1
|
Ajmal R, Zhang W, Liu H, Bai H, Cao L, Peng B, Li L. Development of a Microfluidic System for Mitochondrial Extraction, Purification, and Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20487-20500. [PMID: 40034090 DOI: 10.1021/acsami.4c18415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mitochondria, as essential cellular organelles, play a key role in numerous diseases, from neurodegenerative disorders to cancer and rare conditions. The extraction of mitochondria from cells has many applications in disease diagnosis, pathological research, and emerging mitochondrial transplantation therapy (MTT). Recent advancements in microfluidic-on-chip systems offer promising improvements in mitochondrial extraction by enabling high-throughput processing, precise control, and flexibility while facilitating integration with other devices and platforms. Despite growing interest in microfluidic mitochondrial extraction (MME), there is a lack of comprehensive reviews on the latest developments in this field. This review aims to summarize recent advancements as well as the advantages and limitations of MME, providing deeper insights into microfluidic-based approaches for mitochondrial extraction, purification, and analysis.
Collapse
Affiliation(s)
- Rukhsar Ajmal
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Weisen Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Guangdong Kangrong Industrial Co, Ltd, 63 Zhongbei Road, Shenshan Industrial Park Town, Jianggao Town, Baiyun District, Guangzhou 510450, China
| | - Hui Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lei Cao
- Department of Rehabilitation, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, 13 Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Mu B, Wang Y, Liu X, Bebit MP, Chen M, Wu H, Zhang W, Wang L, Fang Y, Dong K. Design research on a smart infusion device to reduce medical workload and enhance patient safety. Sci Rep 2025; 15:9265. [PMID: 40102524 PMCID: PMC11920370 DOI: 10.1038/s41598-025-93911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
In traditional infusion processes, issues such as untimely medication replacement and patients' difficulty in continuously monitoring their medication levels are prevalent. This study presents the design of a smart infusion automatic medication replacement device aimed at automating infusion management through three key modules: high-precision liquid level monitoring, automated medication replacement, and a smart control system. By monitoring liquid levels in real time, the system eliminates the need for patients to constantly check their medication levels, accurately controlling the amount of medication dispensed and transmitting monitoring signals within safe thresholds. The rotational medication replacement mechanism stores and precisely replaces medicine bottles, optimizing usage and minimizing waste. Automated settings for liquid level monitoring and the plug-and-push system replace the need for manual assessment of medication completion and input quality, ensuring consistent dosage and high-quality delivery. The rotational mechanism also reduces the time needed for refilling and decreases the labor intensity for healthcare providers. A stabilization and calibration mechanism ensures bottles remain centered, preventing issues with internal pressure changes and loosening of the piercing tool. By replacing repetitive manual adjustments with automated processes, healthcare professionals can focus more on patient care rather than the cumbersome medication replacement procedures. The smart infusion automatic medication replacement device enhances the quality of infusion therapy for patients and alleviates the repetitive workload of medical staff.
Collapse
Affiliation(s)
- Bo Mu
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
- Academy of Arts and Creative Technology, University Malaysia Sabah, Kota kinabalu, 88400, Malaysia
| | - Yilun Wang
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xunchen Liu
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Mohammad Puad Bebit
- Academy of Arts and Creative Technology, University Malaysia Sabah, Kota kinabalu, 88400, Malaysia
| | - Mingzhang Chen
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Hailin Wu
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Zhang
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lanxin Wang
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuan Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Materials Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Kang Dong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
3
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
4
|
Huanbutta K, Puri V, Sharma A, Singh I, Sriamornsak P, Sangnim T. Rise of implantable drugs: A chronicle of breakthroughs in drug delivery systems. Saudi Pharm J 2024; 32:102193. [PMID: 39564378 PMCID: PMC11570717 DOI: 10.1016/j.jsps.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, implantable drug delivery systems (IDDSs) have undergone significant advancements because they offer many advantages to patients and health care professionals. Miniaturization has reduced the size of these devices, making them less invasive and easier to implant. Remote control provides more precise medication delivery and dosage. Biodegradable implants are an additional advancement in implantable drug delivery systems that eliminate the need for surgical removal. Smart implants can monitor a patient's condition and adjust their drug doses. Long-acting implants also provide sustained drug delivery for months or even years, eliminating the need for regular medication dosing, and wireless power and data transmission technology enables the use of devices that are more comfortable and less invasive. These innovations have enhanced patient outcomes by enabling more precise administration, sustained drug delivery, and improved health care monitoring. With continued research and development, it is anticipated that IDDSs will become more effective and provide patients with improved health outcomes. This review categorizes and discusses the benefits and limitations of recent novel IDDSs for their potential therapeutic use.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
5
|
Torabi Y, Shirani S, Reilly JP, Gauvreau GM. MEMS and ECM Sensor Technologies for Cardiorespiratory Sound Monitoring-A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:7036. [PMID: 39517931 PMCID: PMC11548498 DOI: 10.3390/s24217036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This paper presents a comprehensive review of cardiorespiratory auscultation sensing devices (i.e., stethoscopes), which is useful for understanding the theoretical aspects and practical design notes. In this paper, we first introduce the acoustic properties of the heart and lungs, as well as a brief history of stethoscope evolution. Then, we discuss the basic concept of electret condenser microphones (ECMs) and a stethoscope based on them. Then, we discuss the microelectromechanical systems (MEMSs) technology, particularly focusing on piezoelectric transducer sensors. This paper comprehensively reviews sensing technologies for cardiorespiratory auscultation, emphasizing MEMS-based wearable designs in the past decade. To our knowledge, this is the first paper to summarize ECM and MEMS applications for heart and lung sound analysis.
Collapse
Affiliation(s)
- Yasaman Torabi
- Electrical and Computer Engineering Department, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Shahram Shirani
- Electrical and Computer Engineering Department, McMaster University, Hamilton, ON L8S 4L7, Canada
- L.R. Wilson/Bell Canada in Data Communications, Hamilton, ON L8S 4L7, Canada
| | - James P. Reilly
- Electrical and Computer Engineering Department, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L7, Canada
| |
Collapse
|
6
|
Nikolić N, Olmos D, González-Benito J. Key Advances in Solution Blow Spinning of Polylactic-Acid-Based Materials: A Prospective Study on Uses and Future Applications. Polymers (Basel) 2024; 16:3044. [PMID: 39518253 PMCID: PMC11548346 DOI: 10.3390/polym16213044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Solution blow spinning (SBS) is a versatile and cost-effective technique for producing nanofibrous materials. It is based on the principles of other spinning methods as electrospinning (ES), which creates very thin and fine fibers with controlled morphologies. Polylactic acid (PLA), a biodegradable and biocompatible polymer derived from renewable resources, is widely used in biomedical fields, environmental protection, and packaging. This review provides a theoretical background for PLA, focusing on its properties that are associated with structural characteristics, such as crystallinity and thermal behavior. It also discusses various methods for producing fibrous materials, with particular emphasis on ES and SBS and on describing in more detail the main properties of the SBS method, along with its processing conditions and potential applications. Additionally, this review examines the properties of nanofibrous materials, particularly PLA-based nanofibers, and the new applications for which it is thought that they may be more useful, such as drug delivery systems, wound healing, tissue engineering, and food packaging. Ultimately, this review highlights the potential of the SBS method and PLA-based nanofibers in various new applications and suggests future research directions to address existing challenges and further enhance the SBS method and the quality of fibrous materials.
Collapse
Affiliation(s)
- Nataša Nikolić
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (N.N.); (D.O.)
| | - Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (N.N.); (D.O.)
- Instituto Tecnológico de Química y Materiales “Álvaro Alonso Barba”, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (N.N.); (D.O.)
- Instituto Tecnológico de Química y Materiales “Álvaro Alonso Barba”, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
7
|
Marvi F, Jafari K, Sawan M. Grating Bio-Microelectromechanical Platform Architecture for Multiple Biomarker Detection. BIOSENSORS 2024; 14:385. [PMID: 39194614 DOI: 10.3390/bios14080385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the MEMS structure, driven by the surface stress effect. Thus, these suspended optical nanoribbons can be moved and change the grating pattern by the biological bonds that happened on the modified cantilever surface. Such structural variations lead to significant changes in the optical response of the metamaterial system under illuminating angled light and subsequently shift its resonance wavelength spectrum. As a result, the proposed biosensor shows appropriate analytical characteristics, including the mechanical sensitivity of Sm = 11.55 μm/Nm-1, the optical sensitivity of So = Δλ/Δd = 0.7 translated to So = Δλ/Δσ = 8.08 μm/Nm-1, and the quality factor of Q = 102.7. Also, considering the importance of multi-biomarker detection, a specific design of the proposed topology has been introduced as an array for identifying different biomolecules. Based on the conducted modeling and analyses, the presented device poses the capability of detecting multiple biomarkers of disease at very low concentrations with proper precision in fluidic environments, offering a suitable bio-platform for lab-on-chip structures.
Collapse
Affiliation(s)
- Fahimeh Marvi
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kian Jafari
- Mechanical Engineering Department, Faculty of Engineering, Université de Sherbrooke (UdeS), 2500 Boul. de l'Université, Sherbrooke, QC J1L 2G7, Canada
- Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke (UdeS), Sherbrooke, QC J1K 2R1, Canada
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
8
|
Ji B, Gao K. Editorial for the Special Issue on Wearable and Implantable Bio-MEMS Devices and Applications. MICROMACHINES 2024; 15:955. [PMID: 39203606 PMCID: PMC11356249 DOI: 10.3390/mi15080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Wearable and implantable bio-MEMS sensors and actuators have attracted tremendous attention in the fields of health monitoring, disease treatment, and human-machine interaction, to name but a few [...].
Collapse
Affiliation(s)
- Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunpeng Gao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Rasekh M, Harrison S, Schobesberger S, Ertl P, Balachandran W. Reagent storage and delivery on integrated microfluidic chips for point-of-care diagnostics. Biomed Microdevices 2024; 26:28. [PMID: 38825594 DOI: 10.1007/s10544-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
Microfluidic-based point-of-care diagnostics offer several unique advantages over existing bioanalytical solutions, such as automation, miniaturisation, and integration of sensors to rapidly detect on-site specific biomarkers. It is important to highlight that a microfluidic POC system needs to perform a number of steps, including sample preparation, nucleic acid extraction, amplification, and detection. Each of these stages involves mixing and elution to go from sample to result. To address these complex sample preparation procedures, a vast number of different approaches have been developed to solve the problem of reagent storage and delivery. However, to date, no universal method has been proposed that can be applied as a working solution for all cases. Herein, both current self-contained (stored within the chip) and off-chip (stored in a separate device and brought together at the point of use) are reviewed, and their merits and limitations are discussed. This review focuses on reagent storage devices that could be integrated with microfluidic devices, discussing further issues or merits of these storage solutions in two different sections: direct on-chip storage and external storage with their application devices. Furthermore, the different microvalves and micropumps are considered to provide guidelines for designing appropriate integrated microfluidic point-of-care devices.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Sam Harrison
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Silvia Schobesberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Wamadeva Balachandran
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
10
|
Zinno C, Agnesi F, D'Alesio G, Dushpanova A, Brogi L, Camboni D, Bernini F, Terlizzi D, Casieri V, Gabisonia K, Alibrandi L, Grigoratos C, Magomajew J, Aquaro GD, Schmitt S, Detemple P, Oddo CM, Lionetti V, Micera S. Implementation of an epicardial implantable MEMS sensor for continuous and real-time postoperative assessment of left ventricular activity in adult minipigs over a short- and long-term period. APL Bioeng 2024; 8:026102. [PMID: 38633836 PMCID: PMC11023704 DOI: 10.1063/5.0169207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive measurements even if, in the latest years, invasive microelectromechanical systems (MEMS) sensors have emerged as a valuable approach for precise and continuous monitoring of cardiac activity. The main challenges in designing cardiac MEMS sensors are represented by miniaturization, biocompatibility, and long-term stability. Here, we present a MEMS piezoresistive cardiac sensor capable of continuous monitoring of LV activity over time following epicardial implantation with a pericardial patch graft in adult minipigs. In acute and chronic scenarios, the sensor was able to compute heart rate with a root mean square error lower than 2 BPM. Early after up to 1 month of implantation, the device was able to record the heart activity during the most important phases of the cardiac cycle (systole and diastole peaks). The sensor signal waveform, in addition, closely reflected the typical waveforms of pressure signal obtained via intraventricular catheters, offering a safer alternative to heart catheterization. Furthermore, histological analysis of the LV implantation site following sensor retrieval revealed no evidence of myocardial fibrosis. Our results suggest that the epicardial LV implantation of an MEMS sensor is a suitable and reliable approach for direct continuous monitoring of cardiac activity. This work envisions the use of this sensor as a cardiac sensing device in closed-loop applications for patients undergoing heart surgery.
Collapse
Affiliation(s)
- C. Zinno
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F. Agnesi
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - G. D'Alesio
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - L. Brogi
- Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - D. Camboni
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F. Bernini
- BioMedLab, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - D. Terlizzi
- Fondazione Toscana “G. Monasterio,” Pisa, Italy
| | - V. Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - K. Gabisonia
- BioMedLab, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - L. Alibrandi
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - J. Magomajew
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | | | - S. Schmitt
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | - P. Detemple
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | - C. M. Oddo
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - S. Micera
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
Plano D, Kibler S, Rudolph N, Zett O, Dressman J. Silicon-Based Piezo Micropumps Enable Fully Flexible Drug Delivery Patterns. J Pharm Sci 2024; 113:1555-1565. [PMID: 38232804 DOI: 10.1016/j.xphs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Drug release plays a crucial role in drug delivery. While current formulation approaches are capable of coarse-tuning the release profile, their precision and reproducibility are limited by the physicochemical properties of the excipients and active pharmaceutical ingredient (API). Innovative and advanced approaches are urgently needed, especially for site-specific targeting of drugs and to address their pharmacological requirements for optimal therapy. The 5 × 5 × 0.6 mm3 piezoelectric micropump developed by Fraunhofer EMFT was designed to enable precise drug delivery in a low volume format. In this study, we investigated the ability of the micropump to deliver solutions of highly soluble APIs using a wide range of customized pump profiles. Additionally, we examined the ability of the micropump to deliver suspensions containing various defined particle sizes. While results for suspensions indicate that pumping performance is highly dependent on the size and concentration of the suspended particles, results with API solutions demonstrate high precision and reproducibility of release, coupled with maximum flexibility in the release profile of the API. The piezoelectric micropump thus lays the cornerstone in the development of a wide range of innovative drug delivery profiles, enabling customized release profiles to be programmed and thus paving the way to fully personalized medicine.
Collapse
Affiliation(s)
- David Plano
- Fraunhofer Institute for Translational Medicines and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Sebastian Kibler
- Fraunhofer Institute for Electronic Microsystems and Solid-State Technologies EMFT, Hansastrasse 27d, 80686 Munich, Germany
| | - Niklas Rudolph
- Fraunhofer Institute for Translational Medicines and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Oliver Zett
- Fraunhofer Institute for Electronic Microsystems and Solid-State Technologies EMFT, Hansastrasse 27d, 80686 Munich, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicines and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Aronne M, Bertana V, Schimmenti F, Roppolo I, Chiappone A, Cocuzza M, Marasso SL, Scaltrito L, Ferrero S. 3D-Printed MEMS in Italy. MICROMACHINES 2024; 15:678. [PMID: 38930648 PMCID: PMC11205654 DOI: 10.3390/mi15060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
MEMS devices are more and more commonly used as sensors, actuators, and microfluidic devices in different fields like electronics, opto-electronics, and biomedical engineering. Traditional fabrication technologies cannot meet the growing demand for device miniaturisation and fabrication time reduction, especially when customised devices are required. That is why additive manufacturing technologies are increasingly applied to MEMS. In this review, attention is focused on the Italian scenario in regard to 3D-printed MEMS, studying the techniques and materials used for their fabrication. To this aim, research has been conducted as follows: first, the commonly applied 3D-printing technologies for MEMS manufacturing have been illustrated, then some examples of 3D-printed MEMS have been reported. After that, the typical materials for these technologies have been presented, and finally, some examples of their application in MEMS fabrication have been described. In conclusion, the application of 3D-printing techniques, instead of traditional processes, is a growing trend in Italy, where some exciting and promising results have already been obtained, due to these new selected technologies and the new materials involved.
Collapse
Affiliation(s)
- Matilde Aronne
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Valentina Bertana
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Francesco Schimmenti
- Department of Applied Science and Technology, Politecnico di Torino (PoliTo), Corso Duca Degli Abruzzi 24, 10129 Turin, Italy;
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino (PoliTo), Corso Duca Degli Abruzzi 24, 10129 Turin, Italy;
| | - Annalisa Chiappone
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria Blocco D, S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy;
| | - Matteo Cocuzza
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Simone Luigi Marasso
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
- CNR-IMEM, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Luciano Scaltrito
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Sergio Ferrero
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| |
Collapse
|
13
|
Kim J, Moon D, Kim H, van der Zande AM, Lee GH. Ultrathin and Deformable Graphene Etch Mask for Fabrication of 3D Microstructures. ACS NANO 2024; 18:12325-12332. [PMID: 38686926 DOI: 10.1021/acsnano.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Three-dimensional (3D) microfabrication techniques play a crucial role across various research fields. These techniques enable the creation of functional 3D structures on the microscale, unlocking possibilities for diverse applications. However, conventional fabrication methods have limits in producing complex 3D structures, which require numerous fabrication steps that increase the costs. Graphene is an atomically thin material known for its deformability and impermeability to small gases and molecules, including reactive gases like XeF2. These features make graphene a potential candidate as an etch mask for 3D microfabrication. Here, we report the fabrication of various 3D microstructures using graphene etch masks directly grown and patterned on a Si substrate. The patterned graphene deforms and wraps the etched structures, allowing for the fabrication of complicated 3D microstructures, such as mushroom-like and step-like microstructures. As a practical demonstration of the graphene etch mask, we fabricate an omniphobic surface of reentrant 3D structures on a Si substrate. Our work provides a method for fabricating complex 3D microstructures using a graphene etch mask, contributing to advancements in etching and fabrication processes.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Donghoon Moon
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
14
|
Zhou L, Guess M, Kim KR, Yeo WH. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. COMMUNICATIONS MATERIALS 2024; 5:72. [PMID: 38737724 PMCID: PMC11081930 DOI: 10.1038/s43246-024-00511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Health monitoring of infant patients in intensive care can be especially strenuous for both the patient and their caregiver, as testing setups involve a tangle of electrodes, probes, and catheters that keep the patient bedridden. This has typically involved expensive and imposing machines, to track physiological metrics such as heart rate, respiration rate, temperature, blood oxygen saturation, blood pressure, and ion concentrations. However, in the past couple of decades, research advancements have propelled a world of soft, wearable, and non-invasive systems to supersede current practices. This paper summarizes the latest advancements in neonatal wearable systems and the different approaches to each branch of physiological monitoring, with an emphasis on smart skin-interfaced wearables. Weaknesses and shortfalls are also addressed, with some guidelines provided to help drive the further research needed.
Collapse
Affiliation(s)
- Lauren Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
15
|
Ciotola F, Pyxaras S, Rittger H, Buia V. MEMS Technology in Cardiology: Advancements and Applications in Heart Failure Management Focusing on the CardioMEMS Device. SENSORS (BASEL, SWITZERLAND) 2024; 24:2922. [PMID: 38733027 PMCID: PMC11086351 DOI: 10.3390/s24092922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with significant morbidity, mortality, and healthcare costs. It is characterized by various structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressure and/or inadequate cardiac output at rest and/or during exercise. These dysfunctions can originate from a variety of conditions, including coronary artery disease, hypertension, cardiomyopathies, heart valve disorders, arrhythmias, and other lifestyle or systemic factors. Identifying the underlying cause is crucial for detecting reversible or treatable forms of HF. Recent epidemiological studies indicate that there has not been an increase in the incidence of the disease. Instead, patients seem to experience a chronic trajectory marked by frequent hospitalizations and stagnant mortality rates. Managing these patients requires a multidisciplinary approach that focuses on preventing disease progression, controlling symptoms, and preventing acute decompensations. In the outpatient setting, patient self-care plays a vital role in achieving these goals. This involves implementing necessary lifestyle changes and promptly recognizing symptoms/signs such as dyspnea, lower limb edema, or unexpected weight gain over a few days, to alert the healthcare team for evaluation of medication adjustments. Traditional methods of HF monitoring, such as symptom assessment and periodic clinic visits, may not capture subtle changes in hemodynamics. Sensor-based technologies offer a promising solution for remote monitoring of HF patients, enabling early detection of fluid overload and optimization of medical therapy. In this review, we provide an overview of the CardioMEMS device, a novel sensor-based system for pulmonary artery pressure monitoring in HF patients. We discuss the technical aspects, clinical evidence, and future directions of CardioMEMS in HF management.
Collapse
Affiliation(s)
| | | | | | - Veronica Buia
- Medizinische Klinik I, Klinikum Fürth, Academic Teaching Hospital of the Friedrich-Alexander-University Erlangen-Nürnberg, Jakob-Henle Str. 1, 90766 Fürth, Germany; (F.C.); (S.P.); (H.R.)
| |
Collapse
|
16
|
Qiu Y, Ashok A, Nguyen CC, Yamauchi Y, Do TN, Phan HP. Integrated Sensors for Soft Medical Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308805. [PMID: 38185733 DOI: 10.1002/smll.202308805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.
Collapse
Affiliation(s)
- Yulin Qiu
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
- Department of Materials Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
17
|
Alam F, Ashfaq Ahmed M, Jalal AH, Siddiquee I, Adury RZ, Hossain GMM, Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. MICROMACHINES 2024; 15:475. [PMID: 38675286 PMCID: PMC11051912 DOI: 10.3390/mi15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Ishrak Siddiquee
- Institute of Microsystems Technology, University of South-Eastern Norway, Horten, 3184 Vestfold, Norway;
| | - Rabeya Zinnat Adury
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA;
| | - G M Mehedi Hossain
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| |
Collapse
|
18
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
19
|
Alneamy AM. Nonlinear Dynamic Analysis of an Electrostatically Actuated Clamped-Clamped Beam and Excited at the Primary and Secondary Resonances. MICROMACHINES 2023; 14:1972. [PMID: 37893409 PMCID: PMC10609359 DOI: 10.3390/mi14101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
This work investigates the primary and secondary resonances of an electrostatically excited double-clamped microbeam and its feasibility to be used for sensing applications. The sensor design can be excited directly in the vicinity of the primary and secondary resonances. This excitation mechanism would portray certain nonlinear phenomena and it would certainly lead in increasing the sensitivity of the device. To achieve this, a nonlinear beam model describing transverse deflection based on the Euler-Bernoulli beam theory was utilized. Then, a reduced-order model (ROM) considering all geometric and electrical nonlinearities was derived. Three different techniques involving time domain, fast Fourier transforms (FFTs), and frequency domain (FRCs) were used to examine the appearance of subharmonic resonance of order of one-half under various excitation waveforms. The results show that higher forcing levels and lower damping are required to activate this resonance. We note that as the forcing increases, the size of the instability region grows fast and the size of the unstable region increases rapidly. This, in fact, is an ideal place for designing bifurcation inertia MEMS sensors.
Collapse
Affiliation(s)
- Ayman M Alneamy
- Department of Mechanical Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
20
|
Li SS, Lu YJ, Chang R, Tsai MH, Hung JN, Chen WH, Fan YJ, Wei PK, Sheen HJ. Investigation of DNA Hybridization on Nano-Structured Plasmonic Surfaces for Identifying Nasopharyngeal Viruses. Bioengineering (Basel) 2023; 10:1189. [PMID: 37892920 PMCID: PMC10604513 DOI: 10.3390/bioengineering10101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, studies have revealed that human herpesvirus 4 (HHV-4), also known as the Epstein-Barr virus, might be associated with the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared to SARS-CoV-2 infection alone, patients coinfected with SARS-CoV-2 and HHV-4 had higher risks of fever, inflammation, and even death, thus, confirming that HHV-4/SARS-CoV-2 coinfection in patients could benefit from clinical investigation. Although several intelligent devices can simultaneously discern multiple genes related to SARS-CoV-2, most operate via label-based detection, which restricts them from directly measuring the product. In this study, we developed a device that can replicate and detect SARS-CoV-2 and HHV-4 DNA. This device can conduct a duplex polymerase chain reaction (PCR) in a microfluidic channel and detect replicates in a non-labeled manner through a plasmonic-based sensor. Compared to traditional instruments, this device can reduce the required PCR time by 55% while yielding a similar amount of amplicon. Moreover, our device's limit of detection (LOD) reached 100 fg/mL, while prior non-labeled sensors for SARS-CoV-2 detection were in the range of ng/mL to pg/mL. Furthermore, the device can detect desired genes by extracting cells artificially infected with HHV-4/SARS-CoV-2. We expect that this device will be able to help verify HHV-4/SARS-CoV-2 coinfected patients and assist in the evaluation of practical treatment approaches.
Collapse
Affiliation(s)
- Shao-Sian Li
- Department of Materials and Mineral Resources, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Yi-Jung Lu
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Ray Chang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; (R.C.); (W.-H.C.)
| | - Ming-Han Tsai
- Institute of Microbiology & Immunology, National Yang Ming Chiao Tung University, No. 155, Section 2, Linong St., Beitou District, Taipei 11221, Taiwan; (M.-H.T.); (J.-N.H.)
| | - Jo-Ning Hung
- Institute of Microbiology & Immunology, National Yang Ming Chiao Tung University, No. 155, Section 2, Linong St., Beitou District, Taipei 11221, Taiwan; (M.-H.T.); (J.-N.H.)
| | - Wei-Hung Chen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; (R.C.); (W.-H.C.)
| | - Yu-Jui Fan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; (R.C.); (W.-H.C.)
| |
Collapse
|
21
|
Dang Z, Jiang Y, Su X, Wang Z, Wang Y, Sun Z, Zhao Z, Zhang C, Hong Y, Liu Z. Particle Counting Methods Based on Microfluidic Devices. MICROMACHINES 2023; 14:1722. [PMID: 37763885 PMCID: PMC10534595 DOI: 10.3390/mi14091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Particle counting serves as a pivotal constituent in diverse analytical domains, encompassing a broad spectrum of entities, ranging from blood cells and bacteria to viruses, droplets, bubbles, wear debris, and magnetic beads. Recent epochs have witnessed remarkable progressions in microfluidic chip technology, culminating in the proliferation and maturation of microfluidic chip-based particle counting methodologies. This paper undertakes a taxonomical elucidation of microfluidic chip-based particle counters based on the physical parameters they detect. These particle counters are classified into three categories: optical-based counters, electrical-based particle counters, and other counters. Within each category, subcategories are established to consider structural differences. Each type of counter is described not only in terms of its working principle but also the methods employed to enhance sensitivity and throughput. Additionally, an analysis of future trends related to each counter type is provided.
Collapse
Affiliation(s)
- Zenglin Dang
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Yuning Jiang
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Xin Su
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Zhihao Wang
- College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China;
| | - Yucheng Wang
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Zhe Sun
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Zheng Zhao
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Chi Zhang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China;
| | - Yuming Hong
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| | - Zhijian Liu
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Z.D.); (Y.J.); (X.S.); (Y.W.); (Z.S.); (Z.Z.); (Y.H.)
| |
Collapse
|
22
|
Stella GM, Lettieri S, Piloni D, Ferrarotti I, Perrotta F, Corsico AG, Bortolotto C. Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1042. [PMID: 37513953 PMCID: PMC10385174 DOI: 10.3390/ph16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND RATIONALE The therapeutic interventions against lung cancer are currently based on a fully personalized approach to the disease with considerable improvement of patients' outcome. Alongside continuous scientific progresses and research investments, massive technologic efforts, innovative challenges, and consolidated achievements together with research investments are at the bases of the engineering and manufacturing revolution that allows a significant gain in clinical setting. AIM AND METHODS The scope of this review is thus to focus, rather than on the biologic traits, on the analysis of the precision sensors and novel generation materials, as semiconductors, which are below the clinical development of personalized diagnosis and treatment. In this perspective, a careful revision and analysis of the state of the art of the literature and experimental knowledge is presented. RESULTS Novel materials are being used in the development of personalized diagnosis and treatment for lung cancer. Among them, semiconductors are used to analyze volatile cancer compounds and allow early disease diagnosis. Moreover, they can be used to generate MEMS which have found an application in advanced imaging techniques as well as in drug delivery devices. CONCLUSIONS Overall, these issues represent critical issues only partially known and generally underestimated by the clinical community. These novel micro-technology-based biosensing devices, based on the use of molecules at atomic concentrations, are crucial for clinical innovation since they have allowed the recent significant advances in cancer biology deciphering as well as in disease detection and therapy. There is an urgent need to create a stronger dialogue between technologists, basic researchers, and clinicians to address all scientific and manufacturing efforts towards a real improvement in patients' outcome. Here, great attention is focused on their application against lung cancer, from their exploitations in translational research to their application in diagnosis and treatment development, to ensure early diagnosis and better clinical outcomes.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Piloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80131 Napoli, Italy
- U.O.C. Clinica Pneumologica "L. Vanvitelli", A.O. dei Colli, Ospedale Monaldi, 80131 Napoli, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy
- Department of Diagnostic Services and Imaging, Unit of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
23
|
Niekiel MF, Meyer JM, Lewitz H, Kittmann A, Nowak MA, Lofink F, Meyners D, Zollondz JH. What MEMS Research and Development Can Learn from a Production Environment. SENSORS (BASEL, SWITZERLAND) 2023; 23:5549. [PMID: 37420715 DOI: 10.3390/s23125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
The intricate interdependency of device design and fabrication process complicates the development of microelectromechanical systems (MEMS). Commercial pressure has motivated industry to implement various tools and methods to overcome challenges and facilitate volume production. By now, these are only hesitantly being picked up and implemented in academic research. In this perspective, the applicability of these methods to research-focused MEMS development is investigated. It is found that even in the dynamics of a research endeavor, it is beneficial to adapt and apply tools and methods deduced from volume production. The key step is to change the perspective from fabricating devices to developing, maintaining and advancing the fabrication process. Tools and methods are introduced and discussed, using the development of magnetoelectric MEMS sensors within a collaborative research project as an illustrative example. This perspective provides both guidance to newcomers as well as inspiration to the well-versed experts.
Collapse
Affiliation(s)
- Malte Florian Niekiel
- Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstr. 1, 25524 Itzehoe, Germany
| | - Jana Marie Meyer
- Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstr. 1, 25524 Itzehoe, Germany
| | - Hanna Lewitz
- Institute for Material Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Anne Kittmann
- Institute for Material Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Marc Alexander Nowak
- Institute for Material Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Lofink
- Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstr. 1, 25524 Itzehoe, Germany
| | - Dirk Meyners
- Institute for Material Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Jens-Hendrik Zollondz
- Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstr. 1, 25524 Itzehoe, Germany
| |
Collapse
|
24
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
25
|
Kim J, Kim Y, Hong SM. Structural Analysis of Mo Thin Films on Sapphire Substrates for Epitaxial Growth of AlN. MICROMACHINES 2023; 14:mi14050966. [PMID: 37241589 DOI: 10.3390/mi14050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Aluminum nitride (AlN) thin film/molybdenum (Mo) electrode structures are typically required in microelectromechanical system applications. However, the growth of highly crystalline and c-axis-oriented AlN thin films on Mo electrodes remains challenging. In this study, we demonstrate the epitaxial growth of AlN thin films on Mo electrode/sapphire (0001) substrates and examine the structural characteristics of Mo thin films to determine the reason contributing to the epitaxial growth of AlN thin films on Mo thin films formed on sapphire. Two differently oriented crystals are obtained from Mo thin films grown on sapphire substrates: (110)- and (111)-oriented crystals. The dominant (111)-oriented crystals are single-domain, and the recessive (110)-oriented crystals comprise three in-plane domains rotated by 120° with respect to each other. The highly ordered Mo thin films formed on sapphire substrates serve as templates for the epitaxial growth by transferring the crystallographic information of the sapphire substrates to the AlN thin films. Consequently, the out-of-plane and in-plane orientation relationships among the AlN thin films, Mo thin films, and sapphire substrates are successfully defined.
Collapse
Affiliation(s)
- Jihong Kim
- Department of Electrical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Youngil Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
- Smart Sensor Research Center, Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea
| | - Sung-Min Hong
- Smart Sensor Research Center, Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea
| |
Collapse
|
26
|
Drosinou O, Nikolopoulos CV, Matzavinos A, Kavallaris NI. A stochastic parabolic model of MEMS driven by fractional Brownian motion. J Math Biol 2023; 86:73. [PMID: 37039885 DOI: 10.1007/s00285-023-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023]
Abstract
In this paper, we study a stochastic parabolic problem that emerges in the modeling and control of an electrically actuated MEMS (micro-electro-mechanical system) device. The dynamics under consideration are driven by an one dimensional fractional Brownian motion with Hurst index [Formula: see text]. We derive conditions under which the resulting SPDE has a global in time solution, and we provide analytic estimates for certain statistics of interest, such as quenching times and the corresponding quenching probabilities. Our results demonstrate the non-trivial impact of the fractional noise on the dynamics of the system. Given the significance of MEMS devices in biomedical applications, such as drug delivery and diagnostics, our results provide valuable insights into the reliability of these devices in the presence of positively correlated noise.
Collapse
Affiliation(s)
- Ourania Drosinou
- Department of Mathematics, University of Aegean, Karlovassi, Samos, Greece
| | | | - Anastasios Matzavinos
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Nikos I Kavallaris
- Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden.
| |
Collapse
|
27
|
Shi X, Xiong Y, Wu H. Influence of Barrier Layers on ZrCoCe Getter Film Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2916. [PMID: 37049209 PMCID: PMC10096286 DOI: 10.3390/ma16072916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Improving the vacuum degree inside the vacuum device is vital to the performance and lifespan of the vacuum device. The influence of the Ti and ZrCoCe barrier layers on the performance of ZrCoCe getter films, including sorption performance, anti-vibration performance, and binding force between the ZrCoCe getter film and the Ge substrate were investigated. In this study, the Ti and ZrCoCe barrier layers were deposited between the ZrCoCe getter films and Ge substrates. The microtopographies of barrier layers and the ZrCoCe getter film were analyzed using scanning electron microscopes. The sorption performance was evaluated using the constant-pressure method. The surface roughness of the barrier layers and the getter films was analyzed via atomic force microscopy. The binding force was measured using a nanoscratch tester. The anti-vibration performance was examined using a vibration test bench. The characterization results revealed that the Ti barrier layer significantly improved the sorption performance of the ZrCoCe getter film. When the barrier material was changed from ZrCoCe to Ti, the initial sorption speed of the ZrCoCe getter film increased from 141 to 176 cm3·s-1·cm-2, and the sorption quantity increased from 223 to 289 Pa·cm3·cm-2 in 2 h. The binding force between the Ge substrate and the ZrCoCe getter film with the Ti barrier layer was 171 mN, whereas that with the ZrCoCe barrier layer was 154 mN. The results showed that the Ti barrier layer significantly enhanced the sorption performance and binding force between the ZrCoCe getter film and the Ge substrate, which improved the internal vacuum level and the stability of the microelectromechanical system vacuum devices.
Collapse
Affiliation(s)
- Xin Shi
- State Key Laboratory for Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Yuhua Xiong
- State Key Laboratory for Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Huating Wu
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
| |
Collapse
|
28
|
Versaci M, Morabito FC. Numerical Approaches for Recovering the Deformable Membrane Profile of Electrostatic Microdevices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1688. [PMID: 36772726 PMCID: PMC9920444 DOI: 10.3390/s23031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.
Collapse
Affiliation(s)
- Mario Versaci
- DICEAM Department, "Mediterranea" University, 89124 Reggio Calabria, Italy
| | | |
Collapse
|
29
|
Analytical Modeling of a New Compliant Microsystem for Atherectomy Operations. MICROMACHINES 2022; 13:mi13071094. [PMID: 35888911 PMCID: PMC9323221 DOI: 10.3390/mi13071094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023]
Abstract
This work offers a new alternative tool for atherectomy operations, with the purpose of minimizing the risks for the patients and maximizing the number of clinical cases for which the system can be used, thanks to the possibility of scaling its size down to lumen reduced to a few tenths of mm. The development of this microsystem has presented a certain theoretical work during the kinematic synthesis and the design stages. In the first stage a new multi-loop mechanism with a Stephenson’s kinematic chain (KC) was found and then adopted as the so-called pseudo-rigid body mechanism (PRBM). Analytical modeling was necessary to verify the synthesis requirements. In the second stage, the joint replacement method was applied to the PRBM to obtain a corresponding and equivalent compliant mechanism with lumped compliance. The latter presents two loops and six elastic joints and so the evaluation of the microsystem mechanical advantage (MA) had to be calculated by taking into account the accumulation of elastic energy in the elastic joints. Hence, a new closed form expression of the microsystem MA was found with a method that presents some new aspects in the approach. The results obtained with Finite Element Analysis (FEA) were compared to those obtained with the analytical model. Finally, it is worth noting that a microsystem prototype can be fabricated by using MEMS Technology classical methods, while the microsystem packaging could be a further development for the present investigation.
Collapse
|
30
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
31
|
Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022; 14:1097. [PMID: 35631683 PMCID: PMC9144002 DOI: 10.3390/pharmaceutics14051097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh;
| | - Dipali Dhoke
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India;
| | - Shubham Musale
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Ashiya A. Mulani
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Pranav Modak
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Roshani Paradhi
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Jyotsna Vitore
- National Institute of Pharmaceutical Education and Research, Ahmedabad 160062, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
32
|
Kilikevičius S, Liutkauskienė K, Uldinskas E, El Banna R, Fedaravičius A. Omnidirectional Manipulation of Microparticles on a Platform Subjected to Circular Motion Applying Dynamic Dry Friction Control. MICROMACHINES 2022; 13:mi13050711. [PMID: 35630178 PMCID: PMC9146381 DOI: 10.3390/mi13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Currently used planar manipulation methods that utilize oscillating surfaces are usually based on asymmetries of time, kinematic, wave, or power types. This paper proposes a method for omnidirectional manipulation of microparticles on a platform subjected to circular motion, where the motion of the particle is achieved and controlled through the asymmetry created by dynamic friction control. The range of angles at which microparticles can be directed, and the average velocity were considered figures of merit. To determine the intrinsic parameters of the system that define the direction and velocity of the particles, a nondimensional mathematical model of the proposed method was developed, and modeling of the manipulation process was carried out. The modeling has shown that it is possible to direct the particle omnidirectionally at any angle over the full 2π range by changing the phase shift between the function governing the circular motion and the dry friction control function. The shape of the trajectory and the average velocity of the particle depend mainly on the width of the dry friction control function. An experimental investigation of omnidirectional manipulation was carried out by implementing the method of dynamic dry friction control. The experiments verified that the asymmetry created by dynamic dry friction control is technically feasible and can be applied for the omnidirectional manipulation of microparticles. The experimental results were consistent with the modeling results and qualitatively confirmed the influence of the control parameters on the motion characteristics predicted by the modeling. The study enriches the classical theories of particle motion on oscillating rigid plates, and it is relevant for the industries that implement various tasks related to assembling, handling, feeding, transporting, or manipulating microparticles.
Collapse
|
33
|
Han C, Huang J, Zhangji A, Tong X, Yu K, Chen K, Liu X, Yang Y, Chen Y, Ali Memon W, Amin K, Gao W, Deng Z, Zhou K, Wang Y, Qi X. Accelerated Skin Wound Healing Using Flexible Photovoltaic-Bioelectrode Electrical Stimulation. MICROMACHINES 2022; 13:mi13040561. [PMID: 35457866 PMCID: PMC9032666 DOI: 10.3390/mi13040561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Owing to the complex and long-term treatment of foot wounds due to diabetes and the limited mobility of patients, advanced clinical surgery often uses wearable flexible devices for auxiliary treatment. Therefore, there is an urgent need for self-powered biomedical devices to reduce the extra weight. We have prepared an electrically stimulated MEMS (Micro Electromechanical System) electrode integrated with wearable OPV (Organic photovoltaic). The wearable OPV is constructed of a bio-affinity PET-ITO substrate and a hundred-nanometer organic layer. Under sunlight and near-infrared light irradiation, a voltage and current are supplied to the MEMS electrode to generate an exogenous lateral electric field directed to the center of the wound. The results of in vitro cell experiments and diabetic skin-relieving biological experiments showed the proliferation of skin fibroblasts and the expression of transforming growth factors increased, and the skin wounds of diabetic mouse healed faster. Our research provides new insights for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Chao Han
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China;
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China;
| | - Aodi Zhangji
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China;
| | - Xufeng Tong
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Kaige Yu
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Kai Chen
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Xinlan Liu
- Medical College, Ningbo University, Ningbo 315000, China;
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Yang Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China;
| | - Yuxin Chen
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Correspondence: (Y.C.); (Y.W.); (X.Q.)
| | - Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (W.A.M.); (K.A.)
| | - Kamran Amin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (W.A.M.); (K.A.)
| | - Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
- Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Yuheng Wang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (Y.C.); (Y.W.); (X.Q.)
| | - Xiangdong Qi
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China;
- Correspondence: (Y.C.); (Y.W.); (X.Q.)
| |
Collapse
|