1
|
Li K, Wang S, Tang W, Chen Y, Li B. MALDI MSI-based spatial amine metabolomics revealing the protective effect of combination therapy against cerebral ischemia/reperfusion-induced brain injury in rats. J Pharm Biomed Anal 2025; 257:116715. [PMID: 39904130 DOI: 10.1016/j.jpba.2025.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Complex amine metabolic disorders are implicated in ischemic stroke and can further exacerbate brain damage. Therefore, ameliorating their metabolic disorder would be an effective way to improve recovery from brain damage after ischemia/reperfusion (I/R) injury. In this work, the protective effects of Edaravone (Eda), Ginaton injection (Gin), and their combination (Eda+Gin) against cerebral I/R injury in a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model were preliminarily investigated from the perspective of spatial metabolomics. Compared to single-drug treatment, the optimized combination treatment with Eda and Gin significantly decreased infarct volumes, improved neurological function, and inhibited neuronal damage and glial cell activation in MCAO/R rats. Also, combination treatment could prolong the blood circulation time of quercetin, ginkgolide C, and eight flavonoid glycosides compared to Gin treatment alone. More importantly, the spatial metabolic alterations of amine metabolites in MCAO/R rats before and after drug treatment were comprehensively interrogated using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) coupled with laser-assisted chemical transfer (LACT)-based on tissue chemical derivatization, such as amino acids, dipeptides, tripeptides, neurotransmitters, and the other amine metabolites. MALDI MSI results showed that the drastic metabolic disorders occurred in the cerebral cortex (CTX) and striatum (STR) and combination treatment exerted a better regulatory effect on the perturbed spatial amine metabolism. Therefore, combination treatment with Eda and Gin could significantly reduce ischemic brain damage and correct spatial metabolic disorders of amine metabolites, providing a potential treatment strategy for cerebral I/R injury.
Collapse
Affiliation(s)
- Kening Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Siyu Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanwen Chen
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Zhang M, Tan Z, Ou M, Li T, Yang X, Chen L, Xiao R, Lu N, Wang X, Wu F. Metabolomics Analysis of the Mechanism of Yuquan Capsules in the Treatment of T2DM Rats Using UPLC/MS. Diabetes Metab Syndr Obes 2025; 18:905-916. [PMID: 40165883 PMCID: PMC11956709 DOI: 10.2147/dmso.s512089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose Yuquan capsule (YQC) is a well-known proprietary Chinese medicine used for the treatment of type 2 diabetes mellitus. The aim of this study was to investigate the potential mechanism and efficacy of YQC in the treatment of T2DM by means of metabolomics. Methods Thirty-two male SD rats were randomly divided into four groups of control, type 2 diabetic mellitus (T2DM), metformin (Met), and YQC. Establishment of the T2DM model by high-fat diet (HFD) and streptozotocin (STZ). Fasting blood glucose (FBG) and weight were measured weekly, urine output was collected and recorded. The blood, kidney, pancreas, and liver tissue samples were collected at the end of the experiment. Blood samples were analyzed with methods of ELISA, pancreas, and liver tissues were analyzed by pathological sections, and serum was analyzed by metabolomics using ultra-performance liquid chromatography quadrupole time-of-flight coupled with mass spectrometry (UPLC-Q/TOF-MS). Results It was observed that YQC could reduce blood glucose levels by modulating blood lipid and transaminase indices, and by diminishing the concentration of inflammatory factors within hepatic and pancreatic tissues. Furthermore, YQC restores homeostasis by regulating lipid and amino acid metabolism, engaging 21 biomarkers and 10 metabolic pathways. Conclusion YQC has the capacity to enhance blood lipid and transaminase levels, suppress the expression of inflammatory factors, and foster the homeostatic progression of metabolic circulation in rats with T2DM.
Collapse
Affiliation(s)
- Mengli Zhang
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
| | - Zhien Tan
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
| | - Min Ou
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
| | - Taiping Li
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Xiaonan Yang
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
| | - Lu Chen
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
| | - Rui Xiao
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Na Lu
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Fangfang Wu
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, People’s Republic of China
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
3
|
Wen T, Xin G, Zhou Q, Wang T, Yu X, Li Y, Li S, Zhang Y, Zhang K, Liu T, Zhu B, Huang W. Investigation into the Potential Mechanism of Radix Paeoniae Rubra Against Ischemic Stroke Based on Network Pharmacology. Nutrients 2024; 16:4409. [PMID: 39771032 PMCID: PMC11678013 DOI: 10.3390/nu16244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and experimental validation to explore the mechanisms of RPR in treating ischemic stroke. METHODS In this study, we preliminarily elucidated the therapeutic effect and mechanism of RPR on ischemic stroke through network pharmacology, molecular docking analysis, and experimental verification. RESULTS The results indicated that RPR improved the neurological deficit scores, decreased the size of infarcts, and reduced brain edema symptoms in the tMCAO mice model. Furthermore, through network pharmacology and molecular docking, four core targets (MAPK3, TNF-α, MAPK14, and JNK) closely related to RPR's treatment of ischemic stroke were identified, exhibiting strong affinity with two key active components of RPR: albiflorin (AF) and β-sitosterol (BSS). The Western blot showed the potential mechanism of RPR treatment for ischemic stroke by regulating the MAPK signaling pathway. Moreover, RPR and its main active ingredients exhibited a significant inhibitory effect on platelets. CONCLUSION In conclusion, this study revealed that RPR alleviates ischemic injury by activating the MAPK signaling pathway, and its protective effect may partly stem from inhibiting platelet activation. This work may provide a scientific basis for the development and utilization of RPR as a natural edible material to prevent ischemic stroke and anti-platelet therapy.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Guang Xin
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Qilong Zhou
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Tao Wang
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Xiuxian Yu
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Yanceng Li
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Shiyi Li
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Ying Zhang
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Kun Zhang
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Ting Liu
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| | - Beiwei Zhu
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Huang
- Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (T.W.); (G.X.); (Q.Z.); (T.W.); (X.Y.); (Y.L.); (S.L.); (Y.Z.); (K.Z.); (T.L.)
| |
Collapse
|
4
|
Saeed M, Munawar M, Bi JB, Ahmed S, Ahmad MZ, Kamboh AA, Arain MA, Naveed M, Chen H. Promising phytopharmacology, nutritional potential, health benefits, and traditional usage of Tribulus terrestris L. herb. Heliyon 2024; 10:e25549. [PMID: 38375303 PMCID: PMC10875386 DOI: 10.1016/j.heliyon.2024.e25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Traditional medicines are becoming more popular as people become more aware of the dangers of synthetic pharmaceuticals. Tribulus terrestris L., (Gokharu) an annual herbaceous plant, has been extensively utilized by herbalists for numerous medicinal purposes. T. terrestris has been studied for its multiple therapeutic effects, including immunomodulatory, aphrodisiac, anti-urolithic, absorption enhancer, cardioprotective, antidiabetic, anti-inflammatory, hypolipidemic, neuro-protective, anticancer, and analgesic properties. Saponins and flavonoids are two examples of beneficial substances that have recently been found in T. terrestris. These chemicals are very important for a variety of therapeutic effects. Numerous studies have shown that T. terrestris products and various parts may have antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, testosterone-boosting, and liver protective effects. According to the published evidence, T. terrestris boosts testosterone secretion, regulates blood pressure, and protects the human body against injuries. The cardiovascular, reproductive, and urinary systems are all severely impacted. Due to its potent bioactive compounds, the literature evaluated from a wide range of sources including books, reports, PubMed, ScienceDirect, Wiley, Springer, and other databases demonstrated the extraordinary potential to treat numerous human and animal ailments. Our review is different from other published articles because we explored its importance for humans and especially in veterinary like poultry health. It could also be used as an aphrodisiac to treat different fertility-related disorders in human and animal science. More research into the pharmacodynamics of herbs like T. terrestris is needed so that it can be used in a wider variety of nutraceutical products for humans and poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Mahzaib Munawar
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Jannat Bi Bi
- Department of Physical Education, Beijing Sports University, Beijing, China
| | - Shabbir Ahmed
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Asghar Ali Kamboh
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH, USA
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Xu X, Guo W, Zhao L, Sun Y, Xu D, Yang J, Liu Y, Xie S, Wang Y, Xu Y. Exploring the in vitro anti-inflammatory activity of gross saponins of Tribulus terrestris L. fruit by using liquid chromatography-mass spectrometry-based cell metabolomics approach. J Sep Sci 2023; 46:e2300531. [PMID: 37933967 DOI: 10.1002/jssc.202300531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Our previous studies confirmed the efficacy of gross saponins of Tribulus terrestris L. fruit in treating cerebral ischemia. This study aimed to investigate the related mechanisms in vitro. The lipopolysaccharide-induced BV2 cells model was constructed and treated with gross saponins at different concentrations to explore its anti-inflammatory activity. The cell metabolite changes were tracked by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, and the metabolic biomarkers and related metabolic pathways were analyzed. Molecular biochemistry analysis was further used to verify the relevant inflammatory pathways. The results showed that the saponins reduced nitric oxide release and the secretion of tumor necrosis factor-alpha, interleukin-1β, and interleukin-6 from lipopolysaccharide-induced BV2 cells. Metabolic perturbations occurred in lipopolysaccharide-treated BV2 cells, which could be reversed by drug treatment via mainly regulating glycerophospholipid metabolism, tryptophan metabolism, purine metabolism pathways, etc. The western blot analysis demonstrated that saponin could suppress the activation of the inflammatory-related signaling pathway. The present study explored the in vitro anti-inflammatory mechanism of gross saponins of Tribulus terrestris L. fruit using an LC-MS-based cell metabolomics approach, which confirms the great potential of LC-MS for drug efficacy evaluation and can be applied in other herbal medicine-related analyses.
Collapse
Affiliation(s)
- Xiaohang Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Liang Zhao
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yuanhe Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
6
|
Guo W, Yang J, Wang J, Xu X, Huang J, Liu Y, Xie S, Xu Y. Dietary Supplement with Tribulus terrestris L. Extract Exhibits Protective Effects on Ischemic Stroke Rats. Mol Nutr Food Res 2023; 67:e2300447. [PMID: 37876150 DOI: 10.1002/mnfr.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Among herbal dietary supplements, the extract of Tribulus terrestris L. (TT) has been used as a commercially registered product in multiple studies. The previous studies demonstrate the protective effect of gross saponins of TT (GSTTF) on ischemic stroke. However, the mechanism by which GSTTF protects against ischemic stroke is still unclear. METHODS AND RESULTS The study applies molecular biology and unbiased transcriptomics to explore the pathways and targets underlying the therapeutic impact of GSTTF in treating ischemic stroke. The mRNA of brain tissues from different groups is analyzed using a transcriptomics method. The data reveal that treatment with GSTTF significantly reduces elevated CRP, IL-6, and Ca2+ levels induced by middle cerebral artery occlusion (MCAO). A total of 61 differentially expressed genes (DEGs) are identified, GSTTF is found to effectively reverse the abnormal mRNA expression levels in rat brain tissues affected by ischemic stroke models. These positive effects of GSTTF are likely achieved through the suppression of calcium ion and the MyD88/IKK/NF-κB signaling pathway. CONCLUSIONS This study uncovers the mechanisms behind the efficacy of GSTTF in treating ischemic stroke, which not only expands its potential medicinal applications but also confirmed its potential as a dietary supplement.
Collapse
Affiliation(s)
- Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jifeng Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiaohang Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinghan Huang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Shengxu Xie
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| |
Collapse
|
7
|
Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116306. [PMID: 36858276 DOI: 10.1016/j.jep.2023.116306] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Network pharmacology is a new discipline based on systems biology theory, biological system network analysis, and multi-target drug molecule design specific signal node selection. The mechanism of action of TCM formula has the characteristics of multiple targets and levels. The mechanism is similar to the integrity, systematization and comprehensiveness of network pharmacology, so network pharmacology is suitable for the study of the pharmacological mechanism of Chinese medicine compounds. AIM OF THE STUDY The paper summarizes the present application status and existing problems of network pharmacology in the field of Chinese medicine formula, and formulates the research ideas, up-to-date key technology and application method and strategy of network pharmacology. Its purpose is to provide guidance and reference for using network pharmacology to reveal the modern scientific connotation of Chinese medicine. MATERIALS AND METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, ScienceDirect and Google Scholar using the keywords "traditional Chinese medicine", "Chinese herb medicine" and "network pharmacology". The literature cited in this review dates from 2002 to 2022. RESULTS Using network pharmacology methods to predict the basis and mechanism of pharmacodynamic substances of traditional Chinese medicines has become a trend. CONCLUSION Network pharmacology is a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.
Collapse
Affiliation(s)
- Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Li X, Liu Z, Liao J, Chen Q, Lu X, Fan X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin J Nat Med 2023; 21:323-332. [PMID: 37245871 DOI: 10.1016/s1875-5364(23)60429-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 05/30/2023]
Abstract
Pharmacodynamics material basis and effective mechanisms are the two main issues to decipher the mechnisms of action of Traditional Chinese medicines (TCMs) for the treatment of diseases. TCMs, in "multi-component, multi-target, multi-pathway" paradigm, show satisfactory clinical results in complex diseases. New ideas and methods are urgently needed to explain the complex interactions between TCMs and diseases. Network pharmacology (NP) provides a novel paradigm to uncover and visualize the underlying interaction networks of TCMs against multifactorial diseases. The development and application of NP has promoted the safety, efficacy, and mechanism investigations of TCMs, which then reinforces the credibility and popularity of TCMs. The current organ-centricity of medicine and the "one disease-one target-one drug" dogma obstruct the understanding of complex diseases and the development of effective drugs. Therefore, more attentions should be paid to shift from "phenotype and symptom" to "endotype and cause" in understanding and redefining current diseases. In the past two decades, with the advent of advanced and intelligent technologies (such as metabolomics, proteomics, transcriptomics, single-cell omics, and artificial intelligence), NP has been improved and deeply implemented, and presented its great value and potential as the next drug-discovery paradigm. NP is developed to cure causal mechanisms instead of treating symptoms. This review briefly summarizes the recent research progress on NP application in TCMs for efficacy research, mechanism elucidation, target prediction, safety evaluation, drug repurposing, and drug design.
Collapse
Affiliation(s)
- Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 311399, China; Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China
| | - Ziqi Liu
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Liao
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Chen
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xiaoyan Lu
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xiaohui Fan
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
9
|
Patzwaldt K, Berezhnoy G, Ionescu T, Schramm L, Wang Y, Owczorz M, Calderón E, Poli S, Serna Higuita LM, Gonzalez-Menendez I, Quintanilla-Martinez L, Herfert K, Pichler B, Trautwein C, Castaneda-Vega S. Repurposing the mucolytic agent ambroxol for treatment of sub-acute and chronic ischaemic stroke. Brain Commun 2023; 5:fcad099. [PMID: 37065090 PMCID: PMC10090797 DOI: 10.1093/braincomms/fcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.
Collapse
Affiliation(s)
- Kristin Patzwaldt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Tudor Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Linda Schramm
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Yi Wang
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Miriam Owczorz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Eduardo Calderón
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Sven Poli
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Lina M Serna Higuita
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Salvador Castaneda-Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
10
|
Yang Y, Wang L, Wang S, Wang Y, Du Y, Fan Y. Luteolin restored Treg/Th17 balance to ameliorate allergic rhinitis in a mouse model. Immunopharmacol Immunotoxicol 2023:1-8. [PMID: 36946145 DOI: 10.1080/08923973.2023.2166527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Luteolin (LO) has been reported to be a potential drug for allergic rhinitis (AR). This paper explored the mechanism of LO in AR. MATERIALS AND METHODS Mice were treated with ovalbumin (OVA) to construct an AR model in vivo before LO or 3-methyladenine (3-MA) treatment. The frequency of nasal sneezing was counted. The nasal mucosa thickness was assessed by hematoxylin-eosin staining assay. The levels of anti-OVA-immunoglobulin E (IgE)/IgG2a, autophagy-related factors (Beclin1, LC3II/LC3I), and T helper cell 17 (Th17)/regulatory T cell (Treg) markers (interleukin (IL)-17A, retinoic acid receptor-related orphan nuclear receptor γt (RORγt)/IL-10, forkhead box P3 (Foxp3)) were detected through enzyme-linked immunosorbent assay, western blot, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Flow cytometry assay was performed to test the percentage of Th17 and Treg cells. RESULTS The nasal sneezing frequency, nasal mucosa thickness, and levels of anti-OVA-IgE, Beclin1, LC3II/LC3I, IL-17A as well as RORγt were enhanced whereas anti-OVA-IgG2a, IL-10, and Foxp3 levels were inhibited in a mouse model of OVA-induced AR, which were reversed by LO or 3-MA treatment. CONCLUSIONS LO restored Treg/Th17 balance to ameliorate AR in a mouse model.
Collapse
Affiliation(s)
- Yuping Yang
- Department of Allergy, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Lingling Wang
- Department of Allergy, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Song Wang
- Department of Otolaryngology, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yan Wang
- Department of Allergy, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yunqiang Du
- Criminal Police, Public Security Bureau of Xinjiang, Urumqi, China
| | - Yuqin Fan
- Department of Otolaryngology and Head and Neck Surgery, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wang J, Li X, Chang H, Si N. Network pharmacology and bioinformatics study on the treatment of renal fibrosis with persicae semen-carthami flos drug pair. Medicine (Baltimore) 2023; 102:e32946. [PMID: 36827014 PMCID: PMC11309690 DOI: 10.1097/md.0000000000032946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
To use network pharmacology and bioinformatics technology to reveal the mechanism of persicae semen-carthami flos drug pair in the treatment of renal fibrosis (RF). Compounds in traditional Chinese medicine were obtained through the Herb database. Appropriate compounds and corresponding drug targets were screened out based on the 5 rules of Lipinski and pharmacokinetics. Screening of suitable disease miRNAs by microarray chips in the GEO database. Find differentially expressed genes by analyzing miRNAs. Protein-protein interaction analysis and enrichment analysis of therapeutic targets were performed using String database and Omicshare platform. Molecular docking via the DockThor platform. A total of 28 drug compounds and 228 drug targets were screened in this study. A total of 9 miRNAs and 6649 disease targets were obtained by GEO2R software analysis. Finally, 97 therapeutic targets were obtained. A total of 1124 Gene Ontology enrichment analysis results were obtained. Therapeutic targets play multiple roles in biological processes, molecular functions, and cellular organization. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the persicae semen-carthami flos drug pair played a role in the treatment of RF mainly through calcium signaling pathway, pathways in cancer, cAMP signaling pathway, and other pathways. Molecular docking showed that the traditional Chinese medicine compounds had good binding ability to the target. Persicae semen and carthami flos play a role in the treatment of RF through multiple targets and multiple pathways. It provides ideas and references for follow-up research and new drug development.
Collapse
Affiliation(s)
- Jiao Wang
- Changzhi People’s Hospital, Changzhi, Shanxi, China
| | - Xinghua Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Na Si
- Changzhi People’s Hospital, Changzhi, Shanxi, China
| |
Collapse
|
12
|
Zhang H, Guo W, Li X, Xie S, Liu Y, Chen G, Wang Y, Xu Y. Supplementation with Tribulus Terrestris Extract Exhibits Protective Effects on MCAO Rats via Modulating Inflammation-Related Metabolic and Signaling Pathways. ACS OMEGA 2023; 8:2306-2314. [PMID: 36687021 PMCID: PMC9851020 DOI: 10.1021/acsomega.2c06625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The extract of Tribulus terrestris (TT) has been used as a component of several nutritional supplements for enhancing human vitality. However, its protective effect on ischemic stroke has yet to be fully investigated. In this study, the middle cerebral artery occlusion (MCAO) rat model was established and treated with gross saponin of TT fruit (GSTTF) by gavage to explore its anti-ischemic stroke efficacy. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied to profile the brain tissue metabolite changes and further obtain the metabolic pathways that were greatly involved in the efficacy of GSTTF. Subsequent molecular biology experiments were applied to validate the findings from metabolomics analysis. The results showed that GSTTF administration remarkably decreased the infarction volume of brain tissue and improved the neurobehavioral scores of MCAO rats. Metabolomics analysis revealed that pathways, including glycerophospholipid metabolism, sphingolipid metabolism, and arachidonic acid metabolism, were considered associated with the protective effect of GSTTF against MCAO, which were greatly involved in the inflammatory responses. The results of the biochemistry analysis showed that GSTTF treatment significantly reduced the levels of TNF-α and IL-6 in brain tissue after MCAO. The anti-inflammatory mechanism of GSTTF was further investigated, which revealed that GSTTF could inhibit the TLR4/MyD88/NF-κB signaling pathway to exert protective effects on MCAO. This study provides the underlying anti-inflammatory mechanism of GSTTF for ischemic stroke protection, which has important implications for the development of GSTTF-related functional foods or food supplements.
Collapse
Affiliation(s)
- Hongming Zhang
- Key
Laboratory of Medicinal Materials, Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Wenjun Guo
- Key
Laboratory of Medicinal Materials, Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
- School
of Pharmaceutical Sciences, Changchun University
of Chinese Medicine, Changchun 130117, China
| | - Xingxing Li
- Key
Laboratory of Medicinal Materials, Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Shengxu Xie
- Key
Laboratory of Medicinal Materials, Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Yue Liu
- Key
Laboratory of Medicinal Materials, Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Geng Chen
- The
First Hospital of Jilin University, Changchun 130021, China
| | - Yang Wang
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, China
| | - Yajuan Xu
- Key
Laboratory of Medicinal Materials, Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| |
Collapse
|
13
|
Xu D, Wang Y, Guo W, Li X, Liu Y, Han Y, Zhang H, Wei Q, Wang Y, Xu Y. LC-MS-based multi-omics analysis of brain tissue for the evaluation of the anti-ischemic stroke potential of Tribulus terrestris L. fruit extract in MCAO rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Xiao J, Chen C, Li Y, Fan J, Yan Z, Cai Y. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Indigowoad Leaves with Preconcentration by Cholesterol-Decorated Nickel Foam (NF) Dispersive Solid-Phase Extraction (DSPE) and Determination by Gas Chromatography–Mass Spectrometry (GC-MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jing Xiao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chan Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yang Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiahua Fan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhihong Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Cai
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Gunarathne R, Nadeeshani H, Lu A, Li J, Zhang B, Ying T, Lu J. Potential Nutraceutical Use of Tribulus terrestris L. in Human Health. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rasika Gunarathne
- Division of Food Chemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Harshani Nadeeshani
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Anni Lu
- Pinehurst School, Albany, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an, Shaanxi Province, China
| |
Collapse
|
16
|
Jia J, Zhang H, Liang X, Dai Y, Liu L, Tan K, Ma R, Luo J, Ding Y, Ke C. Application of Metabolomics to the Discovery of Biomarkers for Ischemic Stroke in the Murine Model: a Comparison with the Clinical Results. Mol Neurobiol 2021; 58:6415-6426. [PMID: 34532786 DOI: 10.1007/s12035-021-02535-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability worldwide. However, the pathogenesis of IS remains unknown, and methods for early prediction and diagnosis of IS are lacking. Metabolomics can be applied to biomarker discovery and mechanism exploration of IS by exploring metabolic alterations. In this review, 62 IS metabolomics studies in the murine model published from January 2006 to December 2020 in the PubMed and Web of Science databases were systematically reviewed. Twenty metabolites (e.g., lysine, phenylalanine, methionine, tryptophan, leucine, lactate, serine, N-acetyl-aspartic acid, and glutathione) were reported consistently in more than two-third murine studies. The disturbance of metabolic pathways, such as arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and citrate cycle, may be implicated in the development of IS by influencing the biological processes such as energy failure, oxidative stress, apoptosis, and glutamate toxicity. The transient middle cerebral artery occlusion model and permanent middle cerebral artery occlusion model exhibit both common and distinct metabolic patterns. Furthermore, five metabolites (proline, serine, LysoPC (16:0), uric acid, glutamate) in the blood sample and 7 metabolic pathways (e.g., alanine, aspartate, and glutamate metabolism) are shared in animal and clinical studies. The potential biomarkers and related pathways of IS in the murine model may facilitate the biomarker discovery for early diagnosis of IS and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Jinjing Jia
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Hangyao Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xiaoyi Liang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yuning Dai
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Lihe Liu
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Kaiwen Tan
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Ruohan Ma
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Jiahuan Luo
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, People's Republic of China
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
17
|
Shen X, Guo J, Fan N, Lai M, Huang L, Wang J, Li Q. Protective effect of ultrasound microbubble combined with gross saponins of tribulus terrestris on glaucomatous optic nerve damage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1436. [PMID: 34733988 PMCID: PMC8506763 DOI: 10.21037/atm-21-4230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
Background To investigate the protective effect of ultrasound microbubble combined with gross saponins of tribulus terrestris (GSTT) (a Chinese herb) on glaucomatous optic nerve damage. Methods Rabbits were randomly divided into five groups. Normal (Group A), high intraocular pressure (IOP, Group B), GSTT (Group C), GSTT + ultrasound (Group D), and GSTT + ultrasound + microbubble destruction (Group E). The high intraocular pressure eye (model eye) was compared to the normal eye (control eye) at 1, 2, and 4 weeks after model establishment. Rabbits were sacrificed 4 weeks later to measure the retina thickness using Cirrus OCT, slit lamp photograph, and fundus photography. The retina and optic nerve of rabbits in each group were collected and the stretched retina were prepared for retinal ganglion cell (RGC) counting, the optic nerve axon was measured, and a transmission electron microscopy was used. Results Retina thickness based on Cirrus OCT: mean retinal thickness in Group E was significantly greater than that in Group B, but still thinner than that in Group A. RGCs counts: RGCs counts in Group E were significantly higher than those in Groups B, C, and D but still lower than those in Group A. Quantitative analysis of optic nerve axons: In Group E, the number of optic nerves was increased, diameters of optic nerve axons were decreased, the percentage of optic nerve area occupied by axons was increased, and there were statistically significant differences compared to Groups B, C, and D. Content of GSTT in retina: The content of GSTT in Group E was significantly higher than that in other groups. Observation of the rabbit optic nerves: In Group E, the structure of the myelin sheath of the optic nerve was still intact but less ordered, and the microtubule and microfilament structures in the axons were clear. Conclusions Combination of the ultrasound microbubble and GSTT can improve the protective effect of GSTT on optic nerve damage in rabbits with ocular hypertension.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated with Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Junhong Guo
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated with Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Ning Fan
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated with Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Mingying Lai
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated with Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Lina Huang
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated with Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jiantao Wang
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated with Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Qiang Li
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
18
|
Wang Y, Guo W, Xie S, Liu Y, Xu D, Chen G, Xu Y. Multi-omics analysis of brain tissue metabolome and proteome reveals the protective effect of gross saponins of Tribulus terrestris L. fruit against ischemic stroke in rat. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114280. [PMID: 34082014 DOI: 10.1016/j.jep.2021.114280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gross Saponins of Tribulus terrestris L. Fruit (GSTTF) has been reported to have a protective effect against ischemic stroke, but the related mechanism is complex and still not fully investigated. AIM OF THE STUDY The combination of metabolomics and proteomics approach was applied to reveal the mechanisms of GSTTF in treating ischemic stroke. MATERIALS AND METHODS The metabolite and protein changes in brain tissue were analyzed by the LC-MS-based untargeted metabolomics method and tandem mass tags (TMT)-based quantitative proteomics technology. The multivariate statistical analysis and protein-protein interaction (PPI) analysis were conducted to screen out the biomarkers, and their related pathway was further investigated by the joint pathway analysis. RESULTS A total of 110 metabolites and 359 differential proteins, which were mainly associated with complement and coagulation cascades, sphingolipid metabolism, glycerophospholipid metabolism, glutathione metabolism, and platelet activation, etc. were screened out from the rat brain tissue. The PPI network exhibited that the protein F2, Fga, Fgb, Fgg, Plg, and C3, which are greatly involved in the complement and coagulation cascades, have a relatively high connectivity degree, indicating their importance in the process of middle cerebral artery occlusion (MCAO). The GSTTF exerted a protective effect against MCAO via modulating multiple proteins on this pathway. Moreover, F2 played a key role during the protective process and worth to be further investigated due to it has been reported as one of the therapeutic targets of ischemic stroke. CONCLUSION The present study could improve the understanding of the potential therapeutic mechanism of GSTTF against ischemic stroke.
Collapse
Affiliation(s)
- Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Dandan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Geng Chen
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China.
| |
Collapse
|
19
|
Systematic Investigation of the Effect of Powerful Tianma Eucommia Capsule on Ischemic Stroke Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8897313. [PMID: 34194527 PMCID: PMC8203382 DOI: 10.1155/2021/8897313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Background Ischemic stroke (IS) is a serious disease with a high rate of death and disability, and a growing number of people are becoming victims. Existing drugs not only have limited therapeutic effects but also have obvious side effects. Most importantly, drug resistance due to long-term or improper use of drugs is detrimental to patients. Therefore, it is urgent to find some alternative or supplementary medicines to alleviate the current embarrassment. Powerful Tianma Eucommia Capsule (PTEC) is mainly used to treat IS in China for thousands of years; however, the molecular mechanism is not clear. Methods Pharmacology ingredients and target genes were filtered and downloaded from websites. A pharmacology ingredient-target gene network was constructed to predict the molecular interactions between ingredients and target genes. Enrichment analysis was performed to explore the possible signal pathways. LeDock was used to simulate the interaction form between proteins and main active ingredients and to deduce key amino acid positions. Results Two hundred eighty-nine target genes and seventy-four pharmacological ingredients were obtained from public databases. Several key ingredients (quercetin, kaempferol, and stigmasterol) and primary core target genes (PTGS1, NCOA2, and PRSS1) were detected through ingredient-target gene network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that ingredients affect networks mainly in nuclear receptor activity and G protein-coupled amine receptor activity; besides, fluid shear stress and atherosclerosis, human cytomegalovirus infection, and hepatitis B signaling pathways might be the principal therapy ways. A series of presumed key amino acid sites (189ASP, 190SER, 192GLN, 57HIS, and 99TYE) were calculated in PRSS1. Six of the target genes were differentially expressed between male and female patients. Conclusions Seven new putative target genes (ACHE, ADRA1A, AR, CHRM3, F7, GABRA1, and PRSS1) were observed in this work. Based on the result of GO and KEGG analysis, this work will be helpful to further demonstrate the molecular mechanism of PTEC treatment of IS.
Collapse
|
20
|
Wang J, He M, Guo W, Zhang Y, Sui X, Lin J, Liu X, Li H, Li J, Yang Q, Kan M, Zhang Z, Ming S, Qu X, Li N. Microbiome-Metabolomics Reveals Endogenous Alterations of Energy Metabolism by the Dushen Tang to Attenuate D-Galactose-Induced Memory Impairment in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6649085. [PMID: 34136571 PMCID: PMC8175156 DOI: 10.1155/2021/6649085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging affects the brain function in elderly individuals, and Dushen Tang (DST) is widely used for the treatment of senile diseases. In this study, the protective effect of DST against memory impairment was evaluated through the Morris water maze (MWM) test and transmission electron microscopy (TEM). A joint analysis was also performed using LC-MS metabolomics and the microbiome. The MWM test showed that DST could significantly improve the spatial memory and learning abilities of rats with memory impairment, and the TEM analysis showed that DST could reduce neuronal damage in the hippocampus of rats with memory impairment. Ten potential biomarkers involving pyruvate metabolism, the synthesis and degradation of ketone bodies, and other metabolic pathways were identified by the metabolomic analysis, and it was found that 3-hydroxybutyric acid and lactic acid were involved in the activation of cAMP signaling pathways. The 16S rDNA sequencing results showed that DST could regulate the structure of the gut microbiota in rats with memory impairment, and these effects were manifested as changes in energy metabolism. These findings suggest that DST exerts a good therapeutic effect on rats with memory impairment and that this effect might be mainly achieved by improving energy metabolism. These findings might lead to the potential development of DST as a drug for the treatment of rats with memory impairment.
Collapse
Affiliation(s)
- Jifeng Wang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Min He
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, Netherlands
| | - Wenjun Guo
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Yanhong Zhang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xin Sui
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Jianan Lin
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xiaoran Liu
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, Jilin 130117, China
| | - Jing Li
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Qing Yang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Mo Kan
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zhuang Zhang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Sitong Ming
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xiaobo Qu
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Na Li
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| |
Collapse
|
21
|
Li Y, Wu Q, Hu E, Wang Y, Lu H. Quantitative Mass Spectrometry Imaging of Metabolomes and Lipidomes for Tracking Changes and Therapeutic Response in Traumatic Brain Injury Surrounding Injured Area at Chronic Phase. ACS Chem Neurosci 2021; 12:1363-1375. [PMID: 33793210 DOI: 10.1021/acschemneuro.1c00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex disease process that may contribute to temporary or permanent disability. Tracking spatial changes of lipids and metabolites in the brain helps unveil the underlying mechanisms of the disease procession and therapeutic response. Here, the liquid microjunction surface sampling technique was used for mass spectrometry imaging of both lipids and metabolites in rat models of controlled cortical impact with and without XueFu ZhuYu decoction treatment, and the work was focused on the diffuse changes outside the injured area at chronic phase (14 days after injury). Quantitative information was provided for phosphotidylcholines and cerebrosides by adding internal standards in the sampling solvent. With principal component analysis for the imaging data, the midbrain was found to be the region with the largest diffuse changes following TBI outside the injured area. In detail, several phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, and diacylglycerols were found to be significantly up-regulated particularly in midbrain and thalamus after TBI and XFZY treatment. It is associated with the reported "self-repair" mechanisms at the chronic phase of TBI activated by neuroinflammation. Several glycosphingolipids were found to be increased in most of brain regions after TBI, which was inferred to be associated with neuroinflammation and oxidative stress triggered by TBI. Moreover, different classes of small matabolites were significantly changed after TBI, including fatty acids, amino acids, and purines. All these compounds were involved in 10 metabolic pathway networks, and 6 target proteins of XFZY were found related to the impacted pathways. These results shed light on the molecular mechanisms of TBI pathologic processes and therapeutic response.
Collapse
Affiliation(s)
- Youmei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - En Hu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
22
|
Zhang ZM, Chen MJ, Zou JF, Jiang S, Shang EX, Qian DW, Duan JA. UPLC-Q-TOF/MS based fecal metabolomics reveals the potential anti-diabetic effect of Xiexin Decoction on T2DM rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122683. [PMID: 33857887 DOI: 10.1016/j.jchromb.2021.122683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/12/2021] [Accepted: 03/27/2021] [Indexed: 01/06/2023]
Abstract
Xiexin Decoction (XXD), a traditional Chinese medicine prescription composed of Rhei rhizome (RR), Scutellaria radix (SR) and Coptidis rhizome (CR), has been used to cure diabetes in clinical practices for thousands of years, but its mechanism is not clear. Our previous study indicated that XXD could significantly ameliorate the symptom of type 2 diabetes mellitus (T2DM) rats by shifting the composition of gut microbiota. However, the effect of XXD on the metabolic activity of gut microbiota is not clarified. In this study, the underlying mechanism of XXD on the amelioration of T2DM was explored by fecal metabolic profiling analysis based on ultra performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC-Q-TOF/MS). The disordered metabolic profiles in T2DM rats were notably improved by XXD. Ten potential biomarkers, which were mainly involved in arachidonic acid metabolism, amino acid metabolism, bile acid metabolism, glycolysis and gluconeogenesis, were identified. Furthermore, these metabolites were closely related to SCFAs-producing and anti-inflammatory gut microflora. After XXD intervention, these biomarkers restored to the normal level at some extent. This study not only revealed potential biomarkers and related pathways in T2DM rats affected by XXD, but also provided a novel insight to uncover how traditional herb medicines worked from fecal metabolomics.
Collapse
Affiliation(s)
- Zhi-Miao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meng-Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jun-Feng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
23
|
Guo W, Wang Y, Fan M, Xie S, Zhao H, Wang J, Liu Y, Xu D, Xu Y. Integrating metabolomics and network pharmacology to explore the protective effect of gross saponins of Tribulus terrestris L. fruit against ischemic stroke in rat. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113202. [PMID: 32768639 DOI: 10.1016/j.jep.2020.113202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tribulus terrestris L. belongs to the family Zygophyllaceae and has been widely used as a folk medicine for a long history in Asian countries. Gross saponins of Tribulus terrestris L. fruit (GSTTF) has an obvious neuroprotective effect on the treatment of ischemic stroke, but its potential therapeutic mechanisms have not been thoroughly studied. AIM OF THE STUDY To investigate the protective effect of GSTTF against ischemic stroke in rat. MATERIALS AND METHODS The combination of metabolomics and network pharmacology analysis was applied to investigate the protective effects of GSTTF on ischemic stroke and its putative mechanism. The related pathway of the biomarkers highlighted from metabolomics analysis was explored, then the possible targets of GSTTF were further revealed by network pharmacology analysis. Molecular docking was conducted to investigate the interaction between the active compound and target protein. RESULTS Metabolomics analysis showed that metabolic disturbances were observed in serum for the rats in middle cerebral artery occlusion (MCAO). These MCAO-induced deviations in serum metabolism can be reversely changed by GSTTF via metabolic pathways regulation. Twenty-four proteins with the connectivity degree larger than 15 were selected by the network pharmacology analysis, which are considered as the possible therapeutic targets of the GSTTF against ischemic stroke. The results of molecular docking showed that the active compounds were capable of binding to the representative potential targets HSD11B1 and AR, respectively. And the docking mode of two compounds with the lowest binding energy to their target protein was illustrated by the ribbon binding map. CONCLUSION The present study combines metabolomics and network pharmacology analysis to investigate the mechanism of MCAO-induced ischemic stroke and reveal the efficiency and possible mechanisms of GSTTF for ischemic stroke. Further studies on the bioactive saponin as well as their synergistic action on ischemic stroke will be conducted to better reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China.
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Hongyu Zhao
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Jifeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Dongming Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China.
| |
Collapse
|