenatum (an extremely valuable medicinal and food homologous Orchidaceae plant). However, the mechanisms underlying S. delphinii infection and D. catenatum response are far from known. Here, we investigated the infection process and mode of S. delphinii through microscopic observations of detached leaves and living plantlets and further explored the hormonal and metabolomic responses of D. catenatum during S. delphinii infection by using the widely targeted metabolome method. The results showed that S. delphinii infection involves two stages: a contact phase (12 to 16 h after inoculation) and a penetration stage (20 h after inoculation). S. delphinii hyphae could penetrate leaves directly (via swollen hyphae and the formation of an infection cushion) or indirectly (via stomatal penetration), causing water-soaked lesions on leaves within 24 to 28 h after inoculation and expanded thereafter. The content of jasmonates increased after the hyphal contact and remained at high levels during S. delphinii infection, whereas the ethylene precursor (1-aminocyclopropanecarboxylic acid) accumulated significantly after penetration. Furthermore, metabolites of the phenylpropanoid and flavonoid pathways were enriched after pathogen penetration, whereas several amino acids accumulated in significant amounts at the late stage of infection. Moreover, some other associated metabolites were significantly altered during pathogen infection. Therefore, the jasmonate, phenylpropanoid, flavonoid, and amino acid pathways could play crucial roles in D. catenatum resistance to S. delphinii infection. This study provides insight into the prevention and control of southern blight disease of D. catenatum.
Collapse
Affiliation(s)
- Lingshang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Meichen Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Dun Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| |
Collapse
|
8
|
Yang J, Xiong C, Li S, Zhou C, Li L, Xue Q, Liu W, Niu Z, Ding X. Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment. BMC PLANT BIOLOGY 2022; 22:529. [PMID: 36376794 PMCID: PMC9661794 DOI: 10.1186/s12870-022-03904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.
Collapse
Affiliation(s)
- Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Caijun Xiong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Siyuan Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| |
Collapse
|
9
|
Wang Z, Zhao M, Zhang X, Deng X, Li J, Wang M. Genome-wide identification and characterization of active ingredients related β-Glucosidases in Dendrobium catenatum. BMC Genomics 2022; 23:612. [PMID: 35999493 PMCID: PMC9400273 DOI: 10.1186/s12864-022-08840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. β-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing β-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China. .,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| | - Meili Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.,South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojie Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.,Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xuming Deng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Jian Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Meina Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China. .,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| |
Collapse
|
10
|
Liu J, Li Y, Chen Y, Si D, Zhang X, Wu S, Zhang L, Si J. Water-soluble non-starch polysaccharides of wild-simulated Dendrobium catenatum Lindley plantings on rocks and bark of pear trees. Food Chem X 2022; 14:100309. [PMID: 35492252 PMCID: PMC9043667 DOI: 10.1016/j.fochx.2022.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/05/2022] Open
Abstract
NSPs with antioxidant activity derived from wild-simulated D. catenatum were analyzed. NSP contents depended on the cultured modes and growth periods. Facility cultivation provide best growth condition but produce highest ratio of starch. While wild-simulated cultivation harvest higher ratio of NSPs, especially in September.
The total water-soluble polysaccharide (TP) of Dendrobium catenatum is composed of starch and active non-starch polysaccharides (NSPs) with glucomannan as the main structural type. Although the TP content has been used as a quality assessment indicator for many years, the NSPs content in samples from different environments and growth seasons have not been reported. In this study, we found that NSPs had stronger antioxidant activity than TP. The NSPs content was higher in wild-simulated environments including rocks and trees compared to plantings grown in greenhouse. The culture mode and growth period affected the ratio of NSPs and starch. Facility cultivation provided optimal growth conditions but produced more starch, whereas wild-simulated cultivation resulted in a higher ratio of NSPs, particularly in September. Therefore, cultivation by lithophytation and epiphytation may be preferable to facility plantings, which is expected to be enormously useful for the current production and quality control of D. catenatum.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ya Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yanyun Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Dun Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.,Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
11
|
Ye F, Qiao X, Gui A, Wang S, Liu P, Wang X, Teng J, Zheng L, Feng L, Han H, Gao S, Zheng P. Metabolomics Provides A Novel Interpretation of the Changes in Main Compounds during Black Tea Processing through Different Drying Methods. Molecules 2021; 26:molecules26216739. [PMID: 34771147 PMCID: PMC8587435 DOI: 10.3390/molecules26216739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
This study aimed to compare the effect of hot roller (HR) drying and hot air (HA) drying on the sensory evaluation, chemical quality, antioxidant activity, and metabolic profile of Yihong Congou black tea processed from E’cha NO1. The Yihong Congou black tea dried with HA obtained higher sensory scores and better chemical qualities such as the hue of tea brew color (a and b), content of theaflavins, thearubigins, water extract, free amino acids, tea polyphenol, and the ratio of polyphenol to amino acids as well as higher antioxidant capacities compared to that dried with HR. The HA drying tea increased the contents of volatile compounds that had positive correlation with sweet and flowery flavor, while the HR drying tea increased the contents of volatile compounds related to fruity flavor. Moreover, non-targeted metabolomics data indicated that the levels of most free amino acids significantly increased, while the levels of most soluble sugars reduced in the HA drying method compared to the HR drying method. The metabolic analysis was also consistent with the above results and revealed that D-ribose and gallic acid were the main characteristic metabolites of HA drying. Our results could provide a technical reference and theoretical guide to processing a high quality of Yihong Congou black tea.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, No.6 Dafeng Avenue, Tianhe District, Guangzhou 510665, China;
| | - Xiaoyan Qiao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, No.6 Dafeng Avenue, Tianhe District, Guangzhou 510665, China;
| | - Anhui Gui
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Shengpeng Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Panpan Liu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Xueping Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Jin Teng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Lin Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Lin Feng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
| | - Hanshan Han
- Mu Lan Tian Xiang Co., Ltd., Huangpi District, Wuhan 432200, China;
| | - Shiwei Gao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
- Correspondence: (S.G.); (P.Z.)
| | - Pengcheng Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, No.10 South Lake Avenue, Hongshan District, Wuhan 430064, China; (F.Y.); (A.G.); (S.W.); (P.L.); (X.W.); (J.T.); (L.Z.); (L.F.)
- Correspondence: (S.G.); (P.Z.)
| |
Collapse
|
12
|
Xiao C, Li R. Detection and Control of Fusarium oxysporum from Soft Rot in Dendrobium officinale by Loop-Mediated Isothermal Amplification Assays. BIOLOGY 2021; 10:1136. [PMID: 34827129 PMCID: PMC8615024 DOI: 10.3390/biology10111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023]
Abstract
Soft rot causing Fusarium oxysporum is one of the most destructive diseases of Dendrobium officinale Kimura et Migo in China that reduces D. officinale yield and quality. A key challenge for an integrated management strategy for this disease is the rapid and accurate detection of F. oxysporum on D. officinale. Therefore, a new loop-mediated isothermal amplification (LAMP) assay was developed for this purpose. In this study, the primers were selected and designed using the translation elongation factor-1α (TEF-1α) gene region as the target DNA sequence in order to screen the best system of reaction of LAMP to detect F. oxysporum through optimizing different conditions of the LAMP reaction, including time, temperature, concentrations of MgSO4, and concentrations of inner and outer primers. The optimized system was able to efficiently amplify the target gene at 62 °C for 60 min with 1.2 μM internal primers, 0.4 μM external primers, 7 mM Mg2+, and 5 fg/µL minimum detection concentration of DNA for F. oxysporum. The amplified products could be detected with the naked eye after completion of the reaction with SYBR green I. We were better able to control the effect of soft rot in D. officinale using fungicides following a positive test result. Additionally, the control effect of synergism combinations against soft rot was higher than 75%. Thus, LAMP assays could detect F. oxysporum in infected tissues of D. officinale and soils in field, allowing for early diagnosis of the disease.
Collapse
Affiliation(s)
- Caiyun Xiao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China;
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China;
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|