1
|
Gungordu Er S, Bulathsinghala R, Kizilates SB, Li B, Ryan R, Tabish TA, Dharmasena I, Edirisinghe M. Multifunctional Conductive Nanofibers for Self-Powered Glucose Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416320. [PMID: 39965077 PMCID: PMC12079449 DOI: 10.1002/advs.202416320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Electrochemical glucose biosensors are essential for diabetes management, and self-powered systems present an eco-friendly and innovative alternative. Traditional biosensors face several limitations including limited sensitivity, enzyme instability, and dependency on external power sources. Addressing these issues, the study develops a novel multifunctional nanofiber integrating biosensor for glucose detection and a self-powered motion sensor, utilizing an innovative triboelectric nanogenerator (TENG) system. Electrospun nanofibers, composed of graphene oxide (GO), porous graphene (PG), graphene foam (GF), polypyrrole (PPy), and polycaprolactone (PCL), demonstrate enhanced electrical conductivity, triboelectric efficiency, and mechanical strength. Among these, dip-coated nanofibers exhibited the highest conductivity of 4.9 × 10⁻⁵ S/cm, attributed to superior surface electrical properties of GO. PCL/PPy/GO nanofibers achieved the highest glucose detection performance in cyclic voltammetry and differential pulse voltammetry due to efficient electron transfer mechanisms of GO and PPy. Additionally, triboelectric tests revealed peak voltages of 63V with PCL/PPy/GO and polyvinylidene fluoride nanofibers containing glucose oxidase enzyme. Core-sheath and dip-coated nanofibers also demonstrated significant mechanical resilience (∼0.9 N force, ∼350 s durability). These findings highlight PCL/PPy/GO nanofibers as a multifunctional, efficient, and scalable solution, offering highly sensitive glucose detection and non-invasive sweat analysis along with robust energy harvesting for environmentally friendly and advanced diabetes management systems.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Rameesh Bulathsinghala
- Wolfson School of MechanicalElectrical and Manufacturing EngineeringLoughborough UniversityLoughboroughLE11 3TUUK
| | | | - Bing Li
- The Institute for Materials DiscoveryUniversity College LondonLondonWC1E 7JEUK
| | - Rucchi Ryan
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Tanveer A. Tabish
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Radcliffe Department of MedicineUniversity of OxfordOld RoadOxfordOX3 7BNUK
| | - Ishara Dharmasena
- Wolfson School of MechanicalElectrical and Manufacturing EngineeringLoughborough UniversityLoughboroughLE11 3TUUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
| |
Collapse
|
2
|
Hu H, Song J, Zhong Y, Cao J, Han L, Zhang Z, Cheng G, Ding J. High Sensitivity Triboelectric Based Flexible Self-Powered Tactile Sensor with Bionic Fingerprint Ring Structure. ACS Sens 2024; 9:2907-2914. [PMID: 38759108 DOI: 10.1021/acssensors.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.
Collapse
Affiliation(s)
- Hongwei Hu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Jie Song
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Yan Zhong
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Jie Cao
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Lei Han
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Zhongqiang Zhang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Baraily M, Baro B, Boruah R, Bayan S. PVDF-HFP encapsulated WS 2nanosheets in droplet-based triboelectric nanogenerators for possible detection of human Na +/K +ion concentration. NANOTECHNOLOGY 2024; 35:365502. [PMID: 38861959 DOI: 10.1088/1361-6528/ad5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.
Collapse
Affiliation(s)
- Madhav Baraily
- Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India
| | - Bikash Baro
- Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India
| | - Ratan Boruah
- Sophisticated Analytical Instrumentation Centre, Tezpur University, Tezpur, Assam 782028, India
| | - Sayan Bayan
- Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India
| |
Collapse
|
4
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
5
|
Tao Y, Xiang H, Cao X, Wang N. Spring Design of Triboelectric Nanogenerator with MXene-Modified Interface for Fluid Energy Harvesting and Water Level Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3406-3415. [PMID: 38215450 DOI: 10.1021/acsami.3c15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The introduction of two-dimensional materials with high capacitance that are dielectric into the triboelectric interface is critical for the development of a highly efficient triboelectric nanogenerator (TENG) due to its excellent electrical conductivity and versatile surface chemistry. This paper reports a spring-structured multilayer TENG (S-TENG), where a Nb2CTx MXene-PVDF composite was chosen as the triboelectric electrode for increasing the dielectric and surface charge density. The intense electrostatic interaction of the strong hydrogen bonds between anions on the MXene surface and hydrogen atoms of PVDF chains not only creates a dipole in responding to the applied electric field but also promotes the formation of a piezoelectric phase and induces a strong interface coupling effect. Consequently, an output power enhancement of 300% was shown in comparison with pure PVDF, and a spring-like design with a multilayer structure further increases the space utilization and contact area and presents an output voltage of 420 V, a current density of 1.47 mA/m2, and a maximal output power density of 619 mW/m2. In addition, the as-prepared S-TENG can serve as both a fluid energy harvester on an urban river and a real-time monitor to realize the automatic alarm of water level warning.
Collapse
Affiliation(s)
- Yang Tao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijing Xiang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Muratović E, Muminović A, Delić M, Pervan N, Muminović AJ, Šarić I. Potential and Design Parameters of Polyvinylidene Fluoride in Gear Applications. Polymers (Basel) 2023; 15:4275. [PMID: 37959956 PMCID: PMC10650497 DOI: 10.3390/polym15214275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: With the ever-increasing number of polymer materials and limited data on polymer gear calculations, designers are often required to perform extensive experimental testing in order to establish reliable operational data for specific gear applications. This research investigates the potential of a Polyvinyldene fluoride (PVDF) polymer material in gear applications, considering various loading conditions and different types of gear transmission configurations, including both self-mated mesh and steel/PVDF mesh. (2) Methods: PVDF gear samples were tested on a specially designed test rig that enables active torque control and temperature monitoring in order to obtain the necessary design parameters and failure modes. Each test for certain load conditions was repeated five times, and to fully investigate the potential of PVDF gear samples, comparative testing was performed for Polyoxymethylene (POM) gear. (3) Results: Tribological compatibility, tooth load capacity, and lifespan assessment, along with the types of failure, which, for some configurations, include several types of failures, such as wear and melting, were determined. Temperature monitoring data were used to estimate the coefficient of friction at the tooth contact of analyzed gear pairs, while optical methods were used to determine a wear coefficient. (4) Conclusions: The tribological compatibility of polymer gear pairs needs to be established in order to design a gear pair for a specific application. PVDF gear samples mated with steel gear showed similar lifespan properties compared to POM samples. Temperature monitoring and optical methods serve as a basis for the determination of the design parameters. PVDF is an appropriate material to use in gear applications, considering its comparable properties with POM. The particular significance of this research is reflected in the establishment of the design parameters of PVDF gear, as well as in the analysis of the potential of the PVDF material in gear applications, which gives exceptional significance to the current knowledge on polymer gears, considering that the PVDF material has not previously been analyzed in gear applications.
Collapse
Affiliation(s)
| | | | | | - Nedim Pervan
- Department of Mechanical Design, Faculty of Mechanical Engineering, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (E.M.); (A.M.); (M.D.); adis. (A.J.M.); (I.Š.)
| | | | | |
Collapse
|
7
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
9
|
Singh V, Singh B. PDMS/PVDF- MoS2 based flexible triboelectric nanogenerator for mechanical energy harvesting. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Hasan MM, Sadeque MSB, Albasar I, Pecenek H, Dokan FK, Onses MS, Ordu M. Scalable Fabrication of MXene-PVDF Nanocomposite Triboelectric Fibers via Thermal Drawing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206107. [PMID: 36464631 DOI: 10.1002/smll.202206107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
In the data-driven world, textile is a valuable resource for improving the quality of life through continuous monitoring of daily activities and physiological signals of humans. Triboelectric nanogenerators (TENG) are an attractive option for self-powered sensor development by coupling energy harvesting and sensing ability. In this study, to the best of the knowledge, scalable fabrication of Ti3 C2 Tx MXene-embedded polyvinylidene fluoride (PVDF) nanocomposite fiber using a thermal drawing process is presented for the first time. The output open circuit voltage and short circuit current show 53% and 58% improvement, respectively, compared to pristine PVDF fiber. The synergistic interaction between the surface termination groups of MXene and polar PVDF polymer enhances the performance of the fiber. The flexibility of the fiber enables the weaving of fabric TENG devices for large-area applications. The fabric TENG (3 × 2 cm2 ) demonstrates a power density of 40.8 mW m-2 at the matching load of 8 MΩ by maintaining a stable performance over 12 000 cycles. Moreover, the fabric TENG has shown the capability of energy harvesting by operating a digital clock and a calculator. A distributed self-powered sensor for human activities and walking pattern monitoring are demonstrated with the fabric.
Collapse
Affiliation(s)
- Md Mehdi Hasan
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Md Sazid Bin Sadeque
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Ilgın Albasar
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Hilal Pecenek
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Fatma Kilic Dokan
- Department of Chemistry and Chemical Processing Technologies, Mustafa Çıkrıkcıoglu Vocational School, Kayseri University, Kayseri, 38280, Turkey
| | - M Serdar Onses
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Mustafa Ordu
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
11
|
Appamato I, Bunriw W, Harnchana V, Siriwong C, Mongkolthanaruk W, Thongbai P, Chanthad C, Chompoosor A, Ruangchai S, Prada T, Amornkitbamrung V. Engineering Triboelectric Charge in Natural Rubber-Ag Nanocomposite for Enhancing Electrical Output of a Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2023; 15:973-983. [PMID: 36567465 DOI: 10.1021/acsami.2c17057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An environmentally friendly triboelectric nanogenerator (TENG) is fabricated from a natural rubber (NR)-Ag nanocomposite for harvesting mechanical energy from human motions. Ag nanoparticles (AgNPs) synthesized with two different capping agents are added to NR polymer for improving dielectric constant that contributes to the enhancement of TENG performance. Dielectric constant is modulated via interfacial polarization between AgNPs and NR matrix. The effects of AgNP concentration, particle size and dispersion in NR composite, and type of capping agents on dielectric properties and electrical output of the NR composite TENG are elucidated. It is found that, apart from AgNPs content in the NR-Ag nanocomposite, cations of CTAB capping agent play important roles not only on the dispersion of AgNPs in NR matrix but also on intensifying tribopositive charges in the NR composite. In addition, the application of the NR-Ag TENG as a shoe insole is also demonstrated to convert human footsteps into electricity to power small electronic devices. Furthermore, with the presence of Ag nanoparticles, the fabricated shoe insole also exhibits antibacterial property against Staphylococcus aureus that causes foot odor.
Collapse
Affiliation(s)
- Intuorn Appamato
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Weeraya Bunriw
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Viyada Harnchana
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| | - Chomsri Siriwong
- Materials Chemistry Research Center and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen40002Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Prasit Thongbai
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| | - Chalathorn Chanthad
- National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Paholyothin Road, Klong Luang, Pathum Thani12120, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok10240, Thailand
| | - Sukhum Ruangchai
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| | - Teerayut Prada
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
| | - Vittaya Amornkitbamrung
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| |
Collapse
|
12
|
Cheng K, Huang Z, Wang P, Sun L, Ghasemi H, Ardebili H, Karim A. Antibacterial flexible triboelectric nanogenerator via capillary force lithography. J Colloid Interface Sci 2023; 630:611-622. [DOI: 10.1016/j.jcis.2022.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
13
|
Kim YW, Akin S, Yun H, Xu S, Wu W, Jun MBG. Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46410-46420. [PMID: 36198071 DOI: 10.1021/acsami.2c09367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a high-performance triboelectric nanogenerator (TENG) is developed based on cold spray (CS) deposition of composite material layers. Composite layers were fabricated by cold spraying of micron-scale tin (Sn) particles on aluminum (Al) and polytetrafluoroethylene (PTFE) films, which led to improved TENG performance owing to functionalized composite layers as friction layers and electrodes, respectively. As-sprayed tin composite layers not only enhanced the flow of charges by strong adhesion to the target layer but also formed a nano-microstructure on the surface of the layers, thereby increasing the surface area during friction. More importantly, the electricity generation performance was improved more than 6 times as compared to the TENG without CS deposition on it. From parametric studies, the TENG using the cold-sprayed composite layer produced an electrical potential of 1140 V for a simple structure with a 25.4 × 25.4 mm2 contact area. We also optimize the geometry and fabrication process of the TENG to increase the manufacturing efficiency while reducing the processing cost. The resultant sprayed layers and structures exhibited sustainable robustness by showing consistent electrical performance after the mechanical adhesion test. The proposed manufacturing approach is also applicable for processing three-dimensional (3D) complex layers owing to the technological convergence of a cold spray gun attached to a robotic arm, which makes possible to fabricate the 3D TENG. To elaborate, a composite layer having the shape of a 3D ball is produced, and the exercise status of the ball is monitored in real-time. The fabricated 3D ball using the TENG transmitted a distinguishable signal in real-time according to the state of the ball. The proposed TENG sensing system can be utilized as a self-powered sensor without the need of a battery, amplifier, and rectifier. The results of this study can potentially provide insights for the practical material design and fabrication of self-powered TENG systems.
Collapse
Affiliation(s)
- Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Semih Akin
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Huitaek Yun
- Indiana Manufacturing Competitiveness Center (IN-MaC), Purdue University, West Lafayette, Indiana 47906, United States
| | - Shujia Xu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Martin Byung-Guk Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Indiana Manufacturing Competitiveness Center (IN-MaC), Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
14
|
Eco-Friendly Triboelectric Material Based on Natural Rubber and Activated Carbon from Human Hair. Polymers (Basel) 2022; 14:polym14061110. [PMID: 35335443 PMCID: PMC8955187 DOI: 10.3390/polym14061110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
The triboelectric nanogenerator (TENG) has emerged as a novel energy technology that converts mechanical energy from surrounding environments to electricity. The TENG fabricated from environmentally friendly materials would encourage the development of next-generation energy technologies that are green and sustainable. In the present work, a green triboelectric material has been fabricated from natural rubber (NR) filled with activated carbon (AC) derived from human hair. It is found that the TENG fabricated from an NR-AC composite as a tribopositive material and a poly-tetrafluoroethylene (PTFE) sheet as a tribonegative one generates the highest peak-to-peak output voltage of 89.6 V, highest peak-to-peak output current of 6.9 µA, and can deliver the maximum power density of 242 mW/m2. The finding of this work presents a potential solution for the development of a green and sustainable energy source.
Collapse
|
15
|
Chung MH, Kim HJ, Yoo S, Jeong H, Yoo KH. Enhancement of triboelectricity based on fully organic composite films with a conducting polymer. RSC Adv 2022; 12:2820-2829. [PMID: 35425300 PMCID: PMC8979045 DOI: 10.1039/d1ra07408c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) based on ferroelectric organic materials have advantages of high flexibility, biocompatibility, controllable ferroelectric properties, etc. However, this has limited the electrical output performance due to their lower ferroelectric characteristics than those of inorganic ferroelectric materials. A lot of effort has been made to improve the organic ferroelectric characteristics through composites, surface modifications, structures, etc. Herein, we report TENGs made of ferroelectric composite materials consisting of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The composite was prepared by simply blending PVDF-TrFE and PEDOT:PSS with a weight ratio from 0% to 60%. When the ratio was 20%, the ferroelectric-crystalline phase was enhanced and the highest dielectric constant was observed. Accordingly, the TENGs consisting of 20% composite film and polyimide exhibited the best output performance: the maximum open circuit voltage and short circuit current were ∼15 V and ∼2.3 μA at 1 Hz oscillation, respectively. These results indicate that the ferroelectric characteristics of PVDF-TrFE can be enhanced by adding PEDOT:PSS as a nanofiller.
Collapse
Affiliation(s)
- Moon Hyun Chung
- Department of Physics, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Hyun-Jun Kim
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Seunghwan Yoo
- Department of Physics, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Hakgeun Jeong
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
16
|
Sun W, Yang D, Luo N, Li H, Wang D. Influence of surface functionalization on the contact electrification of fabrics. NEW J CHEM 2022. [DOI: 10.1039/d2nj02833f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel self-powered fabric composition detection system has been developed from F-TENGs modified by different functional groups.
Collapse
Affiliation(s)
- Weixiang Sun
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Di Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Ning Luo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Hao Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| |
Collapse
|
17
|
Sharma S, Shekhar Mishra S, Kumar RP, Yadav RM. Recent progress on polyvinylidene difluoride based nanocomposite: Applications in energy harvesting and sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj00002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovered in 2006, Nanogenerators have attracted much attention as promising energy-harvesting devices. It harnesses energy by utilizing piezoelectric, pyroelectric thermoelectric properties of nanomaterials to produce electricity and have potential to...
Collapse
|
18
|
Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021; 194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Wearable and implantable medical devices are playing more and more key roles in disease diagnosis and health management. Various biosensors and systems have been used for respiration monitoring. Among them, self-powered sensors have some special characteristics such as low-cost, easy preparation, highly designable, and diversified. The respiratory airflow can drive the self-powered sensors directly to convert mechanical energy of the airflow into electricity. One of the major goals of the self-powered sensors and systems is realizing health monitoring and diagnosis. The relationship between the output signals and the models of respiratory diseases has not been studied deeply and clearly. Therefore, how to find an accurate relationship between them is a challenging and significant research topic. This review summarized the recent progress of the self-powered respiratory sensors and systems from aspects of device principle, output property, detecting index and so on. The challenges and perspectives have also been discussed for reference to the researchers who are interested in the field of self-powered sensors.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Linlin Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Bojing Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China.
| |
Collapse
|
19
|
Kade JC, Otto PF, Luxenhofer R, Dalton PD. Melt electrowriting of poly(vinylidene difluoride) using a heated collector. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juliane C. Kade
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute University Hospital Würzburg Würzburg Germany
| | - Paul F. Otto
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute University Hospital Würzburg Würzburg Germany
| | - Robert Luxenhofer
- Polymer Functional Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Würzburg Germany
- Soft Matter Chemistry, Department Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki Helsinki Finland
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute University Hospital Würzburg Würzburg Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact University of Oregon Eugene Oregon USA
| |
Collapse
|
20
|
Kang DH, Kim NK, Kang HW. Electrostatic Charge Retention in PVDF Nanofiber-Nylon Mesh Multilayer Structure for Effective Fine Particulate Matter Filtration for Face Masks. Polymers (Basel) 2021; 13:3235. [PMID: 34641051 PMCID: PMC8513023 DOI: 10.3390/polym13193235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, almost 70% of the world's population occupies urban areas. Owing to the high population density in these regions, they are exposed to various types of air pollutants. Fine particle air pollutants (<2.5 μm) can easily invade the human respiratory system, causing health issues. For fine particulate matter filtration, the use of a face mask filter is efficient; however, its use is accompanied by a high-pressure drop, making breathing difficult. Electrostatic interactions in the filter of the face mask constitute the dominant filtration mechanism for capturing fine particulate matter; these masks are, however, significantly weakened by the high humidity in exhaled breath. In this study, we demonstrate that a filter with an electrostatically rechargeable structure operates with normal breathing air power. In our novel face mask, a filter membrane is assembled by layer-by-layer stacking of the electrospun PVDF nanofiber mat formed on a nylon mesh. Tribo/piezoelectric characteristics via multilayer structure enhance filtration performance, even under air-powered filter bending taken as a normal breathing condition. The air gap between nanofiber and mesh layers increases air diffusion time and preserves the electrostatic charges within the multi-layered nanofiber filter membrane under humid air penetration, which is advantageous for face mask applications.
Collapse
Affiliation(s)
| | | | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (D.H.K.); (N.K.K.)
| |
Collapse
|
21
|
Bunriw W, Harnchana V, Chanthad C, Huynh VN. Natural Rubber-TiO 2 Nanocomposite Film for Triboelectric Nanogenerator Application. Polymers (Basel) 2021; 13:2213. [PMID: 34279358 PMCID: PMC8271377 DOI: 10.3390/polym13132213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
In this research, natural rubber (NR)-TiO2 nanocomposites were developed for triboelectric nanogenerator (TENG) application to harvest mechanical energy into electrical energy. Rutile TiO2 nanoparticles were used as fillers in NR material to improve dielectric properties so as to enhance the energy conversion performance of the NR composite TENG. The effect of filler concentration on TENG performance of the NR-TiO2 composites was investigated. In addition, ball-milling method was employed to reduce the agglomeration of TiO2 nanoparticles in order to improve their dispersion in the NR film. It was found that the TENG performance was significantly enhanced due to the increased dielectric constant of the NR-TiO2 composite films fabricated from the ball-milled TiO2. The TENG, fabricated from the NR-TiO2 composite using 24 h ball-milled TiO2 at 0.5%wt, delivered the highest power density of 237 mW/m2, which was almost four times higher than that of pristine NR TENG. Furthermore, the applications of the fabricated NR-TiO2 TENG as a power source to operate portable electronics devices were also demonstrated.
Collapse
Affiliation(s)
- Weeraya Bunriw
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Viyada Harnchana
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalathorn Chanthad
- National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Van Ngoc Huynh
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Suphasorn P, Appamato I, Harnchana V, Thongbai P, Chanthad C, Siriwong C, Amornkitbamrung V. Ag Nanoparticle-Incorporated Natural Rubber for Mechanical Energy Harvesting Application. Molecules 2021; 26:molecules26092720. [PMID: 34066365 PMCID: PMC8125236 DOI: 10.3390/molecules26092720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
The energy conversion performance of the triboelectric nanogenerator (TENG) is a function of triboelectric charges which depend on the intrinsic properties of materials to hold charges or the dielectric properties of triboelectric materials. In this work, Ag nanoparticles were synthesized and used to incorporate into natural rubber (NR) in order to enhance the dielectric constant for enhancing the electrical output of TENG. It was found that the size of Ag nanoparticles was reduced with the increasing CTAB concentration. Furthermore, the CTAB surfactant helped the dispersion of metallic Ag nanoparticles in the NR-insulating matrix, which promoted interfacial polarization that affected the dielectric properties of the NR composite. Ag nanoparticle-incorporated NR films exhibited an improved dielectric constant of up to almost 40% and an enhanced TENG performance that generated the highest power density of 262.4 mW/m2.
Collapse
Affiliation(s)
- Pawanrat Suphasorn
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (I.A.)
| | - Intuorn Appamato
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (I.A.)
| | - Viyada Harnchana
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (V.A.)
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| | - Prasit Thongbai
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (V.A.)
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalathorn Chanthad
- National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Paholyothin Road, KlongLuang, Pathum Thani 12120, Thailand;
| | - Chomsri Siriwong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Vittaya Amornkitbamrung
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (V.A.)
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
23
|
Busolo T, Szewczyk PK, Nair M, Stachewicz U, Kar-Narayan S. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16876-16886. [PMID: 33783199 PMCID: PMC8045025 DOI: 10.1021/acsami.1c00983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Triboelectric generators are excellent candidates for smart textiles applications due to their ability to convert mechanical energy into electrical energy. Such devices can be manufactured into yarns by coating a conductive core with a triboelectric material, but current triboelectric yarns lack the durability and washing resistance required for textile-based applications. In this work, we develop a unique triboelectric yarn comprising a conducting carbon nanotube (CNT) yarn electrode coated with poly(vinylidene fluoride) (PVDF) fibers deposited by a customized electrospinning process. We show that the electrospun PVDF fibers adhere extremely well to the CNT core, producing a uniform and stable triboelectric coating. The PVDF-CNT coaxial yarn exhibits remarkable triboelectric energy harvesting during fatigue testing with a 33% power output improvement and a peak power density of 20.7 μW cm-2 after 200 000 fatigue cycles. This is potentially due to an increase in the active surface area of the PVDF fiber coating upon repeated contact. Furthermore, our triboelectric yarn meets standard textile industry benchmarks for both abrasion and washing by retaining functionality over 1200 rubbing cycles and 10 washing cycles. We demonstrate the energy harvesting and motion sensing capabilities of our triboelectric yarn in prototype textile-based applications, thereby highlighting its applicability to smart textiles.
Collapse
Affiliation(s)
- Tommaso Busolo
- Department
of Materials Science and Metallurgy, University
of Cambridge, CB3 0FS Cambridge, United Kingdom
| | - Piotr K. Szewczyk
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Malavika Nair
- Department
of Materials Science and Metallurgy, University
of Cambridge, CB3 0FS Cambridge, United Kingdom
| | - Urszula Stachewicz
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Sohini Kar-Narayan
- Department
of Materials Science and Metallurgy, University
of Cambridge, CB3 0FS Cambridge, United Kingdom
| |
Collapse
|
24
|
Performance Enhancement of Flexible Polymer Triboelectric Generator through Polarization of the Embedded Ferroelectric Polymer Layer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, we report on a flexible triboelectric generator (TEG) with a multilayer polymer structure, consisting of a poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) layer sandwiched by polydimethylsiloxane (PDMS) layers for the performance enhancement of TEGs. We confirmed that the output performance of the TEG is closely dependent on the structure and polarization direction of the PVDF-TrFE layer. In addition, the PDMS layer serves as the electron trapping layer and suppresses the discharging of the surface charges, boosting the output performance. Furthermore, the polarized PVDF-TrFE layer in the preferred direction contributes to increasing the surface potential during the contact–separation motion. The interaction between these two polymer layers synergistically leads to the boosted output performance of TEGs. Specifically, the maximum peak-to-peak output voltage and current density of 420 V and 50 μA/cm2 generated by the proposed architecture, representing approximately a fivefold improvement compared with the TEG with a single layer, even though the same friction layers were used for contact electrification.
Collapse
|
25
|
Dzhardimalieva GI, Yadav BC, Lifintseva TV, Uflyand IE. Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Wang M, Liu W, Shi X, Pan J, Zhou B, Wang J, Sun T, Tang Y. Highly efficient and continuous triboelectric power harvesting based on a porous β-phase poly(vinylidene fluoride) aerogel. NEW J CHEM 2021. [DOI: 10.1039/d0nj05134a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A TENG with high output performance containing a high surface area polymeric β-phase PVDF aerogel is constructed. The obtained TENG can easily lights up 30 blue LEDs, which can be used as a self-powered human motion sensor.
Collapse
Affiliation(s)
- Minmin Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
| | - Weiqun Liu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
| | - Xu Shi
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
| | - Jinyang Pan
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
| | - Bing Zhou
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
| | - Jin Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| | - Tongming Sun
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| |
Collapse
|
27
|
Chen A, Zhang C, Zhu G, Wang ZL. Polymer Materials for High-Performance Triboelectric Nanogenerators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000186. [PMID: 32714748 PMCID: PMC7375247 DOI: 10.1002/advs.202000186] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/22/2020] [Indexed: 05/28/2023]
Abstract
As an emerging branch of energy conversion technologies, the triboelectric nanogenerator (TENG) pioneers a brand-new path to effectively harness varieties of mechanical energies for the purpose of powering and/or sensing. Since its invention in 2012, the TENG has experienced a booming and revolutionary development in every respect, ranging from materials synthesis and modification, architecture design to performance optimization, power management, and application exploration. In comparison to the organic solar cell and organic light-emitting diodes, TENG is a unique technique that opens the venue of using polymer materials (PMs) for harvesting mechanical energy. So far, by virtue of superior charge transfer and capturing capabilities during friction, various kinds of PMs have been developed and used as triboelectric materials in order to achieve high-performance TENGs. Here, this work focuses on the utilization and development of PMs for the TENGs technology and first gives a summary of main PMs that are frequently adopted in currently reported energy-harvesting TENGs. Second, several kinds of PMs used lately in a few novel TENGs for special or specific energy-harvesting circumstances are introduced and highlighted. Finally, the perspectives on and challenges in developing high-performance PMs toward TENGs technology are conceived and expected to be instructive to future research.
Collapse
Affiliation(s)
- Aihua Chen
- School of Materials Science and EngineeringBeihang UniversityBeijing100191P. R. China
| | - Chen Zhang
- School of Materials Science and EngineeringBeihang UniversityBeijing100191P. R. China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Guang Zhu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- New Materials InstituteDepartment of Mechanical, Materials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
28
|
Li S, Nie J, Shi Y, Tao X, Wang F, Tian J, Lin S, Chen X, Wang ZL. Contributions of Different Functional Groups to Contact Electrification of Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001307. [PMID: 32410246 DOI: 10.1002/adma.202001307] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Polymers are commonly used to fabricate triboelectric nanogenerators (TENGs). Here, several polymer films with similar main chains but different functional groups on the side chain are employed to clarify the contributions of each functional group to contact electrification (CE). The results show that the electron-withdrawing (EW) ability and density of these functional groups on the main chain can determine both the polarity and density of CE-induced surface charges. Similar results are obtained for CE in both the polymer-polymer and polymer-liquid modes. A theoretical mechanism involving electron cloud overlap is proposed to explain all of these results. More importantly, the unsaturated groups on poly(tetrafluoroethylene) molecular chain are proved to have a much stronger EW ability than the saturated groups. The density of these unsaturated groups can be increased using a sputtering technique, suggesting that this is a facile and effective method of enhancing the performance of TENGs. These results clarify the correlation between the molecular structure and macroscopic electrification behavior of polymers.
Collapse
Affiliation(s)
- Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhui Nie
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fan Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingwen Tian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiquan Lin
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
29
|
Kong TH, Lee SS, Choi GJ, Park IK. Churros-like Polyvinylidene Fluoride Nanofibers for Enhancing Output Performance of Triboelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17824-17832. [PMID: 32223263 DOI: 10.1021/acsami.0c00708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triboelectric nanogenerators (TENGs) have emerged as a next-generation sustainable power source for Internet of Things technology. Polyvinylidene fluoride (PVDF) nanofibers (NFs) have been investigated widely to enhance the TENG performance by controlling their polarity; however, controlling the surface morphology of the PVDF NFs has rarely been studied. Here, surface-roughened, churros-like PVDF NFs were fabricated by controlling the solvent evaporation kinetics. The solvent evaporation rate was modulated by varying the relative humidity (RH) during the electrospinning process. With increasing RH, the fraction of polar β-phase in the PVDF NFs increased, the specific surface area of the PVDF NFs increased gradually and the surface morphology changed from smooth to rough, finally resulting in a churros-like structure. Therefore, the output performance of the TENG devices was enhanced with increasing RH, because of the combined effects of the enlarged surface area and the increased fraction of the polar phase in the PVDF NFs. The TENG device with the churros-like PVDF NFs showed an output voltage of 234 V, current of 11 μA, and power density up to 1738 μW/cm2, giving it the capability to turn on 60 series-connected commercial light-emitting diodes without using an external charge storage circuit.
Collapse
Affiliation(s)
- Tae-Hoon Kong
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sang-Seok Lee
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Geon-Ju Choi
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Il-Kyu Park
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
30
|
Light-induced reversible phase transition in polyvinylidene fluoride-based nanocomposites. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1564-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting. MICROMACHINES 2019; 10:mi10070438. [PMID: 31262093 PMCID: PMC6680811 DOI: 10.3390/mi10070438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/17/2022]
Abstract
Several wearable devices have already been commercialized and are likely to open up a new life pattern for consumers. However, the limited energy capacity and lifetime have made batteries the bottleneck in wearable technology. Thus, there have been growing efforts in the area of self-powered wearables that harvest ambient mechanical energy directly from surroundings. Herein, we demonstrate a woven triboelectric nanogenerator (WTENG) utilizing electrospun Polyvinylidene fluoride (PVDF) nanofibers and commercial nylon cloth to effectively harvest mechanical energy from human motion. The PVDF nanofibers were fabricated using a highly scalable multi-nozzle far-field centrifugal electrospinning protocol. We have also doped the PVDF nanofibers with small amounts of multi-walled carbon nanotubes (MWCNT) to improve their triboelectric performance by facilitating the growth of crystalline β-phase with a high net dipole moment that results in enhanced surface charge density during contact electrification. The electrical output of the WTENG was characterized under a range of applied forces and frequencies. The WTENG can be triggered by various free-standing triboelectric layers and reaches a high output voltage and current of about 14 V and 0.7 µA, respectively, for the size dimensions 6 × 6 cm. To demonstrate the potential applications and feasibility for harvesting energy from human motion, we have integrated the WTENG into human clothing and as a floor mat (or potential energy generating shoe). The proposed triboelectric nanogenerator (TENG) shows promise for a range of power generation applications and self-powered wearable devices.
Collapse
|
32
|
Editorial for the Special Issue on Nanogenerators in Korea. MICROMACHINES 2019; 10:mi10020097. [PMID: 30699937 PMCID: PMC6412984 DOI: 10.3390/mi10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
Nanogenerator-based technologies have found outstanding accomplishments in energy harvesting applications over the past two decades [...].
Collapse
|