1
|
Poswal J, Mandal CC. Lipid metabolism dysregulation for bone metastasis and its prevention. Expert Rev Anticancer Ther 2025:1-17. [PMID: 40219980 DOI: 10.1080/14737140.2025.2492784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Bone metastasis often develops in advanced malignancies. Lipid metabolic dysregulation might play pivotal role in cancer progression and subsequent deterioration of bone health at metastatic condition. In-depth understanding of lipid reprogramming in metastasized cancer cells and other stromal cells including bone marrow adipocyte (BMA) is an urgent need to develop effective therapy. AREA COVERED This paper emphasizes providing an overview of multifaceted role of dysregulated lipids and BMA in cancer cells in association with bone metastasis by utilizing search terms lipid metabolism, lipid and metastasis in PubMed. This study extends to address mechanism linked with lipid metabolism and various crucial genes (e.g. CSF-1, RANKL, NFkB and NFATc1) involved in bone metastasis. This review examines therapeutic strategies targeting lipid metabolism to offer potential avenues to disrupt lipid-driven metastasis. EXPERT OPINION On metastatic condition, dysregulated lipid molecules especially in BMA and other stromal cells not only favors cancer progression but also potentiate lipid reprogramming within cancer cells. Distinct dysregulated lipid-metabolism associated genes may act as biomarker, and targeting these is challenging task for specific treatment. Curbing function of bone resorption associated genes by lipid controlling drugs (e.g. statins, omega-3 FA and metformin) may provide additional support to curtail lipid-associated bone metastasis.
Collapse
Affiliation(s)
- Jyoti Poswal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
2
|
Wang M, Zhou Z, Wei Y, He R, Yang J, Zhang X, Li X, Zhao D, Li Z, Leng X, Dong H. Dissecting the mechanisms of velvet antler extract against diabetic osteoporosis via network pharmacology and proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119334. [PMID: 39800246 DOI: 10.1016/j.jep.2025.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Velvet antler (VAE) is a famous traditional Chinese medicine (TCM), which has been used for thousands of years to treat bone-related diseases. Nonetheless, whether VAE has anti-diabetic osteoporosis (DOP) properties remains to be elucidated. AIM OF THE STUDY The therapeutic mechanism of VAE on DOP is based on integrated proteomics of network pharmacology strategies to study related targets and pathways. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC/MS) was used to analyze the main molecular components present in the VAE. The DOP mouse model was created by combining a high-fat diet with streptozotocin (STZ). High glucose (HG) induced MC3T3-E1 cells were used as a cell model to evaluate the therapeutic effect of VAE. The mechanisms of VAE in treating DOP were predicted through proteomics. Molecular docking, molecular dynamics simulations, DARTS and functional experiments were employed to further verify its mechanisms. RESULTS Altogether 30 components were identified by LC-MS. In vitro and in vivo results were confirmed that VAE had a protective effect on DOP. Combined with network pharmacology, proteomics and functional experiments revealed that TNF/PI3K-AKT signaling pathway may be the potential biochemical pathway for VAE in treating DOP. CONCLUSIONS The innovation of this study was investigating the effectiveness of VAE in treating DOP in vivo and in vitro and suggested that VAE might exert anti-DOP effects through the TNF/PI3K-AKT signaling pathway by network pharmacology and proteomics and found that ATK1 was the core target of VAE, which provided valuable insights for the clinical application of VAE in DOP.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenwei Zhou
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Rong He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xudong Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
3
|
Sun X, Liu X, Wang C, Luo Y, Li X, Yan L, Wang Y, Wang K, Li Q. Advantages of statin usage in preventing fractures for men over 50 in the United States: National Health and Nutrition Examination Survey. PLoS One 2024; 19:e0313583. [PMID: 39585849 PMCID: PMC11588256 DOI: 10.1371/journal.pone.0313583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVES The relationship between statin treatment and fracture risk is still controversial, especially in in patients with cardiovascular diseases (CVDs). We aim to determine whether statin therapy affects the occurrence of fractures in the general US population and in patients with CVDs. METHODS Epidemiological data of this cross-sectional study were extracted from the National Health and Nutrition Examination Survey (NHANES, 2001-2020, n = 9,893). Statins records and fracture information were obtained from the questionnaires. Weighted logistic regressions were performed to explore the associations between statin and the risk of fracture. RESULTS Statin use was found to be associated with reduced risk of fracture mainly in male individuals aged over 50 years old and taking medications for less than 3 years, after adjusted for confounders including supplements of calcium and vitamin D. The protective effects were only found in subjects taking atorvastatin and rosuvastatin. We found null mediation role of LDL-C and 25(OH)D in such effects. Statin was found to reduce fracture risk in patients with cardiovascular diseases (CVDs, OR: 0.4366, 95%CI: 0.2664 to 0.7154, P = 0.0014), and in patients without diabetes (OR: 0.3632, 95%CI: 0.1712 to 0.7704, P = 0.0091). CONCLUSIONS Statin showed advantages in reducing risk of fracture in male individuals aged over 50 years old and taking medications for less than 3 years. More research is needed to determine the impact of gender variations, medication duration, and diabetes.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoxiao Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chenyi Wang
- Department of Urology Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yushuang Luo
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinyi Li
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Lijuan Yan
- Department of Urology Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaifa Wang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Winckel T, Friedrich N, Zylla S, Fenzlaff M, Schöpfel J, Gauß KF, Petersmann A, Nauck M, Völzke H, Hannemann A. Bone turnover: the role of lipoproteins in a population-based study. Lipids Health Dis 2024; 23:302. [PMID: 39300501 DOI: 10.1186/s12944-024-02290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Dyslipidemia has been associated with reduced bone mineral density and osteoporotic fractures, but the relation between lipid and bone metabolism remains poorly understood. Analysing the effects of lipoprotein subclasses on bone turnover may provide valuable insights into this association. We therefore examined whether lipoprotein subclasses, measured by proton nuclear magnetic resonance (1H-NMR) spectroscopy, are associated with bone turnover markers (BTMs) and with the ultrasound-based bone stiffness index. METHODS Data from 1.349 men and 1.123 women, who participated in the population-based Study of Health in Pomerania-TREND were analysed. Serum intact amino-terminal propeptide of type I procollagen (P1NP, bone formation) and carboxy-terminal telopeptide of type I collagen (CTX, bone resorption) concentrations were measured. Associations between the lipoprotein data and the BTMs or the stiffness index were investigated using linear regression models. RESULTS The triglyceride or cholesterol content in very-low-density lipoprotein and intermediate-density lipoprotein particles was inversely associated with both BTMs, with effect estimates being slightly higher for CTX than for P1NP. The triglyceride content in low-density lipoprotein and high-density lipoprotein particles and the Apo-A2 content in high-density lipoprotein particles was further inversely associated with the BTMs. Associations with the ultrasound-based bone stiffness index were absent. CONCLUSIONS Consistent inverse associations of triglycerides with bone turnover were observed, which argue for a protective effect on bone health, at least in the normal range. Yet, the presented associations did not translate into effects on the ultrasound-based bone stiffness. Further, there was no relevant gain of information by assessing the lipoprotein subclasses. Nevertheless, our study highlights the close relations between lipid and bone metabolism in the general population.
Collapse
Affiliation(s)
- Todd Winckel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephanie Zylla
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marc Fenzlaff
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Juliane Schöpfel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Karen Friederike Gauß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
| |
Collapse
|
5
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
6
|
Hou X, Tian F, Guo L, Yu Y, Hu Y, Chen S, Wang M, Yang Z, Wang J, Fan X, Xing L, Wu S, Zhang N. Remnant cholesterol is associated with hip BMD and low bone mass in young and middle-aged men: a cross-sectional study. J Endocrinol Invest 2024; 47:1657-1665. [PMID: 38183565 DOI: 10.1007/s40618-023-02279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE Remnant cholesterol (RC) is a contributor to cardiovascular diseases, obesity, diabetes, and metabolic syndrome. However, the specific relationship between RC and bone metabolism remains unexplored. Therefore, we aimed to investigate the relationships of RC with hip bone mineral density (BMD) and the risk of low bone mass. METHODS Physical examination data was collected from men aged < 60 years as part of the Kailuan Study between 2014 and 2018. The characteristics of the participants were compared between RC quartile groups. A generalized linear regression model was used to evaluate the relationship between RC and hip BMD and a logistic regression model was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for low bone mass. Additional analyses were performed after stratification by body mass index (BMI) (≥ or < 24 kg/m2). Sensitivity analyses were performed by excluding individuals who were taking lipid-lowering therapy or had cancer, cardiovascular diseases, or diabetes. RESULTS Data from a total of 7,053 participants were included in the analysis. After adjustment for confounding factors, RC negatively correlated with hip BMD (β = - 0.0079, 95% CI: - 0.0133, - 0.0025). The risk of low bone mass increased from the lowest to the highest RC quartile, with ORs of 1 (reference), 1.09 (95% CI: (0.82, 1.44), 1.35 (95%CI: 1.02, 1.77), and 1.43 (95% CI: 1.09, 1.89) for Q1, Q2, Q3, and Q4, respectively (P for trend = 0.004) in the fully adjusted model. Compared to RC < 0.80 mmol/l group, the risk of low bone mass increased 39% in RC ≥ 0.80 mmol/l group (P < 0.001). The correlation between RC and hip BMD was stronger in participants with BMI ≥ 24 kg/m2 group (β = - 0.0159, 95% CI: - 0.0289, - 0.0029). The results of sensitivity analyses were consistent with the main results. CONCLUSION We have identified a negative correlation between serum RC and hip BMD, and a higher RC concentration was found to be associated with a greater risk of low bone mass in young and middle-aged men.
Collapse
Affiliation(s)
- X Hou
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - F Tian
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - L Guo
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Y Yu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Y Hu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - S Chen
- Kailuan General Hospital, Tangshan, People's Republic of China
| | - M Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Z Yang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - J Wang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - X Fan
- Kailuan General Hospital, Tangshan, People's Republic of China
| | - L Xing
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
- Affiliated Hospital of North China University of Science and Technology, Tangshan, People's Republic of China
| | - S Wu
- Kailuan General Hospital, Tangshan, People's Republic of China.
| | - N Zhang
- Kailuan General Hospital, Tangshan, People's Republic of China.
| |
Collapse
|
7
|
Zhong M, Wu Z, Chen Z, Wu L, Zhou J. Geniposide alleviates cholesterol-induced endoplasmic reticulum stress and apoptosis in osteoblasts by mediating the GLP-1R/ABCA1 pathway. J Orthop Surg Res 2024; 19:179. [PMID: 38468352 PMCID: PMC10926581 DOI: 10.1186/s13018-024-04665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Cholesterol (CHO) is an essential component of the body. However, high CHO levels in the body can damage bone mass and promote osteoporosis. CHO accumulation can cause osteoblast apoptosis, which has a negative effect on bone formation. The pathogenesis of osteoporosis is a complicate process that includes oxidative stress, endoplasmic reticulum (ER) stress, and inflammation. Geniposide (GEN) is a natural compound with anti-osteoporotic effect. However, the roles of GEN in osteopathogenesis are still unclear. Our previous studies demonstrated that GEN could reduce the accumulation of CHO in osteoblasts and the activation of ER stress in osteoblasts. However, the molecular mechanism of GEN in inhibiting CHO-induced apoptosis in osteoblasts needs to be further investigated. METHODS MC3T3-E1 cells were treated with osteogenic induction medium (OIM). Ethanol-solubilized cholesterol (100 µM) was used as a stimulator, and 10 µM and 25 µM geniposide was added for treatment. The alterations of protein expression were detected by western blot, and the cell apoptosis was analyzed by a flow cytometer. RESULTS CHO promoted osteoblast apoptosis by activating ER stress in osteoblasts, while GEN alleviated the activation of ER stress and reduced osteoblast apoptosis by activating the GLP-1R/ABCA1 pathway. Inhibition of ABCA1 or GLP-1R could eliminate the protective activity of GEN against CHO-induced ER stress and osteoblast apoptosis. CONCLUSION GEN alleviated CHO-induced ER stress and apoptosis in osteoblasts by mediating the GLP-1R/ABCA1 pathway.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Ismaila MS, Sanusi KO, Iliyasu U, Imam MU, Georges K, Sundaram V, Jones KR. Antioxidant and Anti-Inflammatory Properties of Quail Yolk Oil via Upregulation of Superoxide Dismutase 1 and Catalase Genes and Downregulation of EIGER and Unpaired 2 Genes in a D. melanogaster Model. Antioxidants (Basel) 2024; 13:75. [PMID: 38247499 PMCID: PMC10812611 DOI: 10.3390/antiox13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Quail egg yolk oil (QEYO) has a rich history of medicinal use, showcasing heightened antioxidant and bioactive properties in our prior studies. This positions QEYO as a promising candidate for therapeutic and cosmetic applications. In this investigation, QEYO was extracted using ethanol/chloroform and 2-propanol/hexane solvents. GC-MS and FTIR analyses quantified 14 major bioactive compounds in the ethanol/chloroform fraction and 12 in the 2-propanol/hexane fraction. Toxicity evaluations in fruit flies, spanning acute, sub chronic, and chronic exposures, revealed no adverse effects. Negative geotaxis assays assessed locomotor activity, while biochemical assays using fly hemolymph gauged antioxidant responses. Real-time PCR revealed the relative expression levels of the antioxidant and anti-inflammatory genes. FTIR spectra indicated diverse functional groups, and the GC-MS results associated bioactive compounds with the regulation of the anti-inflammatory genes EIGER and UPD2. While no significant change in SOD activities was noted, male flies treated with specific QEYO doses exhibited increased catalase activity and total antioxidant capacity, coupled with a significant decrease in their malondialdehyde levels. This study offers valuable insights into the bioactive compounds of QEYO and their potential regulatory roles in gene expression.
Collapse
Affiliation(s)
- Muhammad Sani Ismaila
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| | - Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto 840004, Nigeria; (K.O.S.); (M.U.I.)
| | - Uwaisu Iliyasu
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna 800283, Nigeria;
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto 840004, Nigeria; (K.O.S.); (M.U.I.)
| | - Karla Georges
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| | - Venkatesan Sundaram
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| | - Kegan Romelle Jones
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago; (M.S.I.); (K.G.); (V.S.)
| |
Collapse
|