1
|
Mörkl S, Narrath M, Schlotmann D, Sallmutter MT, Putz J, Lang J, Brandstätter A, Pilz R, Karl Lackner H, Goswami N, Steuber B, Tatzer J, Lackner S, Holasek S, Painold A, Jauk E, Wenninger J, Horvath A, Spicher N, Barth A, Butler MI, Wagner-Skacel J. Multi-species probiotic supplement enhances vagal nerve function - results of a randomized controlled trial in patients with depression and healthy controls. Gut Microbes 2025; 17:2492377. [PMID: 40298641 DOI: 10.1080/19490976.2025.2492377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Major depression (MD) significantly impacts individual well-being and society. The vagus nerve plays a pivotal role in the gut-brain axis, facilitating bidirectional communication between these systems. Recent meta-analyses suggest potential antidepressant effects of probiotics, although their mechanisms remain unclear. This study aimed to assess the impact of a multi-species probiotic (OMNi-BiOTiC® STRESS Repair) on vagus nerve function in 43 MD patients and 43 healthy controls (HC). Participants received either probiotics or placebo twice daily. Serum and stool samples were collected at baseline, 7 days, 28 days, and 3 months. Vagus nerve (VN) function was evaluated using 24-hour electrocardiography (ECG) for heart rate variability (HRV), alongside stool microbiome analysis via 16S rRNA sequencing. After 3 months, MD patients receiving probiotics demonstrated significantly improved morning VN function compared to HC. MD participants who were in the probiotic group showed a significant increase in Christensellales, particularly Akkermansia muciniphila along with improved sleep parameters (use of sleep medication, sleep latency) as measured by the Pittsburgh Sleep Quality Inventory (PSI). This study highlights potential physiological benefits of probiotics in MD, potentially mediated through VN stimulation. Understanding these mechanisms could lead to novel therapeutic approaches for MD management.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martin Narrath
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daria Schlotmann
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marie-Therese Sallmutter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Putz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lang
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Brandstätter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Karl Lackner
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Nandu Goswami
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bianca Steuber
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Jasmin Tatzer
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Emanuel Jauk
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Nicolai Spicher
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Asmus Barth
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Yu JJ, Moya EA, Cheng H, Kaya K, Ochoa T, Fassardi S, Gruenberg E, Spenceley A, DeYoung P, Young EV, Barnes LA, Lugo A, Sanchez-Azofra A, Orr JE, Heinrich EC, Malhotra A, Simonson TS. Improved oxygen saturation and acclimatization with bacteriotherapy at high altitude. iScience 2025; 28:112053. [PMID: 40290874 PMCID: PMC12022639 DOI: 10.1016/j.isci.2025.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
High altitude imposes physiological stress on the human body due to reduced oxygen availability, and options to improve acclimatization are limited. Seventeen participants underwent a randomized, doubled-blinded, placebo-controlled study to test the effects of a multi-strain probiotic on acclimatization to high altitude (3,800 m). The primary outcome was oxygen saturation (SpO2) during both daytime and nighttime. Secondary measurements included acute mountain sickness (AMS) score, sleep measurements, ventilation, resting heart rate, blood pressure, heart rate variability, and fasting glucose levels. The probiotic group exhibited a higher daytime and nighttime SpO2 compared to the placebo group at high altitude. The probiotic group also exhibited a lower AMS score and enhanced acclimatization relative to the placebo group at high altitude, evidenced by higher SpO2 and lower AMS scores in treatment versus placebo groups. These results suggest bacteriotherapy as a novel, non-invasive intervention for high-altitude acclimatization.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hunter Cheng
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kiana Kaya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tim Ochoa
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Santiago Fassardi
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eli Gruenberg
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alex Spenceley
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Pamela DeYoung
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth V. Young
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Laura A. Barnes
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alina Lugo
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ana Sanchez-Azofra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy E. Orr
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Ravenda S, Mancabelli L, Gambetta S, Barbetti M, Turroni F, Carnevali L, Ventura M, Sgoifo A. Heart rate variability, daily cortisol indices and their association with psychometric characteristics and gut microbiota composition in an Italian community sample. Sci Rep 2025; 15:8584. [PMID: 40074815 PMCID: PMC11903775 DOI: 10.1038/s41598-025-93137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The microbiota-gut-brain axis is a complex communication system that plays a crucial role in influencing various aspects of our physical and mental health. The goal of this study was to determine the extent to which individual differences in resting measures of vagally-mediated heart rate variability (HRV) and cortisol levels were associated with psychometric and specific gut microbiota characteristics in seventy-five (38 females) healthy individuals. Participants were assessed for vagally-mediated HRV, daily salivary cortisol levels, psychometric characteristics, and gut microbiota composition. Using a categorical approach based on the median split of HRV and cortisol values, we identified an association between low vagally-mediated HRV, greater depressive symptomatology, and altered gut microbiota (e.g., a higher abundance of Prevotella and a smaller abundance of Faecalibacterium, Alistipes, and Gemmiger). This suggests that vagally-mediated HRV may be a useful biomarker of microbiota-gut brain axis function, and that low vagally-mediated HRV may play an important role in the bidirectional link between gut dysbiosis and depression. On the other hand, daily cortisol parameters (e.g., cortisol awakening response, diurnal cortisol slope) were associated either with higher anxiety and perceived stress, or with a specific gut microbiota profile. Therefore, their utility as biomarkers of microbiota-gut-brain axis function needs further scrutiny.
Collapse
Affiliation(s)
- Sebastiano Ravenda
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Sara Gambetta
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Margherita Barbetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Francesca Turroni
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Li X, Wen H, Ke J, Zhao D. Association of constipation with all-cause mortality among individuals with type 2 diabetes: A retrospective cohort study. J Diabetes Investig 2025; 16:501-509. [PMID: 39718116 PMCID: PMC11871400 DOI: 10.1111/jdi.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Constipation is a common complication in type 2 diabetes mellitus (T2DM), yet its impact on mortality remains unclear. This study aimed to investigate the association between constipation and all-cause mortality in patients with T2DM. METHODS We conducted a retrospective cohort study using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Mortality outcomes were ascertained through linkage to National Death Index records until December 31, 2019. The association between constipation and all-cause mortality was assessed using weighted Cox proportional hazards regression models. Kaplan-Meier curves were then employed to visualize survival probabilities. Effect modification was explored through stratified analyses and interaction tests. RESULTS Of 1,339 participants with T2DM, 146 (10.90%) reported constipation. During a median follow-up of 10.75 years, 411 deaths occurred (57 in the constipation group, 354 in the non-constipation group). Fully adjusted weighted Cox regression analysis revealed that constipation was associated with increased all-cause mortality (HR 1.50, 95% CI 1.01-2.22, P = 0.04). Kaplan-Meier analysis demonstrated a significantly lower survival probability in patients with constipation (log-rank P < 0.05). Stratified analyses and interaction tests corroborated these findings across various subgroups. CONCLUSIONS Constipation is associated with elevated all-cause mortality risk in T2DM patients. These findings suggest that constipation management may be an important consideration in improving long-term outcomes for individuals with T2DM.
Collapse
Affiliation(s)
- Xianhua Li
- Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He HospitalCapital Medical UniversityBeijingChina
| | - Haibin Wen
- Department of NephrologyJiang Bin Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He HospitalCapital Medical UniversityBeijingChina
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Delgadillo DR, Borelli JL, Mayer EA, Labus JS, Cross MP, Pressman SD. Biological, environmental, and psychological stress and the human gut microbiome in healthy adults. Sci Rep 2025; 15:362. [PMID: 39747287 PMCID: PMC11695967 DOI: 10.1038/s41598-024-77473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025] Open
Abstract
Emerging research suggests that the gut microbiome plays a crucial role in stress. We assess stress-microbiome associations in two samples of healthy adults across three stress domains (perceived stress, stressful life events, and biological stress /Respiratory Sinus Arrhythmia; RSA). Study 1 (n = 62; mean-age = 37.3 years; 68% female) and Study 2 (n = 74; mean-age = 41.6 years; female only) measured RSA during laboratory stressors and used 16S rRNA pyrosequencing to classify gut microbial composition from fecal samples. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to predict functional pathways of metagenomes. Results showed differences in beta diversity between high and low stressful life events groups across both studies. Study 1 revealed differences in beta diversity between high and low RSA groups. In Study 1, the low perceived stress group was higher in alpha diversity than the high perceived stress group. Levels of Clostridium were negatively associated with RSA in Study 1 and levels Escherichia/Shigella were positively associated with perceived stress in Study 2. Associations between microbial functional pathways (L-lysine production and formaldehyde absorption) and RSA are discussed. Findings suggest that certain features of the gut microbiome are differentially associated with each stress domain.
Collapse
Affiliation(s)
- Desiree R Delgadillo
- UCLA G. Oppenheimer Center for Neurobiology of Stress & Resilience, CHS 42-210 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA.
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA.
- David Geffen School of Medicine at UCLA, Health Sciences, Los Angeles, USA.
- UCLA Goodman Luskin Microbiome Center, Los Angeles, USA.
- University of California, Los Angeles, USA.
| | - Jessica L Borelli
- Department of Psychological Science, University of California, Irvine, USA
| | - Emeran A Mayer
- UCLA G. Oppenheimer Center for Neurobiology of Stress & Resilience, CHS 42-210 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Health Sciences, Los Angeles, USA
- UCLA Goodman Luskin Microbiome Center, Los Angeles, USA
- University of California, Los Angeles, USA
| | - Jennifer S Labus
- UCLA G. Oppenheimer Center for Neurobiology of Stress & Resilience, CHS 42-210 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Health Sciences, Los Angeles, USA
- UCLA Goodman Luskin Microbiome Center, Los Angeles, USA
- University of California, Los Angeles, USA
| | - Marie P Cross
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA
| | - Sarah D Pressman
- Department of Psychological Science, University of California, Irvine, USA
| |
Collapse
|
6
|
Miranda-Angulo AL, Sánchez-López JD, Vargas-Tejada DA, Hawkins-Caicedo V, Calderón JC, Gallo-Villegas J, Alzate-Restrepo JF, Suarez-Revelo JX, Castrillón G. Sympathovagal quotient and resting-state functional connectivity of control networks are related to gut Ruminococcaceae abundance in healthy men. Psychoneuroendocrinology 2024; 164:107003. [PMID: 38471256 DOI: 10.1016/j.psyneuen.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Heart rate variability (HRV), brain resting-state functional connectivity (rsFC), and gut microbiota (GM) are three recognized indicators of health status, whose relationship has not been characterized. We aimed to identify the GM genera and families related to HRV and rsFC, the interaction effect of HRV and rsFC on GM taxa abundance, and the mediation effect of diet on these relationships. METHODS Eighty-eight healthy, young Colombian men were included in this cross-sectional study. HRV metrics were extracted from 24-hour Holter monitoring data and the resting functional connectivity strength (FCS) of 15 networks were derived from functional magnetic resonance imaging. Gut microbiota composition was assessed using the sequences of the V3-V4 regions of the 16 S rRNA gene, and diet was evaluated using a food frequency questionnaire. Multivariate linear regression analyses were performed to evaluate the correlations between the independent variables (HRV metrics and FCS) and the dependent variables (GM taxa abundance or alpha diversity indexes). Mediation analyses were used to test the role of diet in the relationship between HRV and GM. RESULTS The sympathovagal quotient (SQ) and the FCS of control networks were positively correlated with the abundance of the gut Ruminococcaceae family and an unclassified Ruminococcaceae genus (Ruminococcaceae_unc). Additionally, the interaction between the FCS of the control network and SQ reduced the individual main effects on the Ruminococcaceae_unc abundance. Finally, reduced habitual fiber intake partially mediated the relationship between SQ and this genus. CONCLUSION Two indicators of self-regulation, HRV and the rsFC of control networks, are related to the abundance of gut microbiota taxa in healthy men. However, only HRV is related to habitual dietary intake; thus, HRV could serve as a marker of food choice and GM composition in the future.
Collapse
Affiliation(s)
- Ana L Miranda-Angulo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia.
| | - Juan D Sánchez-López
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Daniel A Vargas-Tejada
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Valentina Hawkins-Caicedo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Juan C Calderón
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jaime Gallo-Villegas
- Grupo de Investigación en Medicina Aplicada a la Actividad Física y el Deporte (GRINMADE), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia; Centro Clínico y de Investigación SICOR, Calle 19 No. 42-40, Medellín, Colombia
| | - Juan F Alzate-Restrepo
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jazmin X Suarez-Revelo
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia
| | - Gabriel Castrillón
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia; Department of Neuroradiology, Universitätsklinikum Erlangen, Maximiliansplatz 2, Erlangen, Germany
| |
Collapse
|
7
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Li X, Tan JS, Xu J, Zhao Z, Zhao Q, Zhang Y, Duan A, Huang Z, Zhang S, Gao L, Yang YJ, Yang T, Jin Q, Luo Q, Yang Y, Liu Z. Causal impact of gut microbiota and associated metabolites on pulmonary arterial hypertension: a bidirectional Mendelian randomization study. BMC Pulm Med 2024; 24:185. [PMID: 38632547 PMCID: PMC11025270 DOI: 10.1186/s12890-024-03008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.
Collapse
Affiliation(s)
- Xin Li
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Jiang-Shan Tan
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zhihui Zhao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Qing Zhao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Yi Zhang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Duan
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Zhihua Huang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Sicheng Zhang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Luyang Gao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Yue Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Qi Jin
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Qin Luo
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China.
| | - Yanmin Yang
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihong Liu
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China.
| |
Collapse
|
9
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|