1
|
Black V, Bafligil C, Greaves E, Zondervan KT, Becker CM, Hellner K. Modelling Endometriosis Using In Vitro and In Vivo Systems. Int J Mol Sci 2025; 26:580. [PMID: 39859296 PMCID: PMC11766166 DOI: 10.3390/ijms26020580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Endometriosis is a chronic inflammatory condition characterised by the presence of endometrium-like tissue outside the uterus. Despite its high prevalence and recent advances in molecular science, many aspects of endometriosis and its pathophysiology are still poorly understood. Previously, in vitro and in vivo modelling have been instrumental in establishing our current understanding of endometriosis. As the field of molecular science and the advance towards personalised medicine is ever increasing, more sophisticated models are continually being developed. These hold great potential to provide more intricate knowledge of the underlying pathophysiology and facilitate investigations into potential future approaches to diagnosis and treatment. This review provides an overview of different in vitro and in vivo models of endometriosis that are pertinent to establishing our current understanding. Moreover, we discuss new cross-cutting approaches to endometriosis modelling, such as the use of microfluidic cultures and 3D printing, which have the potential to shape the future of endometriosis research.
Collapse
Affiliation(s)
- Verity Black
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| | - Cemsel Bafligil
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Krina T. Zondervan
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christian M. Becker
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| | - Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| |
Collapse
|
2
|
Gonzalez V, Word C, Guerra-Pilaquinga N, Mazinani M, Fawcett S, Portfors C, Falzarano D, Kell AM, Jangra RK, Banerjee A, Seifert SN, Letko M. Viral susceptibility and innate immune competency of Carollia perspicillata bat cells produced for virological studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624190. [PMID: 39605657 PMCID: PMC11601607 DOI: 10.1101/2024.11.19.624190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived in vitro cellular models. However, stable and accessible bat cell lines are not widely available for the broader scientific community. Here, we generated in vitro reagents for the Seba's short-tailed bat (Carollia perspicillata), tested multiple methods of immortalization, and characterized their susceptibility to virus infection and response to immune stimulation. Using a pseudotyped virus library and authentic virus infections, we show that these C. perspicillata cell lines derived from a diverse array of tissues are susceptible to viruses bearing the glycoprotein of numerous orthohantaviruses, including Andes and Hantaan virus and are also susceptible to live hantavirus infection. Furthermore, stimulation with synthetic double-stranded RNA prior to infection with VSV and MERS-CoV induced a protective antiviral response, demonstrating the suitability of our cell lines to study the bat antiviral immune response. Taken together, the approaches outlined here will inform future efforts to develop in vitro tools for virology from non-model organisms and these C. perspicillata cell lines will enable studies on virus-host interactions in bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cierra Word
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana. 71103, USA
| | | | - Mitra Mazinani
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| | - Stephen Fawcett
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| | | | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rohit K. Jangra
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana. 71103, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| |
Collapse
|
3
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
4
|
Armstrong DG, Orgill DP, Galiano R, Glat PM, Didomenico L, Sopko NA, Swanson EW, Sigal F, Snyder R, Li WW, Carter M, Zelen CM. A multicenter, randomized controlled clinical trial evaluating the effects of a novel autologous heterogeneous skin construct in the treatment of Wagner one diabetic foot ulcers: Final analysis. Int Wound J 2023; 20:4083-4096. [PMID: 37402533 PMCID: PMC10681466 DOI: 10.1111/iwj.14301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
A novel autologous heterogeneous skin construct (AHSC) was previously shown to be effective versus standard of care (SOC) treatment in facilitating complete wound healing of Wagner 1 diabetic foot ulcers in an interim analysis of 50 patients previously published. We now report the final analysis of 100 patients (50 per group), which further supports the interim analysis findings. Forty-five subjects in the AHSC treatment group received only one application of the autologous heterogeneous skin construct, and five received two applications. For the primary endpoint at 12 weeks, there were significantly more diabetic wounds closed in the AHSC treatment group (35/50, 70%) than in the SOC control group (17/50, 34%) (p = 0.00032). A significant difference in percentage area reduction between groups was also demonstrated over 8 weeks (p = 0.009). Forty-nine subjects experienced 148 adverse events: 66 occurred in 21 subjects (42%) in the AHSC treatment group versus 82 in 28 SOC control group subjects (56.0%). Eight subjects were withdrawn due to serious adverse events. Autologous heterogeneous skin construct was shown to be an effective adjunctive therapy for healing Wagner 1 diabetic foot ulcers.
Collapse
Affiliation(s)
- David G. Armstrong
- Department of SurgeryUniversity of Southern California, Keck School of MedicineLos AngelesCaliforniaUSA
| | - Dennis P. Orgill
- Division of Plastic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Robert Galiano
- Division of Plastic SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | | | | | | | - Felix Sigal
- Foot and Ankle ClinicLos AngelesCaliforniaUSA
| | - Robert Snyder
- Clinical Research Barry University SPM, Brand Research CenterBarry UniversityMiamiFloridaUSA
| | - William W. Li
- The Angiogenesis FoundationCambridgeMassachusettsUSA
| | | | - Charles M. Zelen
- The Professional Education and Research Institute (PERI)RoanokeVirginiaUSA
| |
Collapse
|
5
|
Jithendra P, Mohamed JMM, Annamalai D, Al-Serwi RH, Ibrahim AM, El-Sherbiny M, Rajam AM, Eldesoqui M, Mansour N. Biopolymer collagen-chitosan scaffold containing Aloe vera for chondrogenic efficacy on cartilage tissue engineering. Int J Biol Macromol 2023; 248:125948. [PMID: 37482169 DOI: 10.1016/j.ijbiomac.2023.125948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The chondrogenic efficacy of aloe vera blended collagen-chitosan (COL-CS-AV) porous scaffold was investigated using articular chondrocytes in a standard condition. Cytocompatibility was analyzed using fluorescent dyes (calcein AM/ethidium bromide) and the viable cells were quantified by MTT assay. Glycosaminoglycan (GAG) content of ECM was estimated by using 1, 9-Dimethyl methylene Blue (DMMB). The total RNA content was quantified and the cartilage specific genes (col2a1, Acan) were amplified by reverse transcription-PCR from the cell lysate of the scaffolds. Histological examination was made using Haematoxylin and Eosin (H&E), safranin-O, masson's trichrome, alcian blue, and alizarin red to stain the specific component of ECM secreted on the construct. The cartilage specific collagen type II was estimated by immunohistochemistry using monoclonal type II collagen antibody. The results of these studies proved that COL-CS-AV scaffold has more chondrogenic efficacy than COL-CS, thus the aloe vera blend COL-CS-AV scaffold might be used as suitable candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Panneerselvam Jithendra
- Department of Biotechnology, CSIR-Central Leather Research Institute, Chennai 600020, India; Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | | | - Dinesh Annamalai
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Abraham Merlin Rajam
- Medical Research center, Women's wellness Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nimer Mansour
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
6
|
Williams AS, Wilk EJ, Fisher JL, Lasseigne BN. Evaluating cancer cell line and patient-derived xenograft recapitulation of tumor and non-diseased tissue gene expression profiles in silico. Cancer Rep (Hoboken) 2023; 6:e1874. [PMID: 37533331 PMCID: PMC10480419 DOI: 10.1002/cnr2.1874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. AIMS Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes. METHODS By using publicly available gene expression profiles across multiple sources, we evaluated cancer cell line and patient-derived xenograft recapitulation of tumor and non-diseased tissue gene expression profiles in silico. RESULTS We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that glioblastoma (GBM) PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue-specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. CONCLUSION Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.
Collapse
Affiliation(s)
- Avery S. Williams
- The Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth J. Wilk
- The Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jennifer L. Fisher
- The Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
7
|
Williams AS, Wilk EJ, Fisher JL, Lasseigne BN. Evaluating cancer cell line and patient-derived xenograft recapitulation of tumor and non-diseased tissue gene expression profiles in silico. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536431. [PMID: 37090499 PMCID: PMC10120639 DOI: 10.1101/2023.04.11.536431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes by using publicly available gene expression profiles across multiple sources. We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that GBM PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue-specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.
Collapse
Affiliation(s)
- Avery S. Williams
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth J. Wilk
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L. Fisher
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Takizawa C, Minematsu T, Nakagami G, Kitamura A, Koudounas S, Kunimitsu M, Sanada H. Expression levels of NPPB, ITGB6, CPNE4, EML5, and ITSN1 in fresh exudates swabbed from critically colonised and infected full-thickness wounds in rats. Int Wound J 2023; 20:1088-1097. [PMID: 36307995 PMCID: PMC10031246 DOI: 10.1111/iwj.13965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Pressure injury management requires reliable identification of critical colonisation due to lack of infection signs. Our research group previously proposed the mRNAs natriuretic peptide B (Nppb), integrin subunit beta 6 (Itgb6), copine 4 (Cpne4), echinoderm microtubule-associated protein like 5, and intersectin 1 as candidate markers in pooled exudates of critically colonised wounds. However, it is unclear whether mRNAs or proteins of the candidate genes would be suitable as biomarkers in fresh exudate. Therefore, this study aimed to evaluate the validity of the mRNAs and proteins as fresh exudate markers for critical colonisation. Three wound models of normal healing, critical colonisation, and infection were created in rats. Fresh swab-collected exudates were collected, and mRNA and protein expression levels were measured. In the fresh wound exudates, the detection frequency of Itgb6 tended to decrease in the critically colonised and infected wounds (P = .067), and those of Cpne4 and Nppb tended to be lower in the infected wounds than in the normal healing and critically colonised wounds (P = .006 and .067, respectively). In contrast, there was no difference in protein expression in the exudates. This study suggests that Itgb6 mRNA in fresh exudates is a promising biomarker for critical colonisation.
Collapse
Affiliation(s)
- Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Kitamura
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sofoklis Koudounas
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mao Kunimitsu
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Anderson JR, Morin EE, Brayer KJ, Salbato S, Gonzalez Bosc LV, Kanagy NL, Naik JS. Single-cell transcriptomic heterogeneity between conduit and resistance mesenteric arteries in rats. Physiol Genomics 2023; 55:179-193. [PMID: 36912534 PMCID: PMC10085562 DOI: 10.1152/physiolgenomics.00126.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The endothelium contains morphologically similar cells throughout the vasculature, but individual cells along the length of a single vascular tree or in different regional circulations function dissimilarly. When observations made in large arteries are extrapolated to explain the function of endothelial cells (ECs) in the resistance vasculature, only a fraction of these observations are consistent between artery sizes. To what extent endothelial (EC) and vascular smooth muscle cells (VSMCs) from different arteriolar segments of the same tissue differ phenotypically at the single-cell level remains unknown. Therefore, single-cell RNA-seq (10x Genomics) was performed using a 10X Genomics Chromium system. Cells were enzymatically digested from large (>300 µm) and small (<150 µm) mesenteric arteries from nine adult male Sprague-Dawley rats, pooled to create six samples (3 rats/sample, 3 samples/group). After normalized integration, the dataset was scaled before unsupervised cell clustering and cluster visualization using UMAP plots. Differential gene expression analysis allowed us to infer the biological identity of different clusters. Our analysis revealed 630 and 641 differentially expressed genes (DEGs) between conduit and resistance arteries for ECs and VSMCs, respectively. Gene ontology analysis (GO-Biological Processes, GOBP) of scRNA-seq data discovered 562 and 270 pathways for ECs and VSMCs, respectively, that differed between large and small arteries. We identified eight and seven unique ECs and VSMCs subpopulations, respectively, with DEGs and pathways identified for each cluster. These results and this dataset allow the discovery and support of novel hypotheses needed to identify mechanisms that determine the phenotypic heterogeneity between conduit and resistance arteries.
Collapse
Affiliation(s)
- Jacob R Anderson
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Emily E Morin
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Kathryn J Brayer
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Sophia Salbato
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Laura V Gonzalez Bosc
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Jay S Naik
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| |
Collapse
|
10
|
Mark C, Callander NS, Chng K, Miyamoto S, Warrick J. Timelapse viability assay to detect division and death of primary multiple myeloma cells in response to drug treatments with single cell resolution. Integr Biol (Camb) 2022; 14:49-61. [PMID: 35653717 PMCID: PMC9175638 DOI: 10.1093/intbio/zyac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Heterogeneity among cancer cells and in the tumor microenvironment (TME) is thought to be a significant contributor to the heterogeneity of clinical therapy response observed between patients and can evolve over time. A primary example of this is multiple myeloma (MM), a generally incurable cancer where such heterogeneity contributes to the persistent evolution of drug resistance. However, there is a paucity of functional assays for studying this heterogeneity in patient samples or for assessing the influence of the patient TME on therapy response. Indeed, the population-averaged data provided by traditional drug response assays and the large number of cells required for screening remain significant hurdles to advancement. To address these hurdles, we developed a suite of accessible technologies for quantifying functional drug response to a panel of therapies in ex vivo three-dimensional culture using small quantities of a patient's own cancer and TME components. This suite includes tools for label-free single-cell identification and quantification of both cell division and death events with a standard brightfield microscope, an open-source software package for objective image analysis and feasible data management of multi-day timelapse experiments, and a new approach to fluorescent detection of cell death that is compatible with long-term imaging of primary cells. These new tools and capabilities are used to enable sensitive, objective, functional characterization of primary MM cell therapy response in the presence of TME components, laying the foundation for future studies and efforts to enable predictive assessment drug efficacy for individual patients.
Collapse
Affiliation(s)
- Christina Mark
- Cancer Biology Graduate Program, University of Wisconsin, Madison, WI 53705, USA
| | - Natalie S Callander
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Kenny Chng
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Shigeki Miyamoto
- Cancer Biology Graduate Program, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Jay Warrick
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53705, USA
- Salus Discovery, LLC, 110 E. Main St. Suite 815, Madison, WI 53703, USA
| |
Collapse
|
11
|
Kim HC, Jolly ER. LncRNAs Are Differentially Expressed between Wildtype and Cell Line Strains of African Trypanosomes. Noncoding RNA 2022; 8:ncrna8010007. [PMID: 35076577 PMCID: PMC8788480 DOI: 10.3390/ncrna8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma brucei is a parasitic protist that causes African sleeping sickness. The establishment of T. brucei cell lines has provided a significant advantage for the majority of T. brucei research. However, these cell lines were isolated and maintained in culture for decades, occasionally accumulating changes in gene expression. Since trypanosome strains have been maintained in culture for decades, it is possible that difference may have accumulated in fast-evolving non-coding RNAs between trypanosomes from the wild and those maintained extensively in cultures. To address this, we compared the lncRNA expression profile of trypanosomes maintained as cultured cell lines (CL) to those extracted from human patients, wildtype (WT). We identified lncRNAs from CL and WT from available transcriptomic data and demonstrate that CL and WT have unique sets of lncRNAs expressed. We further demonstrate that the unique and shared lncRNAs are differentially expressed between CL and WT parasites, and that these lncRNAs are more evenly up-regulated and down-regulated than protein-coding genes. We validated the expression of these lncRNAs using qPCR. Taken together, this study demonstrates that lncRNAs are differentially expressed between cell lines and wildtype T. brucei and provides evidence for potential evolution of lncRNAs, specifically in T. brucei maintained in culture.
Collapse
Affiliation(s)
- Hyung Chul Kim
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
12
|
Echeagaray O, Kim T, Casillas A, Monsanto M, Sussman M. Transcriptional features of biological age maintained in human cultured cardiac interstitial cells. Genomics 2021; 113:3705-3717. [PMID: 34509618 DOI: 10.1016/j.ygeno.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of cells is necessary in regenerative medicine to generate large populations for therapeutic use. Adaptation to culture conditions prompt an increase in transcriptome diversity and decreased population heterogeneity in cKit+ cardiac interstitial cells (cCICs). The "transcriptional memory" influenced by cellular origin remained unexplored and is likely to differ between neonatal versus senescent input cells undergoing culture expansion. Transcriptional profiles derived from single cell RNASEQ platforms characterized human cCIC derived from neonatal and adult source tissue. Bioinformatic analysis revealed contrasting imprint of age influencing targets of 1) cell cycle, 2) senescence associated secretory phenotype (SASP), 3) RNA transport, and 4) ECM-receptor/fibrosis. A small subset of cCICs exist in a transcriptional continuum between "youthful" phenotype and the damaged microenvironment of LVAD tissue in which they were embedded. The connate transcriptional phenotypes offer fundamental biological insight and highlights cellular input as a consideration in culture expansion and adoptive transfer protocols.
Collapse
Affiliation(s)
- Oscar Echeagaray
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Taeyong Kim
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Alex Casillas
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Megan Monsanto
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Mark Sussman
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA.
| |
Collapse
|
13
|
Domínguez-Bendala J, Qadir MMF, Pastori RL. Temporal single-cell regeneration studies: the greatest thing since sliced pancreas? Trends Endocrinol Metab 2021; 32:433-443. [PMID: 34006411 PMCID: PMC8239162 DOI: 10.1016/j.tem.2021.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
The application of single-cell analytic techniques to the study of stem/progenitor cell niches supports the emerging view that pancreatic cell lineages are in a state of flux between differentiation stages. For all their value, however, such analyses merely offer a snapshot of the cellular palette of the tissue at any given time point. Conclusions about potential developmental/regeneration paths are solely based on bioinformatics inferences. In this context, the advent of new techniques for the long-term culture and lineage tracing of human pancreatic slices offers a virtual window into the native organ and presents the field with a unique opportunity to serially resolve pancreatic regeneration dynamics at the single-cell level.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Armstrong DG, Orgill DP, Galiano R, Glat PM, Didomenico L, Reyzelman A, Snyder R, Li WW, Carter M, Zelen CM. A multicentre, randomised controlled clinical trial evaluating the effects of a novel autologous, heterogeneous skin construct in the treatment of Wagner one diabetic foot ulcers: Interim analysis. Int Wound J 2021; 19:64-75. [PMID: 33942506 PMCID: PMC8684853 DOI: 10.1111/iwj.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022] Open
Abstract
We desired to carefully evaluate a novel autologous heterogeneous skin construct in a prospective randomised clinical trial comparing this to a standard-of-care treatment in diabetic foot ulcers (DFUs). This study reports the interim analysis after the first half of the subjects have been analysed. Fifty patients (25 per group) with Wagner 1 ulcers were enrolled at 13 wound centres in the United States. Twenty-three subjects underwent the autologous heterogeneous skin construct harvest and application procedure once; two subjects required two applications due to loss of the first application. The primary endpoint was the proportion of wounds closed at 12 weeks. There were significantly more wounds closed in the treatment group (18/25; 72%) vs controls (8/25; 32%) at 12 weeks. The treatment group achieved significantly greater percent area reduction compared to the control group at every prespecified timepoint of 4, 6, 8, and 12 weeks. Thirty-eight adverse events occurred in 11 subjects (44%) in the treatment group vs 48 in 14 controls (56%), 6 of which required study removal. In the treatment group, there were no serious adverse events related to the index ulcer. Two adverse events (index ulcer cellulitis and bleeding) were possibly related to the autologous heterogeneous skin construct. Data from this planned interim analysis support that application of autologous heterogeneous skin construct may be potentially effective therapy for DFUs and provide supportive data to complete the planned study.
Collapse
Affiliation(s)
- David G Armstrong
- Department of Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert Galiano
- Division of Plastic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul M Glat
- Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | - Robert Snyder
- Clinical Research Barry University SPM, Brand Research Center, Barry University, Miami, Florida, USA
| | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| | | | - Charles M Zelen
- Department of Medical Education, The Professional Education and Research Institute (PERI), Roanoke, Virginia, USA
| |
Collapse
|
15
|
HER2-Targeted Immunotherapy and Combined Protocols Showed Promising Antiproliferative Effects in Feline Mammary Carcinoma Cell-Based Models. Cancers (Basel) 2021; 13:cancers13092007. [PMID: 33919468 PMCID: PMC8122524 DOI: 10.3390/cancers13092007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Mammary tumors are common in cats, presenting an aggressive behavior with high tumor recurrence. Therefore, new and efficient therapeutic protocols are urgent. Monoclonal antibodies (mAbs; ADC) are widely used in human breast cancer therapy, inhibiting the HER2 dimerization and leading to cell apoptosis. Furthermore, drug combinations, with tyrosine kinase inhibitors (TKi) are valuable in patients’ therapeutic protocols. In this study, two mAbs, and an ADC, as well as combined protocols between mAbs and mAbs plus lapatinib (TKi) were tested to address if the drugs could be used as new therapeutic options in feline mammary tumors. All the compounds and the combined treatments revealed valuable antiproliferative effects, and a conserved cell death mechanism, by apoptosis, in the feline cell lines, where the mutations found in the extracellular domain of the HER2 suggest no immunotherapy resistance. Abstract Feline mammary carcinoma (FMC) is a highly prevalent tumor, showing aggressive clinicopathological features, with HER2-positive being the most frequent subtype. While, in human breast cancer, the use of anti-HER2 monoclonal antibodies (mAbs) is common, acting by blocking the extracellular domain (ECD) of the HER2 protein and by inducing cell apoptosis, scarce information is available on use these immunoagents in FMC. Thus, the antiproliferative effects of two mAbs (trastuzumab and pertuzumab), of an antibody–drug conjugate compound (T-DM1) and of combined treatments with a tyrosine kinase inhibitor (lapatinib) were evaluated on three FMC cell lines (CAT-MT, FMCm and FMCp). In parallel, the DNA sequence of the her2 ECD (subdomains II and IV) was analyzed in 40 clinical samples of FMC, in order to identify mutations, which can lead to antibody resistance or be used as prognostic biomarkers. Results obtained revealed a strong antiproliferative effect in all feline cell lines, and a synergistic response was observed when combined therapies were performed. Additionally, the mutations found were not described as inducing resistance to therapy in breast cancer patients. Altogether, our results suggested that anti-HER2 mAbs could become useful in the treatment of FMC, particularly, if combined with lapatinib, since drug-resistance seems to be rare.
Collapse
|
16
|
Potassium Channels Kv1.3 and Kir2.1 But Not Kv1.5 Contribute to BV2 Cell Line and Primary Microglial Migration. Int J Mol Sci 2021; 22:ijms22042081. [PMID: 33669857 PMCID: PMC7923211 DOI: 10.3390/ijms22042081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: As membrane channels contribute to different cell functions, understanding the underlying mechanisms becomes extremely important. A large number of neuronal channels have been investigated, however, less studied are the channels expressed in the glia population, particularly in microglia. In the present study, we focused on the function of the Kv1.3, Kv1.5 and Kir2.1 potassium channels expressed in both BV2 cells and primary microglia cultures, which may impact the cellular migration process. (2) Methods: Using an immunocytochemical approach, we were able to show the presence of the investigated channels in BV2 microglial cells, record their currents using a patch clamp and their role in cell migration using the scratch assay. The migration of the primary microglial cells in culture was assessed using cell culture inserts. (3) Results: By blocking each potassium channel, we showed that Kv1.3 and Kir2.1 but not Kv1.5 are essential for BV2 cell migration. Further, primary microglial cultures were obtained from a line of transgenic CX3CR1-eGFP mice that express fluorescent labeled microglia. The mice were subjected to a spared nerve injury model of pain and we found that microglia motility in an 8 µm insert was reduced 2 days after spared nerve injury (SNI) compared with sham conditions. Additional investigations showed a further impact on cell motility by specifically blocking Kv1.3 and Kir2.1 but not Kv1.5; (4) Conclusions: Our study highlights the importance of the Kv1.3 and Kir2.1 but not Kv1.5 potassium channels on microglia migration both in BV2 and primary cell cultures.
Collapse
|
17
|
Seumois G, Ramírez-Suástegui C, Schmiedel BJ, Liang S, Peters B, Sette A, Vijayanand P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol 2021; 5:5/48/eaba6087. [PMID: 32532832 DOI: 10.1126/sciimmunol.aba6087] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
CD4+ T helper (TH) cells and regulatory T (Treg) cells that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and nonasthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous and certain subsets are quantitatively and qualitatively different in individuals with HDM-reactive asthma. The number of interleukin-9 (IL-9)-expressing HDM-reactive TH cells is greater in asthmatics with HDM allergy compared with nonasthmatics with HDM allergy, and this IL-9-expressing TH subset displays enhanced pathogenic properties. More HDM-reactive TH and Treg cells expressing the interferon response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, tumor necrosis factor-related apoptosis-inducing ligand, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Collapse
Affiliation(s)
- Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | - Shu Liang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Clinical and Experimental Sciences, National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
18
|
Reyes-Bermudez A, Hidaka M, Mikheyev A. Transcription Profiling of Cultured Acropora digitifera Adult Cells Reveals the Existence of Ancestral Genome Regulatory Modules Underlying Pluripotency and Cell Differentiation in Cnidaria. Genome Biol Evol 2021; 13:6121108. [PMID: 33501945 PMCID: PMC7936024 DOI: 10.1093/gbe/evab008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Due to their pluripotent nature and unlimited cell renewal, stem cells have been proposed as an ideal material for establishing long-term cnidarian cell cultures. However, the lack of unifying principles associated with "stemness" across the phylum complicates stem cells' identification and isolation. Here, we for the first time report gene expression profiles for cultured coral cells, focusing on regulatory gene networks underlying pluripotency and differentiation. Cultures were initiated from Acropora digitifera tip fragments, the fastest growing tissue in Acropora. Overall, in vitro transcription resembled early larvae, overexpressing orthologs of premetazoan and Hydra stem cell markers, and transcripts with roles in cell division, migration, and differentiation. Our results suggest the presence of pluripotent cell types in cultures and indicate the existence of ancestral genome regulatory modules underlying pluripotency and cell differentiation in cnidaria. Cultured cells appear to be synthesizing protein, differentiating, and proliferating.
Collapse
Affiliation(s)
| | - Michio Hidaka
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Okinawa, Japan
| | - Alexander Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.,Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
19
|
Bryja A, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Wieczorkiewicz M, Bukowska D, Antosik P, Bryl R, Skowroński MT, Jaśkowski JM, Mozdziak P, Angelova Volponi A, Shibli JA, Kempisty B, Dyszkiewicz-Konwińska M. New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture. Animals (Basel) 2020; 10:ani10111938. [PMID: 33105567 PMCID: PMC7690285 DOI: 10.3390/ani10111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Wound healing and vascularization mechanisms are key steps in the complex morphological process of tissue reconstruction. Additionally, these processes in the oral cavity are more rapid than in the skin and result in less scar formation. Epithelial cells and fibroblasts play an important role in the process of wound healing. In our study, we focused on fibroblasts and monitored changes in gene expression during their in vitro culture. Based on the analysis, we distinguished three groups of processes that play important roles in tissue regeneration: response to wounding, wound healing and vascularization. We identified genes that were involved in all three processes. These genes could be selected as tissue specific repair markers for oral fibroblasts. Abstract The mechanisms of wound healing and vascularization are crucial steps of the complex morphological process of tissue reconstruction. In addition to epithelial cells, fibroblasts play an important role in this process. They are characterized by dynamic proliferation and they form the stroma for epithelial cells. In this study, we have used primary cultures of oral fibroblasts, obtained from porcine buccal mucosa. Cells were maintained long-term in in vitro conditions, in order to investigate the expression profile of the molecular markers involved in wound healing and vascularization. Based on the Affymetrix assays, we have observed three ontological groups of markers as wound healing group, response to wounding group and vascularization group, represented by different genes characterized by their expression profile during long-term primary in vitro culture (IVC) of porcine oral fibroblasts. Following the analysis of gene expression in three previously identified groups of genes, we have identified that transforming growth factor beta 1 (TGFB1), ITGB3, PDPN, and ETS1 are involved in all three processes, suggesting that these genes could be recognized as markers of repair specific for oral fibroblasts within the porcine mucosal tissue.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Góra, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (D.B.); (J.M.J.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.W.); (M.T.S.)
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (D.B.); (J.M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos SP 07030-010, Brazil;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
20
|
Jamil MA, Singer H, Al-Rifai R, Nüsgen N, Rath M, Strauss S, Andreou I, Oldenburg J, El-Maarri O. Molecular Analysis of Fetal and Adult Primary Human Liver Sinusoidal Endothelial Cells: A Comparison to Other Endothelial Cells. Int J Mol Sci 2020; 21:E7776. [PMID: 33096636 PMCID: PMC7589710 DOI: 10.3390/ijms21207776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/27/2023] Open
Abstract
In humans, Factor VIII (F8) deficiency leads to hemophilia A and F8 is largely synthesized and secreted by the liver sinusoidal endothelial cells (LSECs). However, the specificity and characteristics of these cells in comparison to other endothelial cells is not well known. In this study, we performed genome wide expression and CpG methylation profiling of fetal and adult human primary LSECs together with other fetal primary endothelial cells from lung (micro-vascular and arterial), and heart (micro-vascular). Our results reveal expression and methylation markers distinguishing LSECs at both fetal and adult stages. Differential gene expression of fetal LSECs in comparison to other fetal endothelial cells pointed to several differentially regulated pathways and biofunctions in fetal LSECs. We used targeted bisulfite resequencing to confirm selected top differentially methylated regions. We further designed an assay where we used the selected methylation markers to test the degree of similarity of in-house iPS generated vascular endothelial cells to primary LSECs; a higher similarity was found to fetal than to adult LSECs. In this study, we provide a detailed molecular profile of LSECs and a guide to testing the effectiveness of production of in vitro differentiated LSECs.
Collapse
Affiliation(s)
- Muhammad Ahmer Jamil
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| | - Heike Singer
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| | - Rawya Al-Rifai
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| | - Nicole Nüsgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| | - Melanie Rath
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| | | | | | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.A.J.); (H.S.); (R.A.-R.); (N.N.); (M.R.); (J.O.)
| |
Collapse
|
21
|
Januszyk M, Chen K, Henn D, Foster DS, Borrelli MR, Bonham CA, Sivaraj D, Wagh D, Longaker MT, Wan DC, Gurtner GC. Characterization of Diabetic and Non-Diabetic Foot Ulcers Using Single-Cell RNA-Sequencing. MICROMACHINES 2020; 11:mi11090815. [PMID: 32872278 PMCID: PMC7570277 DOI: 10.3390/mi11090815] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Background: Recent advances in high-throughput single-cell sequencing technologies have led to their increasingly widespread adoption for clinical applications. However, challenges associated with tissue viability, cell yield, and delayed time-to-capture have created unique obstacles for data processing. Chronic wounds, in particular, represent some of the most difficult target specimens, due to the significant amount of fibrinous debris, extracellular matrix components, and non-viable cells inherent in tissue routinely obtained from debridement. Methods: Here, we examined the feasibility of single cell RNA sequencing (scRNA-seq) analysis to evaluate human chronic wound samples acquired in the clinic, subjected to prolonged cold ischemia time, and processed without FACS sorting. Wound tissue from human diabetic and non-diabetic plantar foot ulcers were evaluated using an optimized 10X Genomics scRNA-seq platform and analyzed using a modified data pipeline designed for low-yield specimens. Cell subtypes were identified informatically and their distributions and transcriptional programs were compared between diabetic and non-diabetic tissue. Results: 139,000 diabetic and non-diabetic wound cells were delivered for 10X capture after either 90 or 180 min of cold ischemia time. cDNA library concentrations were 858.7 and 364.7 pg/µL, respectively, prior to sequencing. Among all barcoded fragments, we found that 83.5% successfully aligned to the human transcriptome and 68% met the minimum cell viability threshold. The average mitochondrial mRNA fraction was 8.5% for diabetic cells and 6.6% for non-diabetic cells, correlating with differences in cold ischemia time. A total of 384 individual cells were of sufficient quality for subsequent analyses; from this cell pool, we identified transcriptionally-distinct cell clusters whose gene expression profiles corresponded to fibroblasts, keratinocytes, neutrophils, monocytes, and endothelial cells. Fibroblast subpopulations with differing fibrotic potentials were identified, and their distributions were found to be altered in diabetic vs. non-diabetic cells. Conclusions: scRNA-seq of clinical wound samples can be achieved using minor modifications to standard processing protocols and data analysis methods. This simple approach can capture widespread transcriptional differences between diabetic and non-diabetic tissue obtained from matched wound locations.
Collapse
Affiliation(s)
- Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Deshka S. Foster
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Mimi R. Borrelli
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Clark A. Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Dhananjay Wagh
- Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Geoffrey C. Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
- Correspondence: ; Tel.: +1-650-736-2776
| |
Collapse
|
22
|
Armstrong DG, Orgill DP, Galiano R, Glat PM, Carter M, Zelen CM, Li WW. Complete wound closure following a single topical application of a novel autologous homologous skin construct: first evaluation in an open-label, single-arm feasibility study in diabetic foot ulcers. Int Wound J 2020; 17:1366-1375. [PMID: 32453512 PMCID: PMC7540349 DOI: 10.1111/iwj.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a growing burden on patients and health care systems that often require multiple treatments of both conventional and advanced modalities to achieve complete wound closure. A novel autologous homologous skin construct (AHSC) has been developed to treat cutaneous defects with a single topical application, by leveraging the endogenous repair capabilities of the patient's healthy skin. The AHSC's ability to close DFUs with a single treatment was evaluated in an open-label, single-arm feasibility study. Eleven patients with DFUs extending up to tendon, bone, or capsule received a single topical application of AHSC. Closure was documented weekly with high-resolution digital photography and wound planimetry. All 11 DFUs demonstrated successful graft take. Ten DFUs closed within 8 weeks. The median time-to-complete closure was 25 days. The mean percent area reduction for all 11 wounds at 4 weeks was 83%. There were no adverse events related to the AHSC treatment site. This pilot study demonstrated AHSC may be a viable single application topical intervention for DFUs and warrants investigation in larger, controlled studies.
Collapse
Affiliation(s)
- David G Armstrong
- Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | | | - Robert Galiano
- Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Paul M Glat
- Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Charles M Zelen
- The Professional Education and Research Institute (PERI), Roanoke, Virginia, USA
| | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Munro MJ, Peng L, Wickremesekera SK, Tan ST. Colon adenocarcinoma-derived cells that express induced-pluripotent stem cell markers possess stem cell function. PLoS One 2020; 15:e0232934. [PMID: 32428045 PMCID: PMC7236985 DOI: 10.1371/journal.pone.0232934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
AIMS Much work has been done to find markers of cancer stem cells (CSCs) that distinguish them from the tumor bulk cells and normal cells. Recent CSC research has applied the induced pluripotent stem cell (iPSC) concept. In this study, we investigated the expression of a panel of iPSC markers in primary colon adenocarcinoma (CA)-derived cell lines. MATERIALS AND METHODS Expression of iPSC markers by CA-derived primary cell lines was interrogated using immunocytochemistry, western blotting and RT-qPCR. The stem cell function of these cells was then assessed in vitro using differentiation and tumorsphere assays. RESULTS Expression of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC was more widespread in high-grade CA (HGCA) cell lines than low-grade CA (LGCA) cell lines, as demonstrated by western blotting and RT-qPCR. These cells could be induced to differentiate down the three embryonic lineages. Cells derived from HGCA were more capable of forming tumorspheres than those derived from LGCA. EpCAM sorting revealed that a population enriched for EpCAMHigh cells formed larger tumorspheres than EpCAMLow cells. Pluripotency markers, SSEA4 and TRA-1-60, were co-expressed by a small subpopulation of cells that also co-expressed SOX2 in 75% and OCT4 in 50% of the cell lines. CONCLUSIONS CA-derived primary cell lines contain tumorsphere-forming cells which express key pluripotency genes and can differentiate down 3 embryonic lineages, suggesting a pluripotent CSC-like phenotype. There appear to be two iPSC-like subpopulations, one with high EpCAM expression which forms larger tumorspheres than another with low EpCAM expression. Furthermore, these cells can be characterized based on iPSC marker expression, as we have previously demonstrated in the original CA tumor tissues.
Collapse
Affiliation(s)
- Matthew J. Munro
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susrutha K. Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of General Surgery, Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Wellington Regional Hospital, Wellington, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
24
|
O'Hara R, Tedone E, Ludlow A, Huang E, Arosio B, Mari D, Shay JW. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Res 2019; 29:1878-1888. [PMID: 31548359 PMCID: PMC6836731 DOI: 10.1101/gr.250480.119] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are involved in a number of diverse cellular functions, including energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, and motility, as well as free radical generation. Mitochondrial DNA (mtDNA) is present at hundreds to thousands of copies per cell in a tissue-specific manner. mtDNA copy number also varies during aging and disease progression and therefore might be considered as a biomarker that mirrors alterations within the human body. Here, we present a new quantitative, highly sensitive droplet digital PCR (ddPCR) method, droplet digital mitochondrial DNA measurement (ddMDM), to measure mtDNA copy number not only from cell populations but also from single cells. Our developed assay can generate data in as little as 3 h, is optimized for 96-well plates, and also allows the direct use of cell lysates without the need for DNA purification or nuclear reference genes. We show that ddMDM is able to detect differences between samples whose mtDNA copy number was close enough as to be indistinguishable by other commonly used mtDNA quantitation methods. By utilizing ddMDM, we show quantitative changes in mtDNA content per cell across a wide variety of physiological contexts including cancer progression, cell cycle progression, human T cell activation, and human aging.
Collapse
Affiliation(s)
- Ryan O'Hara
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Enzo Tedone
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ejun Huang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, 20122 Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, 20122 Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
25
|
Dessels C, Ambele MA, Pepper MS. The effect of medium supplementation and serial passaging on the transcriptome of human adipose-derived stromal cells expanded in vitro. Stem Cell Res Ther 2019; 10:253. [PMID: 31412930 PMCID: PMC6694630 DOI: 10.1186/s13287-019-1370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND For adipose-derived stromal cells (ASCs) to be safe for use in the clinical setting, they need to be prepared using good manufacturing practices (GMPs). Fetal bovine serum (FBS), used to expand ASCs in vitro in some human clinical trials, runs the risk of xenoimmunization and zoonotic disease transmission. To ensure that GMP standards are maintained, pooled human platelet lysate (pHPL) has been used as an alternative to FBS. ASCs proliferate more rapidly in pHPL than in FBS, with no significant change in immunophenotype and differentiation capacity. However, not much is known about how pHPL affects the transcriptome of these cells. METHODS This study investigated the effect of pHPL and FBS on the ASC transcriptome during in vitro serial expansion from passage 0 to passage 5 (P0 to P5). RNA was isolated from ASCs at each passage and hybridized to Affymetrix HuGene 2.0 ST arrays for gene expression analysis. RESULTS We observed that the transcriptome of ASCs expanded in pHPL (pHPL-ASCs) and FBS (FBS-ASCs) had the greatest change in gene expression at P2. Gene ontology revealed that genes upregulated in pHPL-ASCs were enriched for cell cycle, migration, motility, and cell-cell interaction processes, while those in FBS-ASCs were enriched for immune response processes. ASC transcriptomes were most homogenous from P2 to P5 in FBS and from P3 to P5 in pHPL. FBS- and pHPL-gene-specific signatures were observed, which could be used as markers to identify cells previously grown in either FBS or pHPL for downstream clinical/research applications. The number of genes constituting the FBS-specific effect was 3 times greater than for pHPL, suggesting that pHPL may be a milder supplement for cell expansion. A set of genes were expressed in ASCs at all passages and in both media. This suggests that a unique ASC in vitro transcriptomic profile exists that is independent of the passage number or medium used. CONCLUSIONS GO classification revealed that pHPL-ASCs are more involved in cell cycle processes and cellular proliferation when compared to FBS-ASCs, which are involved in more specialized or differentiation processes like cardiovascular and vascular development. This makes pHPL a potential superior supplement for expanding ASCs as they retain their proliferative capacity, remain untransformed and pHPL does not affect the genes involved in differentiation in specific developmental processes.
Collapse
Affiliation(s)
- Carla Dessels
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| | - Melvin A Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, PO Box 1266, Pretoria, 0001, South Africa
| | - Michael S Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| |
Collapse
|
26
|
Isolation of fresh endothelial cells from porcine heart for cardiovascular studies: a new fast protocol suitable for genomic, transcriptomic and cell biology studies. BMC Mol Cell Biol 2019; 20:32. [PMID: 31409295 PMCID: PMC6693209 DOI: 10.1186/s12860-019-0215-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022] Open
Abstract
Background Endothelial cells (ECs) play a key role in tissue homeostasis, in several pathological conditions, and specifically in the control of vascular functions. ECs are frequently used as in vitro model systems for cardiovascular studies and vascular biology. The porcine model is commonly used in human clinical cardiovascular studies. Currently, however, there is no robust protocol for the isolation of porcine heart ECs. We have developed a fast isolation protocol, which is cost effective, takes only 1–2 h, and produces EC purity of over 97%. This protocol is optimized for porcine hearts but can be adapted for use with other large animals. Methods Heart is washed by flushing with PBS, whereafter endothelial cells are detached by collagenase incubation and the cells can then be collected immediately after the incubation and plated within an hour after the heart is isolated from a pig. Results The swiftness of the protocol limits changes in the phenotype and RNA expression profile of the cells. Cells were identified as ECs with CD31 (PECAM-1) antibody immunostaining. Functionality of ECs were ensured with in vitro angiogenesis assay. The purity of the ECs was verified by using fluorescence assisted cell sorting (FACS) with the CD31 antibody. Conclusion We developed a new, fast, and cost-effective isolation method for pig heart ECs. Successful isolation of pure ECs is a prerequisite for several cardiovascular and vascular biology studies.
Collapse
|
27
|
Zyrianova T, Basova LV, Makarenkova H. Isolation of Myoepithelial Cells from Adult Murine Lacrimal and Submandibular Glands. J Vis Exp 2019. [PMID: 31259892 DOI: 10.3791/59602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lacrimal gland (LG) is an exocrine tubuloacinar gland that secretes an aqueous layer of tear film. The LG epithelial tree is comprised of acinar, ductal epithelial, and myoepithelial cells (MECs). MECs express alpha smooth muscle actin (αSMA) and have a contractile function. They are found in multiple glandular organs and are of ectodermal origin. In addition, the LG contains SMA+ vascular smooth muscle cells of endodermal origin called pericytes: contractile cells that envelop the surface of vascular tubes. A new protocol allows us to isolate both MECs and pericytes from adult murine LGs and submandibular glands (SMGs). The protocol is based on the genetic labeling of MECs and pericytes using the SMACreErt2/+:Rosa26-TdTomatofl/fl mouse strain, followed by preparation of the LG single-cell suspension for fluorescence activated cell sorting (FACS). The protocol allows for the separation of these two cell populations of different origins based on the expression of the epithelial cell adhesion molecule (EpCAM) by MECs, whereas pericytes do not express EpCAM. Isolated cells could be used for cell cultivation or gene expression analysis.
Collapse
Affiliation(s)
| | - Liana V Basova
- Department of Molecular Medicine, The Scripps Research Institute
| | | |
Collapse
|
28
|
Granick MS, Baetz NW, Labroo P, Milner S, Li WW, Sopko NA. In vivo expansion and regeneration of full-thickness functional skin with an autologous homologous skin construct: Clinical proof of concept for chronic wound healing. Int Wound J 2019; 16:841-846. [PMID: 30868746 PMCID: PMC6850009 DOI: 10.1111/iwj.13109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
A new cell‐tissue technology uses a patient's skin to create an in vivo expanding and self‐organising full‐thickness skin autograft derived from potent cutaneous appendages. This autologous homologous skin construct (AHSC) is manufactured from a small full‐thickness skin harvest obtained from an uninjured area of the patient. All the harvested tissue is incorporated into the AHSC including the endogenous regenerative cellular populations responsible for skin maintenance and repair, which are activated during the manufacturing process. Without any exogenous supplementation or culturing, the AHSC is swiftly returned to the patient's wound bed, where it expands and closes the defect from the inside out with full‐thickness fully functional skin. AHSC was applied to a greater than two‐year old large (200 cm2) chronic wound refractory to multiple failed split‐thickness skin grafts. Complete epithelial coverage was achieved in 8 weeks, and complete wound coverage with full‐thickness functional skin occurred in 12 weeks. At 6‐month follow‐up, the wound remained covered with full‐thickness skin, grossly equivalent to surrounding native skin qualitatively and quantitatively equivalent across multiple functions and characteristics, including sensation, hair follicle morphology, bio‐impedance and composition, pigment regeneration, and gland production.
Collapse
Affiliation(s)
- Mark S Granick
- Division of Plastic Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Nicholas W Baetz
- Department of Research and Development, PolarityTE, Inc., Salt Lake City, Utah
| | - Pratima Labroo
- Department of Research and Development, PolarityTE, Inc., Salt Lake City, Utah
| | - Stephen Milner
- Department of Research and Development, PolarityTE, Inc., Salt Lake City, Utah
| | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts
| | - Nikolai A Sopko
- Department of Research and Development, PolarityTE, Inc., Salt Lake City, Utah
| |
Collapse
|
29
|
Li Yim AYF, de Bruyn JR, Duijvis NW, Sharp C, Ferrero E, de Jonge WJ, Wildenberg ME, Mannens MMAM, Buskens CJ, D’Haens GR, Henneman P, te Velde AA. A distinct epigenetic profile distinguishes stenotic from non-inflamed fibroblasts in the ileal mucosa of Crohn's disease patients. PLoS One 2018; 13:e0209656. [PMID: 30589872 PMCID: PMC6307755 DOI: 10.1371/journal.pone.0209656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The chronic remitting and relapsing intestinal inflammation characteristic of Crohn's disease frequently leads to fibrosis and subsequent stenosis of the inflamed region. Approximately a third of all Crohn's disease patients require resection at some stage in their disease course. As the pathogenesis of Crohn's disease associated fibrosis is largely unknown, a strong necessity exists to better understand the pathophysiology thereof. METHODS In this study, we investigated changes of the DNA methylome and transcriptome of ileum-derived fibroblasts associated to the occurrence of Crohn's disease associated fibrosis. Eighteen samples were included in a DNA methylation array and twenty-one samples were used for RNA sequencing. RESULTS Most differentially methylated regions and differentially expressed genes were observed when comparing stenotic with non-inflamed samples. By contrast, few differences were observed when comparing Crohn's disease with non-Crohn's disease, or inflamed with non-inflamed tissue. Integrative methylation and gene expression analyses revealed dysregulation of genes associated to the PRKACA and E2F1 network, which is involved in cell cycle progression, angiogenesis, epithelial to mesenchymal transition, and bile metabolism. CONCLUSION Our research provides evidence that the methylome and the transcriptome are systematically dysregulated in stenosis-associated fibroblasts.
Collapse
Affiliation(s)
- Andrew Y. F. Li Yim
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Jessica R. de Bruyn
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolette W. Duijvis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Catriona Sharp
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Enrico Ferrero
- Computational Biology, Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel M. A. M. Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anje A. te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
30
|
Dessels C, Durandt C, Pepper MS. Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion. Platelets 2018; 30:356-367. [PMID: 29553865 DOI: 10.1080/09537104.2018.1445840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pooled human platelet lysate (pHPL) has been used to expand adipose-derived stromal cells (ASCs) and can be formulated using fresh or expired buffy coats (BCs) which are then resuspended in either plasma or an additive solution. Not much is known about the effects that expired products and additive solutions have on ASC expansion, and the need for quality control and release criteria has been expressed. This pilot study compared proliferation, cell size, morphology and immunophenotype of ASCs expanded in the different pHPL alternatives versus foetal bovine serum (FBS). Quality control criteria were assessed prior to and during the manufacture of the pHPL alternatives. ASCs were then expanded in 1%, 2.5%, 5% or 10% of the different pHPL alternatives or in 10% FBS. Cell size, morphology, cell number and immunophenotype were measured using microscopy and flow cytometry. The majority of the pHPL alternatives were within the recommended ranges for the quality control criteria. ASCs expanded in the pHPL alternatives were smaller in size, displayed a tighter spindle-shaped morphology, increased cell growth and had a similar immunophenotype (with the exception of CD34 and CD36) when compared to ASCs expanded in FBS. Here we report on the effects that expired BC products and additive solutions have on ASC expansion. When taken together, our findings indicate that all of the pHPL alternatives can be considered to be suitable replacements for FBS for ASC expansion, and that expired BC products can be used as an alternative to fresh BC products.
Collapse
Affiliation(s)
- Carla Dessels
- a Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Chrisna Durandt
- a Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Michael S Pepper
- a Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
31
|
Duscher D, Maan ZN, Luan A, Aitzetmüller MM, Brett EA, Atashroo D, Whittam AJ, Hu MS, Walmsley GG, Houschyar KS, Schilling AF, Machens HG, Gurtner GC, Longaker MT, Wan DC. Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells. Cytotherapy 2017; 19:1491-1500. [PMID: 28917626 PMCID: PMC5723208 DOI: 10.1016/j.jcyt.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS Regenerative medicine employs human mesenchymal stromal cells (MSCs) for their multi-lineage plasticity and their pro-regenerative cytokine secretome. Adipose-derived mesenchymal stromal cells (ASCs) are concentrated in fat tissue, and the ease of harvest via liposuction makes them a particularly interesting cell source. However, there are various liposuction methods, and few have been assessed regarding their impact on ASC functionality. Here we study the impact of the two most popular ultrasound-assisted liposuction (UAL) devices currently in clinical use, VASER (Solta Medical) and Lysonix 3000 (Mentor) on ASCs. METHODS After lipoaspirate harvest and processing, we sorted for ASCs using fluorescent-assisted cell sorting based on an established surface marker profile (CD34+CD31-CD45-). ASC yield, viability, osteogenic and adipogenic differentiation capacity and in vivo regenerative performance were assessed. RESULTS Both UAL samples demonstrated equivalent ASC yield and viability. VASER UAL ASCs showed higher osteogenic and adipogenic marker expression, but a comparable differentiation capacity was observed. Soft tissue healing and neovascularization were significantly enhanced via both UAL-derived ASCs in vivo, and there was no significant difference between the cell therapy groups. CONCLUSIONS Taken together, our data suggest that UAL allows safe and efficient harvesting of the mesenchymal stromal cellular fraction of adipose tissue and that cells harvested via this approach are suitable for cell therapy and tissue engineering applications.
Collapse
Affiliation(s)
- Dominik Duscher
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Zeshaan N Maan
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Luan
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias M Aitzetmüller
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elizabeth A Brett
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Atashroo
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Hu
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham G Walmsley
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Khosrow S Houschyar
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Germany
| | - Arndt F Schilling
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Division for Research and Development, Department for Traumatology, Orthopedic and Plastic Surgery, Göttingen University, Germany
| | - Hans-Guenther Machens
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Geoffrey C Gurtner
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C Wan
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Mancarci BO, Toker L, Tripathy SJ, Li B, Rocco B, Sibille E, Pavlidis P. Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data. eNeuro 2017; 4:ENEURO.0212-17.2017. [PMID: 29204516 PMCID: PMC5707795 DOI: 10.1523/eneuro.0212-17.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single-cell RNA-sequencing (RNA-seq) studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets (MGSs) in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at www.neuroexpresso.org.
Collapse
Affiliation(s)
- B. Ogan Mancarci
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Lilah Toker
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Shreejoy J. Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Brenna Li
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Brad Rocco
- Campbell Family Mental Health Research Institute of CAMH
- Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Vancouver M5S 1A8, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH
- Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Vancouver M5S 1A8, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
33
|
Paulson JN, Chen CY, Lopes-Ramos CM, Kuijjer ML, Platig J, Sonawane AR, Fagny M, Glass K, Quackenbush J. Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data. BMC Bioinformatics 2017; 18:437. [PMID: 28974199 PMCID: PMC5627434 DOI: 10.1186/s12859-017-1847-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Although ultrahigh-throughput RNA-Sequencing has become the dominant technology for genome-wide transcriptional profiling, the vast majority of RNA-Seq studies typically profile only tens of samples, and most analytical pipelines are optimized for these smaller studies. However, projects are generating ever-larger data sets comprising RNA-Seq data from hundreds or thousands of samples, often collected at multiple centers and from diverse tissues. These complex data sets present significant analytical challenges due to batch and tissue effects, but provide the opportunity to revisit the assumptions and methods that we use to preprocess, normalize, and filter RNA-Seq data - critical first steps for any subsequent analysis. RESULTS We find that analysis of large RNA-Seq data sets requires both careful quality control and the need to account for sparsity due to the heterogeneity intrinsic in multi-group studies. We developed Yet Another RNA Normalization software pipeline (YARN), that includes quality control and preprocessing, gene filtering, and normalization steps designed to facilitate downstream analysis of large, heterogeneous RNA-Seq data sets and we demonstrate its use with data from the Genotype-Tissue Expression (GTEx) project. CONCLUSIONS An R package instantiating YARN is available at http://bioconductor.org/packages/yarn .
Collapse
Affiliation(s)
- Joseph N. Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
- Present address: Genentech, Department of Biostatistics, Product Development, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Cho-Yi Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
| | - Camila M. Lopes-Ramos
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
| | - Marieke L. Kuijjer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
| | - John Platig
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
| | - Abhijeet R. Sonawane
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215 USA
| | - Maud Fagny
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
| | - Kimberly Glass
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215 USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215 USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| |
Collapse
|
34
|
Challenges in endometriosis miRNA studies — From tissue heterogeneity to disease specific miRNAs. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2282-2292. [DOI: 10.1016/j.bbadis.2017.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
|
35
|
Lee NE, Kim SJ, Yang SJ, Joo SY, Park H, Lee KW, Yang HM, Park JB. Comparative characterization of mesenchymal stromal cells from multiple abdominal adipose tissues and enrichment of angiogenic ability via CD146 molecule. Cytotherapy 2017; 19:170-180. [DOI: 10.1016/j.jcyt.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
|
36
|
Duscher D, Luan A, Rennert RC, Atashroo D, Maan ZN, Brett EA, Whittam AJ, Ho N, Lin M, Hu MS, Walmsley GG, Wenny R, Schmidt M, Schilling AF, Machens HG, Huemer GM, Wan DC, Longaker MT, Gurtner GC. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. J Transl Med 2016; 14:126. [PMID: 27153799 PMCID: PMC4859988 DOI: 10.1186/s12967-016-0881-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 01/22/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. ASCs are abundant in fat tissue, which can be safely harvested through the minimally invasive procedure of liposuction. However, there exist a variety of different harvesting methods, with unclear impact on ASC regenerative potential. The aim of this study was thus to compare the functionality of ASCs derived from the common technique of suction-assisted lipoaspiration (SAL) versus resection. Methods Human adipose tissue was obtained from paired abdominoplasty and SAL samples from three female donors, and was processed to isolate the stromal vascular fraction. Fluorescence-activated cell sorting was used to determine ASC yield, and cell viability was assayed. Adipogenic and osteogenic differentiation capacity were assessed in vitro using phenotypic staining and quantification of gene expression. Finally, ASCs were applied in an in vivo model of tissue repair to evaluate their regenerative potential. Results SAL specimens provided significantly fewer ASCs when compared to excised fat tissue, however, with equivalent viability. SAL-derived ASCs demonstrated greater expression of the adipogenic markers FABP-4 and LPL, although this did not result in a difference in adipogenic differentiation. There were no differences detected in osteogenic differentiation capacity as measured by alkaline phosphatase, mineralization or osteogenic gene expression. Both SAL- and resection-derived ASCs enhanced significantly cutaneous healing and vascularization in vivo, with no significant difference between the two groups. Conclusion SAL provides viable ASCs with full capacity for multi-lineage differentiation and tissue regeneration, and is an effective method of obtaining ASCs for cell-based therapies.
Collapse
Affiliation(s)
- Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria. .,Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany.
| | - Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth A Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalie Ho
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Lin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raphael Wenny
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Manfred Schmidt
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Arndt F Schilling
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Georg M Huemer
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|