1
|
Baz A, Wekalao J, Mandela N, Patel SK. Design and Performance Evaluation of Machine Learning-Based Terahertz Metasurface Chemical Sensor. IEEE Trans Nanobioscience 2025; 24:128-135. [PMID: 39226208 DOI: 10.1109/tnb.2024.3453372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This paper presents a terahertz metasurface based sensor design incorporating graphene and other plasmonic materials for highly sensitive detection of different chemicals. The proposed sensor employs the combination of multiple resonator designs - including circular and square ring resonators - to attain enhanced sensitivity among other performance parameters. Machine learning techniques like Random Forest regression, are employed to enhance the sensor design and predict its performance. The optimized sensor demonstrates excellent sensitivity of 417 GHzRIU and a low detection limit of 0.264 RIU for ethanol and benzene detection. Furthermore, the integration of machine learning cuts down the simulation time and computational requirements by approximately 90% without compromising accuracy. The sensor's unique design and performance characteristics, including its high-quality factor of 14.476, position it as a promising candidate for environmental monitoring and chemical sensing applications. Moreover, it also demonstrates potential for 2-bit encoding applications through strategic modulation of graphene chemical potential values. On the other hand, it also shows prospects of 2-bit encoding applications via the modulation of graphene chemical. This work provides a major advancement to the terahertz sensing application by proposing new materials, structures, and methods in computation in order to develop a high-performance chemical sensor.
Collapse
|
2
|
Ramasamy C, Tan JC, Low HY. Nanoimprinting of Crosslinked Polyurethane / Polycaprolactone Blends: Scratch Recovery of Surface Topographies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406479. [PMID: 39449213 DOI: 10.1002/smll.202406479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Scratch recovery of micro-nano-patterned polymer surfaces extends the service life of products that require tunable surface properties and contributes to more sustainable development. Scratch recovery has been widely studied in bulk and 4D-printed polymers via intrinsic self-healing mechanisms. Existing studies on self-healing of micro/nano-scale polymeric surfaces are limited to the recovery of controlled tensile or compressive strain. Scratch recovery requires material transport to close the gap created by a scratch. Here, for the first time, scratch recovery of thermally nanoimprinted polymer surfaces in a heterogeneous polymer is reported. A blend of Polyurethane (TPU) and poly(caprolactone) (PCL) with selectively crosslinked TPU imparts shape-memory properties, and the uncrosslinked PCL retains chain mobility for molecular diffusion during scratch recovery. Scratch recovery of nanoimprinted micro-pillars has been achieved spontaneously and completely by heat and without any pressure input. The healing temperature is determined to be the melting point of PCL at 60 °C. Rapid recovery is also achieved at 60 s with complete closure of scratch width of 5 µm and topography recovery of the nanoimprinted micro-pillars.
Collapse
Affiliation(s)
- Chitrakala Ramasamy
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jeck Chuang Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| |
Collapse
|
3
|
Gong J, Xiong L, Pu M, Li X, Ma X, Luo X. Visible Meta-Displays for Anti-Counterfeiting with Printable Dielectric Metasurfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308687. [PMID: 38342615 PMCID: PMC11077653 DOI: 10.1002/advs.202308687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Metasurfaces, 2D arrays of nanostructures, have gained significant attention in recent years due to their ability to manipulate light at the subwavelength scale. Their diverse applications range from advanced optical devices to sensing and imaging technologies. However, the mass production of dielectric metasurfaces with tailored properties for visible light has remained a challenge. Therefore, the demand for efficient and cost-effective fabrication methods for metasurfaces has driven the continuing development of various techniques. In this research article, a high-throughput production method is presented for multifunctional dielectric metasurfaces in the visible light range using one-step high-index TiO2-polymer composite (TPC) printing, which is a variant of nanoprinting lithography (NIL) for the direct replication of patterned multifunctional dielectric metasurfaces using a TPC material as the printing ink. The batch fabrication of dielectric metasurfaces is demonstrated with controlled geometry and excellent optical response, enabling high-performance light-matter interactions for potential applications of visible meta-displays.
Collapse
Affiliation(s)
- Jintao Gong
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
| | - Lingxing Xiong
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- Key Laboratory for Information Science of Electromagnetic Waves (MoE)Fudan UniversityShanghai200433China
| | - Mingbo Pu
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiong Li
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoliang Ma
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiangang Luo
- National Key Laboratory of Optical Field Manipulation Science and TechnologyChinese Academy of SciencesChengdu610209China
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Ma L, Zhang L, He J, Ding H, Wei Y. Mask correction method for surface plasmon lithography. APPLIED OPTICS 2024; 63:499-505. [PMID: 38227247 DOI: 10.1364/ao.509520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Surface plasmon lithography (SPL) has emerged as an innovative approach to nano-fabrication, offering an alternative to traditional patterning methods. To enhance its pattern fidelity in manufacturing, it is essential to incorporate mask correction to reduce critical dimension (CD) errors between the intended target features and the photoresist image. Traditionally, the aerial image of SPL has been modeled and simulated using methods such as finite difference time domain (FDTD) or rigorous coupled wave analysis (RCWA). These models have allowed us to obtain aerial images of the mask patterns. However, relying solely on the aerial image proves insufficient for meeting the rigorous manufacturing standards for mask correction. In our research, we propose a comprehensive model that combines the optical model, employing the FDTD method, and the resist model, tailored to the specific surface plasmon lithography process. Test patterns were meticulously designed with a target CD of 130 nm, and the model was applied to simulate these test patterns, producing the after-development image (ADI) under predefined process conditions. Following a thorough analysis and data processing of the test patterns and ADI data, we established rule tables for the correction of both 1D line patterns and line end patterns. The simulation results unequivocally demonstrate the improved CD error performance achieved by the post-corrected patterns.
Collapse
|
5
|
Ding H, Fan T, Zhang L, Wei Y, Ye T. Three-dimensional plasmonic lithography imaging modeling based on the RCWA algorithm for computational lithography. OPTICS EXPRESS 2023; 31:36061-36077. [PMID: 38017764 DOI: 10.1364/oe.500590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 11/30/2023]
Abstract
This paper reminds the principle and characteristics of plasmonic lithography, and points out the importance of establishing a fast and high precision plasmonic lithography imaging model and developing computational lithography. According to the characteristics of plasmonic lithography, the rigorous coupled-wave analysis (RCWA) algorithm is a very suitable alternative algorithm. In this paper, a three-dimensional plasmonic lithography model based on RCWA algorithm is established for computational lithography requirements. This model improves the existing RCWA algorithm, that is, deduces the formula for calculating the light field inside the structure and proposes the integration, storage and invocation of the scattering matrix to improve the computation speed. Finally, the results are compared with commercial software for the two typical patterns. The results show that the two calculation results are very close, with the root mean square error (RMSE) less than 0.04 (V/m)2. In addition, the calculation speed can be increased by more than 2 times in the first calculation, and by about 8 times by integrating, storing and invoking the scattering matrix, which creates conditions for the development of plasmonic computational lithography.
Collapse
|
6
|
Song Z, Zhang L, Yang S, Su Y, Wei Y, Ye T. Balance between the diffraction efficiency and process robustness for plasmonic lithographic alignment technology considering the Fabry-Perot resonator effect. APPLIED OPTICS 2023; 62:3839-3847. [PMID: 37706692 DOI: 10.1364/ao.487682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 09/15/2023]
Abstract
Different from traditional lithography, metal material with high absorptivity and high reflectivity is introduced into plasmonic lithography technology. In particular, a silver/photo resist/silver film stack can form a Fabry-Perot (F-P) resonator structure, which can greatly change the behavior of the light reflection and transmission. Since the silver layer has a strong absorption ability to the alignment probe light with a wavelength of 532 or 633 nm, the quality of the alignment signal is seriously affected. In this paper, a thin film Fourier transfer model is established to quantitatively calculate the amplitude and phase information of the diffraction light with different orders. The results show that the diffraction optical power can be enhanced by the thickness optimization of all film stacks, and the maximum wafer quality (normalized diffraction efficiency) can be increased to 25.7%. The mechanism analysis of alignment signal enhancement is based on the F-P resonator phase oscillation amplification effect. However, it can also bring the reverse of both the power and phase for the alignment probe signal when the thickness fluctuation of the F-P resonator exists, which will be a great challenge for through-the-mask moiré fringe alignment technology. To obtain the optical power distribution of the structure surface and image of moiré fringes, a transfer matrix method is given to point-by-point calculate the incidence and reflection of the probe light in the vertical direction. The finite-difference time-domain method is also used to demonstrate alignment performance. It is proved that the subtle fluctuation of the photoresist thickness can make a huge difference to moiré fringes. A balance between the diffraction efficiency and process robustness can be achieved for plasmonic lithographic alignment technology by controlling the thickness range of the F-P resonator structure. In addition, the metal-insulator-metal structure has excellent thickness sensitivity and is applicable to optical signal detection and material property monitoring.
Collapse
|
7
|
Chen C, Li X, Yang G, Chen X, Liu S, Guo Y, Li H. Computational hyperspectral devices based on quasi-random metasurface supercells. NANOSCALE 2023; 15:8854-8862. [PMID: 37114970 DOI: 10.1039/d3nr00884c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Computational hyperspectral devices that use artificial filters have shown promise as compact spectral devices. However, the current designs are restricted by limited types and geometric parameters of unit cells, resulting in a high cross-correlation between the transmission spectra. This limitation prevents the fulfillment of the requirement for compressed-sensing-based spectral reconstruction. To address this challenge, we proposed and simulated a novel design for computational hyperspectral devices based on quasi-random metasurface supercells. The size of the quasi-random metasurface supercell was extended above the wavelength, which enables the exploration of a larger variety of symmetrical supercell structures. Consequently, more quasi-random supercells with lower polarization sensitivity and their spectra with low cross-correlation were obtained. Devices for narrowband spectral reconstruction and broadband hyperspectral single-shot imaging were designed and fabricated. Combined with the genetic algorithm with compressed sensing, the narrowband spectral reconstruction device reconstructs the complex narrowband hyperspectral signal with 6 nm spectral resolution and ultralow errors. The broadband hyperspectral device reconstructs a broadband hyperspectral image (λ/λ ∼ 0.001) with a high average signal fidelity of 92%. This device has the potential to be integrated into a complementary metal-oxide-semiconductor (CMOS) chip for single-shot imaging.
Collapse
Affiliation(s)
- Cong Chen
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Suzhou 215163, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Xiaoyin Li
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
| | - Gang Yang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
- University of Chinese Academy of Sciences, School of Optoelectronics, Beijing 100049, China
| | - Xiaohu Chen
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Shoupeng Liu
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Suzhou 215163, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yinghui Guo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
- University of Chinese Academy of Sciences, School of Optoelectronics, Beijing 100049, China
| | - Hui Li
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Suzhou 215163, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| |
Collapse
|
8
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Gong J, Xiong L, Pu M, Guo Y, Wen Y, He Q, Li X, Ma X, Luo X. Simple route for high-throughput fabrication of metasurfaces using one-step UV-curable resin printing. OPTICS EXPRESS 2023; 31:8068-8080. [PMID: 36859924 DOI: 10.1364/oe.481384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Phase-gradient metasurfaces are two-dimensional (2D) optical elements that can manipulate light by imposing local, space-variant phase changes on an incident electromagnetic wave. These metasurfaces hold the potential and the promise to revolutionize photonics by providing ultrathin alternatives for a wide range of common optical elements such as bulky refractive optics, waveplates, polarizers, and axicons. However, the fabrication of state-of-the-art metasurfaces typically requires some time-consuming, expensive, and possibly hazardous processing steps. To overcome these limitations on conventional metasurface fabrication, a facile methodology to produce phase-gradient metasurfaces through one-step UV-curable resin printing is developed by our research group. The method dramatically reduces the required processing time and cost, as well as eliminates safety hazards. As a proof-of-concept, the advantages of the method are clearly demonstrated via a rapid reproduction of high-performance metalenses based on the Pancharatnam-Berry phase gradient concept in the visible spectrum.
Collapse
|
10
|
Chao CTC, Kooh MRR, Lim CM, Thotagamuge R, Mahadi AH, Chau YFC. Visible-Range Multiple-Channel Metal-Shell Rod-Shaped Narrowband Plasmonic Metamaterial Absorber for Refractive Index and Temperature Sensing. MICROMACHINES 2023; 14:340. [PMID: 36838040 PMCID: PMC9965369 DOI: 10.3390/mi14020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Multiple resonance modes in an optical absorber are necessary for nanophotonic devices and encounter a challenge in the visible range. This article designs a multiple-channel plasmonic metamaterial absorber (PMA) that comprises a hexagonal arrangement of metal-shell nanorods in a unit cell over a continuous thin metal layer, operating in the visible range of the sensitive refractive index (RI) and temperature applications. Finite element method simulations are utilized to investigate the physical natures, such as the absorptance spectrum, magnetic flux and surface charge densities, electric field intensity, and electromagnetic power loss density. The advantage of the proposed PMA is that it can tune either three or five absorptance channels with a narrowband in the visible range. The recorded sensitivity and figure of merit (S, FOM) for modes 1-5 can be obtained (600.00 nm/RIU, 120.00), (600.00 nm/RIU, 120.00 RIU-1), (600.00 nm/RIU, 120.00 RIU-1), (400.00 nm/RIU, 50.00 RIU-1), and (350.00 nm/RIU, 25.00 RIU-1), respectively. Additionally, the temperature sensitivity can simultaneously reach 0.22 nm/°C for modes 1-3. The designed PMA can be suitable for RI and temperature sensing in the visible range.
Collapse
Affiliation(s)
- Chung-Ting Chou Chao
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Muhammad Raziq Rahimi Kooh
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei
| | - Chee Ming Lim
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei
| | - Roshan Thotagamuge
- Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka
| | - Abdul Hanif Mahadi
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei
| | - Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
11
|
Ding H, Liu L, Li Z, Dong L, Wei Y, Ye T. Plasmonic lithography fast imaging model based on the decomposition machine learning method. OPTICS EXPRESS 2023; 31:192-210. [PMID: 36606960 DOI: 10.1364/oe.476825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic lithography can make the evanescent wave at the mask be resonantly amplified by exciting surface plasmon polaritons (SPPs) and participate in imaging, which breaks through the diffraction limit in conventional lithography. It provides a reliable technical way for the study of low-cost, large-area and efficient nanolithography technology. This paper introduces the characteristics of plasmonic lithography, the similarities and the differences with traditional DUV projection lithography. By comparing and analyzing the already existed fast imaging model of mask diffraction near-field (DNF) of DUV/EUV lithography, this paper introduces the decomposition machine learning method of mask diffraction near-field into the fast imaging of plasmonic lithography. A fast imaging model of plasmonic lithography for arbitrary two-dimensional pattern is proposed for the first time. This model enables fast imaging of the input binary 0&1 matrix of the mask directly to the light intensity distribution of photoresist image (PRI). The illumination method employs the normal incidence with x polarization, the normal incidence with y polarization and the quadrupole illumination with TM polarization respectively. The error and the operating efficiency between this fast imaging model and the rigorous electromagnetic model is compared. The test results show that compared with the rigorous electromagnetic computation model, the fast imaging model can greatly improve the calculation efficiency and maintain high accuracy at the same time, which provides great conditions for the development of computational lithography such as SMO/OPC for plasmonic lithography technology.
Collapse
|
12
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U. Novel Approaches in Fabrication and Integration of Nanowire for Micro/Nano Systems. Crit Rev Anal Chem 2022; 52:1913-1929. [DOI: 10.1080/10408347.2021.1925523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | | | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| |
Collapse
|
13
|
Ahmed R, Guimarães CF, Wang J, Soto F, Karim AH, Zhang Z, Reis RL, Akin D, Paulmurugan R, Demirci U. Large-Scale Functionalized Metasurface-Based SARS-CoV-2 Detection and Quantification. ACS NANO 2022; 16:15946-15958. [PMID: 36125414 PMCID: PMC9514326 DOI: 10.1021/acsnano.2c02500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/12/2022] [Indexed: 05/09/2023]
Abstract
Plasmonic metasurfaces consist of metal-dielectric interfaces that are excitable at background and leakage resonant modes. The sharp and plasmonic excitation profile of metal-free electrons on metasurfaces at the nanoscale can be used for practical applications in diverse fields, including optoelectronics, energy harvesting, and biosensing. Currently, Fano resonant metasurface fabrication processes for biosensor applications are costly, need clean room access, and involve limited small-scale surface areas that are not easy for accurate sample placement. Here, we leverage the large-scale active area with uniform surface patterns present on optical disc-based metasurfaces as a cost-effective method to excite asymmetric plasmonic modes, enabling tunable optical Fano resonance interfacing with a microfluidic channel for multiple target detection in the visible wavelength range. We engineered plasmonic metasurfaces for biosensing through efficient layer-by-layer surface functionalization toward real-time measurement of target binding at the molecular scale. Further, we demonstrated the quantitative detection of antibodies, proteins, and the whole viral particles of SARS-CoV-2 with a high sensitivity and specificity, even distinguishing it from similar RNA viruses such as influenza and MERS. This cost-effective plasmonic metasurface platform offers a small-scale light-manipulation system, presenting considerable potential for fast, real-time detection of SARS-CoV-2 and pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Rajib Ahmed
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Carlos F Guimarães
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Asma H Karim
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Zhaowei Zhang
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, People's Republic of China
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4805-017, Portugal
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Ramasamy Paulmurugan
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
14
|
Wang J, Li Z, Liu W. Rigorous Analysis and Systematical Design of Double-Layer Metal Superlens for Improved Subwavelength Imaging Mediated by Surface Plasmon Polaritons. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3553. [PMID: 36296743 PMCID: PMC9612018 DOI: 10.3390/nano12203553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
A double-layer metal superlens was rigorously analyzed and systematically designed to improve subwavelength imaging ability. It was revealed that transmission properties of the imaging system could be accurately interpreted by the five-layer waveguide mode theory-each amplification peak among the spatial frequency range of evanescent waves was associated with a corresponding surface plasmon polariton (SPP) mode of an insulator-metal-insulator-metal-insulator (IMIMI) structure. On the basis of such physical insight, evanescent waves of higher spatial frequency were effectively amplified via increasing propagation constants of symmetrically coupled short-range SPP (s-SRSPP) and antisymmetrically coupled short-range SPP (a-SRSPP), and evanescent waves of lower spatial frequency were appropriately diminished by approaching to cut off symmetrically coupled long-range SPP (s-LRSPP). A flat and broad optical transfer function of the imaging system was then achieved, and improved subwavelength imaging performance was validated by imaging an ideal thin object of two slits with a 20-nm width distanced by a 20-nm spacer, under 193-nm illumination. The resolution limit of the designed imaging system with double-layer superlens was further demonstrated to be at least ~λ/16 for an isolated two-slit object model. This work provided sound theoretical analysis and a systematic design approach of double-layer metal superlens for near-field subwavelength imaging, such as fluorescent micro/nanoscopy or plasmonic nanolithography.
Collapse
Affiliation(s)
- Jing Wang
- Costar (Shanghai) Science & Technology Co., Ltd., Shanghai 200241, China
- Institute of Advanced Optics, China South Industries Group Corporation, Nanyang 473000, China
| | - Zhichao Li
- Costar (Shanghai) Science & Technology Co., Ltd., Shanghai 200241, China
- Institute of Advanced Optics, China South Industries Group Corporation, Nanyang 473000, China
- Costar Group Co., Ltd., Nanyang 473000, China
| | - Weina Liu
- Costar (Shanghai) Science & Technology Co., Ltd., Shanghai 200241, China
- Institute of Advanced Optics, China South Industries Group Corporation, Nanyang 473000, China
- Nanyang Lida Optic-Electronics Co., Ltd., Nanyang 473000, China
| |
Collapse
|
15
|
Ding H, Liu L, Dong L, Han D, Fan T, Zhang L, Wei Y. Study on forbidden pitch in plasmonic lithography: taking 365 nm wavelength thin silver film-based superlens imaging lithography as an example. OPTICS EXPRESS 2022; 30:33869-33885. [PMID: 36242413 DOI: 10.1364/oe.465650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic lithography can make the evanescent wave at the mask be resonantly amplified by exciting surface plasmon polariton (SPP) and participate in imaging, which can break through the diffraction limit in conventional lithography. It provides a reliable technical way for the study of low-cost, large-area and efficient nanolithography technology. However, there is also a phenomenon in plasmonic lithography similar to the forbidden pitch in conventional projection lithography. In this paper, combined with the imaging model and the optical transfer function (OTF), the theoretical analysis points out the reasons for the existence of the phenomenon of forbidden pitch in plasmonic lithography. Taking the 365 nm wavelength Ag thin film-based superlens imaging lithography as an example, the positions of the forbidden pitches of the 1:1 mask, the bright-field mask and the dark-field mask are calculated separately, and the key factors affecting their positions are pointed out. Simulation is carried out through commercial software, and the correctness of theoretical analysis is verified. Finally, we summarize and give some possible suggestions for solving this problem, including exploring better illumination methods, avoiding the patterns with forbidden pitch in the design, or by adding assistant feature to the design.
Collapse
|
16
|
Masato D, Piccolo L, Lucchetta G, Sorgato M. Texturing Technologies for Plastics Injection Molding: A Review. MICROMACHINES 2022; 13:mi13081211. [PMID: 36014132 PMCID: PMC9416373 DOI: 10.3390/mi13081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022]
Abstract
Texturing is an engineering technology that can be used to enable surface functionalization in the plastics injection molding industry. A texture is defined as the geometrical modification of the topography by addition of surface features that are characterized by a smaller scale than the overall surface dimensions. Texturing is added to products to create novel functionalities of plastic products and tools, which can be exploited to modify interactions with other materials in contact with the surface. The geometry, dimensions, and positioning on the surface define the function of a texture and its properties. This work reviews and discuss the wide range of texturing technologies available in the industry. The advantages and limitations of each technology are presented to support the development of new surface engineering applications in the plastics manufacturing industry.
Collapse
Affiliation(s)
- Davide Masato
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Correspondence: ; Tel.: +1-(978)-934-2836
| | - Leonardo Piccolo
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (L.P.); (G.L.); (M.S.)
| | - Giovanni Lucchetta
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (L.P.); (G.L.); (M.S.)
| | - Marco Sorgato
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (L.P.); (G.L.); (M.S.)
| |
Collapse
|
17
|
Oh DK, Lee T, Ko B, Badloe T, Ok JG, Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. FRONTIERS OF OPTOELECTRONICS 2021; 14:229-251. [PMID: 36637666 PMCID: PMC9743954 DOI: 10.1007/s12200-021-1121-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
Metasurfaces are composed of periodic sub-wavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.
Collapse
Affiliation(s)
- Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology (SEOULTECH), Seoul, 01811, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
18
|
Lee S, Lee N, Yeon G, Park J, Choi H, Koo S, Oh DK, Ok JG. Piezo-Actuated One-Axis Vibrational Patterning for Mold-Free Continuous Fabrication of High-Precision Period-Programmable Micro- and Nanopatterns. ACS NANO 2021; 15:3070-3078. [PMID: 33471503 DOI: 10.1021/acsnano.0c09540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a mold-free high-resolution nanopatterning technology named piezo-actuated one-axis vibrational patterning (POP) that enables continuous and scalable fabrication of micro- and nanopatterns with precisely programmable periods and dimensions. POP utilizes the piezoelectric stack-actuated high-precision uniaxial vibration of a flat, pattern-free rigid tool edge to conduct sub-50 nm-periodic indentations on various compliant substrates laterally fed underneath. By controlling the tool vibration frequency, tool temperature, and substrate feed rate and by combining sequential tool strokes along multiple directions, diverse functional micro- and nanopatterns with variable periods and depths and multidimensional profiles can be continuously created without resorting to mold prefabrication. With its simple but universal principle, excellent scalability, and versatile processability, POP can be practically applied to many functional devices particularly requiring large-area micro- and nanopatterns with specifically designed periods and dimensions.
Collapse
Affiliation(s)
- Seungjo Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Nayeong Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Gyubeom Yeon
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Jonggab Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Hyunsik Choi
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Sungkwan Koo
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Dong Kyo Oh
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
19
|
Ahmed R, Butt H. Strain-Multiplex Metalens Array for Tunable Focusing and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003394. [PMID: 33643805 PMCID: PMC7887606 DOI: 10.1002/advs.202003394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/08/2023]
Abstract
Metalenses on a flexible template are engineered metal-dielectric interfaces that improve conventional imaging system and offer dynamic focusing and zooming capabilities by controlling the focal length and bandwidth through a mechanical or external stretch. However, realizing large-scale and cost-effective flexible metalenses with high yields in a strain-multiplex fashion remains as a great challenge. Here, single-pulsed, maskless light interference and imprinting technique is utilized to fabricate reconfigurable, flexible metalenses on a large-scale and demonstrate its strain-multiplex tunable focusing. Experiments, in accordance with the theory, show that applied stretch on the flexible-template reconfigurable diffractive metalenses (FDMLs) accurately mapped focused wavefront, bandwidth, and focal length. The surface relief metastructures consisted of metal-coated hemispherical cavities in a hexagonal close-packed arrangement to enhance tunable focal length, numerical aperture, and fill factor, FF ≈ 100% through normal and angular light illumination with external stretch. The strain-multiplex of FDMLs approach lays the foundation of a new class of large-scale, cost-effective metalens offering tunable light focusing and imaging.
Collapse
Affiliation(s)
- Rajib Ahmed
- School of EngineeringUniversity of BirminghamBirminghamB15 2TTUK
- Stanford School of MedicinePalo AltoCA94304United States
| | - Haider Butt
- Department of Mechanical EngineeringKhalifa UniversityAbu DhabiP.O. 127788UAE
| |
Collapse
|
20
|
Lee T, Lee C, Oh DK, Badloe T, Ok JG, Rho J. Scalable and High-Throughput Top-Down Manufacturing of Optical Metasurfaces. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4108. [PMID: 32718085 PMCID: PMC7435655 DOI: 10.3390/s20154108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Metasurfaces have shown promising potential to miniaturize existing bulk optical components thanks to their extraordinary optical properties and ultra-thin, small, and lightweight footprints. However, the absence of proper manufacturing methods has been one of the main obstacles preventing the practical application of metasurfaces and commercialization. Although a variety of fabrication techniques have been used to produce optical metasurfaces, there are still no universal scalable and high-throughput manufacturing methods that meet the criteria for large-scale metasurfaces for device/product-level applications. The fundamentals and recent progress of the large area and high-throughput manufacturing methods are discussed with practical device applications. We systematically classify various top-down scalable patterning techniques for optical metasurfaces: firstly, optical and printing methods are categorized and then their conventional and unconventional (emerging/new) techniques are discussed in detail, respectively. In the end of each section, we also introduce the recent developments of metasurfaces realized by the corresponding fabrication methods.
Collapse
Affiliation(s)
- Taejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
| | - Chihun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
21
|
Ahmed R, Ozen MO, Karaaslan MG, Prator CA, Thanh C, Kumar S, Torres L, Iyer N, Munter S, Southern S, Henrich TJ, Inci F, Demirci U. Tunable Fano-Resonant Metasurfaces on a Disposable Plastic-Template for Multimodal and Multiplex Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907160. [PMID: 32201997 PMCID: PMC8713081 DOI: 10.1002/adma.201907160] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Indexed: 05/16/2023]
Abstract
Metasurfaces are engineered nanostructured interfaces that extend the photonic behavior of natural materials, and they spur many breakthroughs in multiple fields, including quantum optics, optoelectronics, and biosensing. Recent advances in metasurface nanofabrication enable precise manipulation of light-matter interactions at subwavelength scales. However, current fabrication methods are costly and time-consuming and have a small active area with low reproducibility due to limitations in lithography, where sensing nanosized rare biotargets requires a wide active surface area for efficient binding and detection. Here, a plastic-templated tunable metasurface with a large active area and periodic metal-dielectric layers to excite plasmonic Fano resonance transitions providing multimodal and multiplex sensing of small biotargets, such as proteins and viruses, is introduced. The tunable Fano resonance feature of the metasurface is enabled via chemical etching steps to manage nanoperiodicity of the plastic template decorated with plasmonic layers and surrounding dielectric medium. This metasurface integrated with microfluidics further enhances the light-matter interactions over a wide sensing area, extending data collection from 3D to 4D by tracking real-time biomolecular binding events. Overall, this work resolves cost- and complexity-related large-scale fabrication challenges and improves multilayer sensitivity of detection in biosensing applications.
Collapse
Affiliation(s)
- Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States
| | - Mehmet Ozgun Ozen
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States
| | - Merve Goksin Karaaslan
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States
| | - Cecilia A. Prator
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Cassandra Thanh
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Shreya Kumar
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Leonel Torres
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Nikita Iyer
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Sadie Munter
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Sarka Southern
- Gaia Medical Institute, 505 Coast Boulevard South, La Jolla, CA 92037, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, United States
| | - Fatih Inci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States
| |
Collapse
|
22
|
Zhang WP, Liang F, Long XY, Liu ZQ, Su YR, Liu K, Chen WD, Xie ZW, Li L. Numerical simulation research of catenary tip-insulator-metal structure for nano-lithography. APPLIED OPTICS 2019; 58:5159-5164. [PMID: 31503609 DOI: 10.1364/ao.58.005159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Catenary optics has attracted much interest due to its unique properties in wave-front manipulation, field enhancement, and dispersion engineering. In this paper, the applications of catenary optics in the near-field lithography are studied. The catenary shaped nanostructures and tip-insulator-metal (TIM) structures are simultaneously utilized to increase the contrast ratio of the focal plane and to give rise to a sharp focusing focal spot with high intensity. Moreover, the full width at half-maximum of the focal spot maintains well below the diffraction limit. The proposed catenary TIM structure may improve the quality of near-field lithography and find applications in super-resolution near-field direct writing nano-lithography.
Collapse
|
23
|
Mehrabi M, Rajabalipanah H, Abdolali A, Tayarani M. Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances. APPLIED OPTICS 2018; 57:3693-3703. [PMID: 29791329 DOI: 10.1364/ao.57.003693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Because of exhibiting extraordinary features, metamaterial absorbers have captured considerable attention in recent years, especially at visible frequencies. In this paper, a new design of a metamaterial-inspired perfect visible absorber (MIPVA) is investigated, which exhibits ultra-broadband, polarization-independent, and wide-angle performances. The proposed MIPVA provides a flat and near unity absorbance (>99%) in an ultra-broad range of radiation wavelengths from λ=500 to 625 nm, while retaining its convincing absorptivity over the entire visible wavelengths. A comprehensive parametric study is accomplished to demonstrate the effects of structural parameters on the absorptivity of the designed MIPVA. To clarify the physical mechanism of absorption, the electric field and surface current distributions of MIPVA are also monitored and elaborately discussed throughout the paper. The results show that the proposed MIPVA exhibits a polarization-insensitive absorption behavior in a wide range of incident wave angles. The interference theory is also utilized to verify the results. In addition, our MIPVA has a compact and low-profile design, while its ability to absorb solar radiation is significantly improved with respect to preceding studies in terms of both the frequency bandwidth and absorptivity; thereby, it is a worthy candidate to play an essential role in different visible-range applications.
Collapse
|
24
|
Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim Biophys Acta Gen Subj 2018; 1862:1209-1246. [DOI: 10.1016/j.bbagen.2018.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
25
|
Oh S, Han D, Shim HB, Hahn JW. Optical proximity correction (OPC) in near-field lithography with pixel-based field sectioning time modulation. NANOTECHNOLOGY 2018; 29:045301. [PMID: 29206111 DOI: 10.1088/1361-6528/aa9f62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
Collapse
Affiliation(s)
- Seonghyeon Oh
- Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | | | | | | |
Collapse
|