1
|
de Jong FJM, Lilien TA, Fenn DW, Wingelaar TT, van Ooij PJAM, Maitland-van der Zee AH, Hollmann MW, van Hulst RA, Brinkman P. Volatile Organic Compounds in Cellular Headspace after Hyperbaric Oxygen Exposure: An In Vitro Pilot Study. Metabolites 2024; 14:281. [PMID: 38786758 PMCID: PMC11123173 DOI: 10.3390/metabo14050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility of this in vitro model for POT biomarker research was evaluated. The hyperbaric exposure protocol, similar to the U.S. Navy Treatment Table 6, was conducted on human alveolar basal epithelial cells, and the headspace VOCs were analyzed using gas chromatography-mass spectrometry. Three compounds (nonane [p = 0.005], octanal [p = 0.009], and decane [p = 0.018]), of which nonane and decane were also identified in a previous in vivo study with similar hyperbaric exposure, varied significantly between the intervention group which was exposed to 100% oxygen and the control group which was exposed to compressed air. VOC signal intensities were lower in the intervention group, but cellular stress markers (IL8 and LDH) confirmed increased stress and injury in the intervention group. Despite the observed reductions in compound expression, the model holds promise for POT biomarker exploration, emphasizing the need for further investigation into the complex relationship between VOCs and oxidative stress.
Collapse
Affiliation(s)
- Feiko J. M. de Jong
- Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| | - Thijs A. Lilien
- Department of Pediatric Intensive Care, Amsterdam UMC, Location Emma Children’s Hospital, 1100 DD Amsterdam, The Netherlands
| | - Dominic W. Fenn
- Department of Pulmonology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| | - Thijs T. Wingelaar
- Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| | - Pieter-Jan A. M. van Ooij
- Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA Den Helder, The Netherlands
- Department of Pulmonology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| | | | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| | - Rob A. van Hulst
- Department of Anesthesiology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam UMC, Location AMC, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
2
|
Lilien TA, Brinkman P, Fenn DW, van Woensel JBM, Bos LDJ, Bem RA. Breath Markers of Oxidative Stress in Children with Severe Viral Lower Respiratory Tract Infection. Am J Respir Cell Mol Biol 2024; 70:392-399. [PMID: 38315815 DOI: 10.1165/rcmb.2023-0349oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Severe viral lower respiratory tract infection (LRTI), resulting in both acute and long-term pulmonary disease, constitutes a substantial burden among young children. Viral LRTI triggers local oxidative stress pathways by infection and inflammation, and supportive care in the pediatric intensive care unit may further aggravate oxidative injury. The main goal of this exploratory study was to identify and monitor breath markers linked to oxidative stress in children over the disease course of severe viral LRTI. Exhaled breath was sampled during invasive ventilation, and volatile organic compounds (VOCs) were analyzed using gas chromatography and mass spectrometry. VOCs were selected in an untargeted principal component analysis and assessed for change over time. In addition, identified VOCs were correlated with clinical parameters. Seventy breath samples from 21 patients were analyzed. A total of 15 VOCs were identified that contributed the most to the explained variance of breath markers. Of these 15 VOCs, 10 were previously linked to pathways of oxidative stress. Eight VOCs, including seven alkanes and methyl alkanes, significantly decreased from the initial phase of ventilation to the day of extubation. No correlation was observed with the administered oxygen dose, whereas six VOCs showed a poor to strong positive correlation with driving pressure. In this prospective study of children with severe viral LRTI, the majority of VOCs that were most important for the explained variance mirrored clinical improvement. These breath markers could potentially help monitor the pulmonary oxidative status in these patients, but further research with other objective measures of pulmonary injury is required.
Collapse
Affiliation(s)
- Thijs A Lilien
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | | | | | - Job B M van Woensel
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Lieuwe D J Bos
- Department of Pulmonology, and
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; and
| | - Reinout A Bem
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Lilien TA, Fenn DW, Brinkman P, Hagens LA, Smit MR, Heijnen NFL, van Woensel JBM, Bos LDJ, Bem RA. HS-GC-MS analysis of volatile organic compounds after hyperoxia-induced oxidative stress: a validation study. Intensive Care Med Exp 2024; 12:14. [PMID: 38345723 PMCID: PMC10861410 DOI: 10.1186/s40635-024-00600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Exhaled volatile organic compounds (VOCs), particularly hydrocarbons from oxidative stress-induced lipid peroxidation, are associated with hyperoxia exposure. However, important heterogeneity amongst identified VOCs and concerns about their precise pathophysiological origins warrant translational studies assessing their validity as a marker of hyperoxia-induced oxidative stress. Therefore, this study sought to examine changes in VOCs previously associated with the oxidative stress response in hyperoxia-exposed lung epithelial cells. METHODS A549 alveolar epithelial cells were exposed to hyperoxia for 24 h, or to room air as normoxia controls, or hydrogen peroxide as oxidative-stress positive controls. VOCs were sampled from the headspace, analysed by gas chromatography coupled with mass spectrometry and compared by targeted and untargeted analyses. A secondary analysis of breath samples from a large cohort of critically ill adult patients assessed the association of identified VOCs with clinical oxygen exposure. RESULTS Following cellular hyperoxia exposure, none of the targeted VOCs, previously proposed as breath markers of oxidative stress, were increased, and decane was significantly decreased. Untargeted analysis did not reveal novel identifiable hyperoxia-associated VOCs. Within the clinical cohort, three previously proposed breath markers of oxidative stress, hexane, octane, and decane had no real diagnostic value in discriminating patients exposed to hyperoxia. CONCLUSIONS Hyperoxia exposure of alveolar epithelial cells did not result in an increase in identifiable VOCs, whilst VOCs previously linked to oxidative stress were not associated with oxygen exposure in a cohort of critically ill patients. These findings suggest that the pathophysiological origin of previously proposed breath markers of oxidative stress is more complex than just oxidative stress from hyperoxia at the lung epithelial cellular level.
Collapse
Affiliation(s)
- Thijs A Lilien
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Dominic W Fenn
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laura A Hagens
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marry R Smit
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Job B M van Woensel
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Reinout A Bem
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Arieli R. Pulmonary oxygen toxicity index during linear change in PO 2: HBO treatment tables and dive planning. Respir Physiol Neurobiol 2024; 319:104172. [PMID: 37838230 DOI: 10.1016/j.resp.2023.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Affiliation(s)
- R Arieli
- Israel Naval Medical Institute, Haifa, Israel; Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
5
|
de Jong FJ, Brinkman P, Wingelaar TT, van Ooij PJA, van Hulst RA. Pulmonary oxygen toxicity breath markers after heliox diving to 81 metres. Diving Hyperb Med 2023; 53:340-344. [PMID: 38091594 PMCID: PMC10944665 DOI: 10.28920/dhm53.4.340-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Pulmonary oxygen toxicity (POT), an adverse reaction to an elevated partial pressure of oxygen in the lungs, can develop as a result of prolonged hyperbaric hyperoxic conditions. Initially starting with tracheal discomfort, it results in pulmonary symptoms and ultimately lung fibrosis. Previous studies identified several volatile organic compounds (VOCs) in exhaled breath indicative of POT after various wet and dry hyperbaric hypoxic exposures, predominantly in laboratory settings. This study examined VOCs after exposures to 81 metres of seawater by three navy divers during operational heliox diving. Univariate testing did not yield significant results. However, targeted multivariate analysis of POT-associated VOCs identified significant (P = 0.004) changes of dodecane, tetradecane, octane, methylcyclohexane, and butyl acetate during the 4 h post-dive sampling period. No airway symptoms or discomfort were reported. This study demonstrates that breath sampling can be performed in the field, and VOCs indicative of oxygen toxicity are exhaled without clinical symptoms of POT, strengthening the belief that POT develops on a subclinical-to-symptomatic spectrum. However, this study was performed during an actual diving operation and therefore various confounders were introduced, which were excluded in previous laboratory studies. Future studies could focus on optimising sampling protocols for field use to ensure uniformity and reproducibility, and on establishing dose-response relationships.
Collapse
Affiliation(s)
- Feiko Jm de Jong
- Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA, Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, 1100 DD, Amsterdam, The Netherlands
- Corresponding author: Feiko JM de Jong, Royal Netherlands Navy Diving and Submarine Medical Centre, Rijkszee-en Marinehaven, Postbus 10.000, 1780 CA, Den Helder, The Netherlands, ORCiD: 0009-0008-9804-8307,
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, 1100 DD, Amsterdam, The Netherlands
| | - Thijs T Wingelaar
- Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA, Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, 1100 DD, Amsterdam, The Netherlands
| | - Pieter-Jan Am van Ooij
- Royal Netherlands Navy Diving and Submarine Medical Centre, 1780 CA, Den Helder, The Netherlands
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, 1100 DD, Amsterdam, The Netherlands
| | - Robert A van Hulst
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Simonnet B, Roffi R, Lehot H, Morin J, Druelle A, Daubresse L, Louge P, de Maistre S, Gempp E, Vallee N, Blatteau JE. Therapeutic management of severe spinal cord decompression sickness in a hyperbaric center. Front Med (Lausanne) 2023; 10:1172646. [PMID: 37746073 PMCID: PMC10514493 DOI: 10.3389/fmed.2023.1172646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Spinal cord decompression sickness (scDCS) unfortunately has a high rate of long-term sequelae. The purpose of this study was to determine the best therapeutic management in a hyperbaric center and, in particular, the influence of hyperbaric treatment performed according to tables at 4 atm (Comex 30) or 2.8 atm abs (USNT5 or T6 equivalent). Methods This was a retrospective study that included scDCS with objective sensory or motor deficit affecting the limbs and/or sphincter impairment seen at a single hyperbaric center from 2010 to 2020. Information on dive, time to recompression, and in-hospital management (hyperbaric and medical treatments such as lidocaine) were analyzed as predictor variables, as well as initial clinical severity and clinical deterioration in the first 24 h after initial recompression. The primary endpoint was the presence or absence of sequelae at discharge as assessed by the modified Japanese Orthopaedic Association score. Results 102 divers (52 ± 16 years, 20 female) were included. In multivariate analysis, high initial clinical severity, deterioration in the first 24 h, and recompression tables at 4 atm versus 2.8 atm abs for both initial and additional recompression were associated with incomplete neurological recovery. Analysis of covariance comparing the effect of initial tables at 2.8 versus 4 atm abs as a function of initial clinical severity showed a significantly lower level of sequelae with tables at 2.8 atm. In studying correlations between exposure times to maximum or cumulative O2 dose and the degree of sequelae, the optimal initial treatment appears to be a balance between administration of a high partial pressure of O2 (2.8 atm) and a limited exposure duration that does not result in pulmonary oxygen toxicity. Further analysis suggests that additional tables in the first 24-48 h at 2.8 atm abs with a Heliox mixture may be beneficial, while the use of lidocaine does not appear to be relevant. Conclusion Our study shows that the risk of sequelae is related not only to initial severity but also to clinical deterioration in the first 24 h, suggesting the activation of biological cascades that can be mitigated by well-adapted initial and complementary hyperbaric treatment.
Collapse
Affiliation(s)
- Benjamin Simonnet
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Romain Roffi
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Henri Lehot
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Jean Morin
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Arnaud Druelle
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Lucille Daubresse
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Pierre Louge
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Sébastien de Maistre
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Emmanuel Gempp
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| | - Nicolas Vallee
- Military Institute of Biomedical Research (IRBA), Subaquatic Operational Research Team (ERRSO), Toulon, France
| | - Jean-Eric Blatteau
- Department of Diving and Hyperbaric Medicine, Sainte-Anne Military Hospital, Toulon, France
| |
Collapse
|
7
|
Fothergill DM, Gertner JW. Exhaled Nitric Oxide and Pulmonary Oxygen Toxicity Susceptibility. Metabolites 2023; 13:930. [PMID: 37623874 PMCID: PMC10456729 DOI: 10.3390/metabo13080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Individual susceptibility to pulmonary oxygen toxicity (PO2tox) is highly variable and currently lacks a reliable biomarker for predicting pulmonary hyperoxic stress. As nitric oxide (NO) is involved in many respiratory system processes and functions, we aimed to determine if expired nitric oxide (FENO) levels can provide an indication of PO2tox susceptibility in humans. Eight U.S. Navy-trained divers volunteered as subjects. The hyperoxic exposures consisted of six- and eight-hour hyperbaric chamber dives conducted on consecutive days in which subjects breathed 100% oxygen at 202.65 kPa. Subjects' individual variability in pulmonary function and FENO was measured twice daily over five days and compared with their post-dive values to assess susceptibility to PO2tox. Only subjects who showed no decrements in pulmonary function following the six-hour exposure conducted the eight-hour dive. FENO decreased by 55% immediately following the six-hour oxygen exposure (n = 8, p < 0.0001) and by 63% following the eight-hour exposure (n = 4, p < 0.0001). Four subjects showed significant decreases in pulmonary function immediately following the six-hour exposure. These subjects had the lowest baseline FENO, had the lowest post-dive FENO, and had clinical symptoms of PO2tox. Individuals with low FENO were the first to develop PO2tox symptoms and deficits in pulmonary function from the hyperoxic exposures. These data suggest that endogenous levels of NO in the lungs may protect against the development of PO2tox.
Collapse
|