1
|
Li L, Feng A, Lu J, Liu H, Xue W, Cui H. Evaluating the therapeutic efficacy of ozone liquid dressing in healing wounds associated with bullous pemphigoid. Sci Rep 2025; 15:7205. [PMID: 40021673 PMCID: PMC11871336 DOI: 10.1038/s41598-025-90563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
Bullous pemphigoid (BP) is a chronic autoimmune condition characterized by painful blistering wounds. While effective, conventional treatments often have significant side effects. This study evaluates the therapeutic efficacy of Ozone Liquid Dressing (OLD), an innovative adjunct treatment, in enhancing wound healing, reducing infection rates, and alleviating pain associated with BP. A total of 120 BP patients were assigned to either an observation group (standard care + OLD) or a control group (standard care alone). The dressing was applied daily until wound healing, or the two-week observation period concluded. Efficacy was measured by healing rates, infection reduction (assessed by positive bacterial cultures in wound exudates), and pain levels (assessed by the Numeric Rating Scale, NRS). Statistical analyses were performed using SPSS software, employing t-tests and Chi-square tests as appropriate. The observation group showed significantly higher complete healing rates (61.70% vs. 38.33%, p < 0.05) compared to the control group. In terms of overall efficacy, the observation group achieved 91.70%, compared to the control group's 80.00% (p = 0.116). A marked reduction in positive bacterial cultures was observed in the observation group, beginning on day 3 (p < 0.01), and pain scores decreased significantly by day 10 (p < 0.001). OLD significantly enhances wound healing and reduces pain in BP patients, demonstrating clinical potential. Further studies are necessary to confirm the long-term benefits and clinical applicability of OLD in managing BP wounds.
Collapse
Affiliation(s)
- Li Li
- Department of Nursing, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - A'chong Feng
- Nursing College, Shanxi Medical University, Taiyuan, 030607, Shanxi Province, China
| | - Jianyun Lu
- Department of Dermatological, The Central South University Xiangya III hospital, Changsha, 410013, Hunan Province, China
| | - Hongye Liu
- Department of Dermatological, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, China
| | - Wenli Xue
- Department of Dermatological, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, China
| | - Hongzhou Cui
- Department of Dermatological, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
2
|
Mizuno M, Suda D, Matsumura C, Sekiya I. Changeover method for biosafety cabinets using ozone gas. PLoS One 2025; 20:e0318006. [PMID: 39874382 PMCID: PMC11774351 DOI: 10.1371/journal.pone.0318006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process. The utility of this device against bacteria, including endotoxins, endospores, and fungi endemic to human tissues, could facilitate safe and reproducible production changeovers through a simplified, one-button operation. This study focused on bacteria resistant to conventional cleaning protocols, specifically targeting endospore-forming bacteria with robust resistance to disinfectants, spore-forming fungi, and included analyses of endotoxins. The effects of ozone exposure on Pseudomonas aeruginosa (an endotoxin-producing bacterium), Bacillus subtilis (an endospore-forming bacterium), and Aspergillus brasiliensis (a spore-forming fungus) were assessed. In the dedicated biosafety cabinet equipped with an ozone generator, the treatment group exposed to ozone showed a significant reduction in both colony-forming units and endotoxin levels in Pseudomonas aeruginosa at 1.0 × 104 colony-forming units (CFUs) compared to the control group. Moreover, the ozone treatment markedly decreased the colony formation of Bacillus subtilis endospores and Aspergillus brasiliensis spores. Given its effectiveness against endospores and endotoxins-among the most challenging bacterial derivatives to eliminate-the device demonstrates potential for enhanced bacterial control in Grade A biosafety cabinets within cell product manufacturing facilities. The system may substantially reduce operator stress by ensuring product safety through straightforward operational procedures and high reproducibility, although further validation is required.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Suda
- Biozone Medical Co., Ltd., Fujisawa-shi, Kanagawa, Japan
| | | | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Barthwal R, Negi A, Kathuria D, Singh N. Ozonation: Post-harvest processing of different fruits and vegetables enhancing and preserving the quality. Food Chem 2025; 463:141489. [PMID: 39413726 DOI: 10.1016/j.foodchem.2024.141489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
Daily ingestion of fresh produce has increased tremendously due to a rise in awareness of its nutritional benefits that contribute to reducing health risks and disease. However, these commodities are highly perishable and prone to significant post-harvest losses. Conventional methods have been scrutinized in the production of undesirable by-products. Ozone technology has emerged as an efficient sterilization technique. Additionally, it stimulated the synthesis of bioactive and antioxidant compounds by activating secondary metabolic pathways. However, there are conflicting findings in the literature related to their impact on the quality and physiological processes of fruits and vegetables (F&V). This scientific literature review focuses on key studies examining the effects of ozonation on the growth of microorganisms and the quality preservation of different F&V. This review also enlarges our understanding of eco-friendly technologies which not only extend the shelf life of F&V but also uphold their quality without introducing harmful chemicals.
Collapse
Affiliation(s)
- Riya Barthwal
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Akanksha Negi
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
4
|
Russo C, Curcio G, Graziani A, Mencacci A, Pietrella D. Antibiofilm, Anti-Inflammatory, and Regenerative Properties of a New Stable Ozone-Gel Formulation. Pharmaceutics 2024; 16:1580. [PMID: 39771559 PMCID: PMC11676070 DOI: 10.3390/pharmaceutics16121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Chronic skin wounds are characterized by inflammation, persistent infections, and tissue necrosis. The presence of bacterial biofilms prolongs the inflammatory response and delays healing. Ozone is a potent antimicrobial molecule, and many formulations have been used in the advanced therapeutic treatment of chronic wounds. The aim of this work was to determine the antimicrobial, anti-inflammatory, and regenerative activity of a stable ozone-gel formulation over time. Methods: The antimicrobial property was assessed by measuring the minimal inhibitory concentration and the antibiofilm activity. The anti-inflammatory effect was evaluated by TNF-α determination, and the regenerative effect was measured by scratch assay. Results: The ozone gel demonstrated antimicrobial and antibiofilm activity in all ATCC microorganisms examined and on most clinical isolates. Higher concentrations of the ozone gel were also useful in the dispersion of preformed biofilm. The ozone gel also showed anti-inflammatory activity by reducing the production of TNF-α and regenerative activity in human fibroblasts and keratinocytes. Conclusions: Given all these antimicrobial, anti-inflammatory, and regenerative characteristics, the ozone gel could be, in this formulation, used in the treatment of wounds. The ozone-gel formulation described here retains stability for over 30 months, which facilitates its use compared to formulations that lose efficacy quickly.
Collapse
Affiliation(s)
- Carla Russo
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy; (C.R.); (G.C.); (A.G.); (A.M.)
| | - Giuseppe Curcio
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy; (C.R.); (G.C.); (A.G.); (A.M.)
| | - Alessandro Graziani
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy; (C.R.); (G.C.); (A.G.); (A.M.)
| | - Antonella Mencacci
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy; (C.R.); (G.C.); (A.G.); (A.M.)
- Microbiology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| | - Donatella Pietrella
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy; (C.R.); (G.C.); (A.G.); (A.M.)
- Microbiology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
5
|
Banerjee B, Thompson C, Nizet V, Bjånes E. Bactericidal efficacy of low dose gaseous ozone against clinically relevant multidrug-resistant bacteria. Front Microbiol 2024; 15:1480433. [PMID: 39723132 PMCID: PMC11668732 DOI: 10.3389/fmicb.2024.1480433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Healthcare-associated infections (HAIs) pose a significant challenge in acute care hospitals, particularly in intensive care units, due to persistent environmental contamination despite existing disinfection protocols and manual cleaning methods. Current disinfection methods are labor-intensive and often ineffective against multidrug-resistant (MDR) pathogens, highlighting the need for new, automated, hands-free approaches. Methods This study evaluates the bactericidal efficacy of low concentrations of gaseous ozone (5 ppm) against clinically relevant and often MDR bacteria under various concentrations, contact times, temperatures, and environmental conditions. Results We observed a 3 log10-fold reduction in Escherichia coli and Salmonella Typhimurium and a 1-2 log10-fold reduction in group A Streptococcus and methicillin-resistant Staphylococcus aureus upon ozone exposure. The bactericidal effect was dose-dependent, with no significant difference between single and repeated exposures. Environmental conditions such as temperature and humidity had minimal impact on low-dose ozone efficacy, with slightly improved bacterial killing at colder temperatures and higher humidity levels. Gaseous ozone also showed significant bactericidal activity against the broad range of Gram-positive and -negative MDR clinical isolates. Discussion These findings highlight the potential of low-dose gaseous ozone as a versatile, effective, and hands-free disinfectant for healthcare and other settings. Further research is needed to establish long-term safety and efficacy guidelines for its use in occupied spaces and to explore potential synergy with other contemporary disinfection strategies.
Collapse
Affiliation(s)
| | - Christine Thompson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Elisabet Bjånes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Bae J, Bednar P, Zhu R, Bong C, Bak MS, Stainer S, Kim K, Lee J, Yoon C, Lee Y, Ojowa OT, Lehner M, Hinterdorfer P, Ruzek D, Park S, Oh YJ. Mechanisms of Plasma Ozone and UV-C Sterilization of SARS-CoV-2 Explored through Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49176-49185. [PMID: 39240691 PMCID: PMC11420863 DOI: 10.1021/acsami.4c11057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/08/2024]
Abstract
Ultraviolet-C (UV-C) radiation and ozone gas are potential mechanisms employed to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), each exhibiting distinct molecular-level modalities of action. To elucidate these disparities and deepen our understanding, we delve into the intricacies of SARS-CoV-2 inactivation via UV-C and ozone gas treatments, exploring their distinct molecular-level impacts utilizing a suite of advanced techniques, including biological atomic force microscopy (Bio-AFM) and single virus force spectroscopy (SVFS). Whereas UV-C exhibited no perceivable alterations in virus size or surface topography, ozone gas treatment elucidated pronounced changes in both parameters, intensifying with prolonged exposure. Furthermore, a nuanced difference was observed in virus-host cell binding post-treatment: ozone gas distinctly reduced SARS-CoV-2 binding to host cells, while UV-C maintained the status quo. The results derived from these methodical explorations underscore the pivotal role of advanced Bio-AFM techniques and SVFS in enhancing our understanding of virus inactivation mechanisms, offering invaluable insights for future research and applications in viral contamination mitigation.
Collapse
Affiliation(s)
- Jinseung Bae
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
| | - Petr Bednar
- Veterinary
Research Institute, CZ-62100 Brno, Czech
Republic
- Department
of Medical Biology, Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
- Department
of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Rong Zhu
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | - Cheolwoo Bong
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
| | - Moon Soo Bak
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
| | - Sarah Stainer
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | | | - Junghun Lee
- Samsung
Electronics, Suwon 16677, Republic
of Korea
| | - Chulsoo Yoon
- Samsung
Electronics, Suwon 16677, Republic
of Korea
| | - Yugyeong Lee
- Department
of Biomedical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | | | - Maximilian Lehner
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | - Peter Hinterdorfer
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | - Daniel Ruzek
- Veterinary
Research Institute, CZ-62100 Brno, Czech
Republic
- Department
of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, CZ-370
05 Ceske Budejovice, Czech Republic
| | - Sungsu Park
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
- Department
of Biomedical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Yoo Jin Oh
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| |
Collapse
|
7
|
Anupong S, Modchang C, Chadsuthi S. Seasonal patterns of influenza incidence and the influence of meteorological and air pollution factors in Thailand during 2009-2019. Heliyon 2024; 10:e36703. [PMID: 39263141 PMCID: PMC11388739 DOI: 10.1016/j.heliyon.2024.e36703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Influenza, an acute respiratory illness, remains a significant public health challenge, contributing substantially to morbidity and mortality worldwide. Its seasonal prevalence exhibits diversity across regions with distinct climates. This study aimed to explore the seasonal patterns of influenza and their correlation with meteorological and air pollution factors across six regions of Thailand. We conducted an analysis of monthly average temperature, relative humidity, precipitation, PM10, NO2, O3 concentrations, and influenza incidence data from 2009 to 2019 using wavelet analysis. Our findings reveal inconsistent biannual influenza prevalence patterns throughout the study period. The biannual pattern emerged during 2010-2012 across all regions but disappeared during 2013-2016. However, post-2016, the biannual cycles resurfaced, with peaks occurring during the rainy and winter seasons in most regions, except for the southern region. Wavelet coherence reveals that relative humidity can be the main influencing factor for influenza incidence over a one-year period in the northern, northeastern, central, Bangkok-metropolitan, and eastern regions, not in the southern region during 2010-2012 and 2016-2018. Similarly, precipitation can drive the influenza incidence at the same period for the northeastern, central, Bangkok-metropolitan, and eastern regions. PM10 concentration can influence influenza incidence over a half-year period in the northeastern, central, Bangkok-metropolitan, and eastern regions of Thailand during certain years. These results enhance our understanding of the temporal dynamics of influenza seasonality influenced by weather conditions and air pollution over the past 11 years. Such knowledge is invaluable for resource allocation in clinical settings and informing public health strategies, particularly in navigating Thailand's climatic complexities.
Collapse
Affiliation(s)
- Suparinthon Anupong
- Department of Chemistry, Mahidol Wittayanusorn School (MWIT), Salaya, Nakhon Pathom, 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok, 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
8
|
Zhang S, Yang N, Mao R, Hao Y, Teng D, Wang J. In Vitro/Vivo Mechanisms of Antibacterial Peptide NZ2114 against Staphylococcus pseudintermedius and Its Biofilms. Antibiotics (Basel) 2024; 13:341. [PMID: 38667017 PMCID: PMC11047522 DOI: 10.3390/antibiotics13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen commonly found in canines, and has garnered escalating interest due to its potential for zoonotic transmission and increasing antimicrobial resistance. However, the excessive use of antibiotics and the characteristic of S. pseudintermedius forming biofilms make treatment challenging. In this study, the in vivo and in vitro antimicrobial activity and mechanisms of action of NZ2114, a plectasin-derived peptide, against S. pseudintermedius were investigated. NZ2114 exhibited potent antibacterial activity towards S. pseudintermedius (minimum inhibitory concentration, MIC = 0.23 μM) with a lower probability of inducing drug-resistant mutations and efficient bactericidal action, which was superior to those of mopirucin (MIC = 0.25-0.5 μM) and lincomycin (MIC = 4.34-69.41 μM). The results of electron microscopy and flow cytometry showed that NZ2114 disrupted S. pseudintermedius' cell membrane, resulting in cellular content leakage, cytoplasmic membrane shrinkage, and, eventually, cell death. The intracellular ROS activity and Alamar Blue detection showed that NZ2114 interferes with intracellular metabolic processes. In addition, NZ2114 effectively inhibits biofilm formation, and confocal laser scanning microscopy further revealed its antibacterial and anti-biofilm activity (biofilm thickness reduced to 6.90-17.70 μm). The in vivo therapy of NZ2114 in a mouse pyoderma model showed that it was better than lincomycin in effectively decreasing the number of skin bacteria, alleviating histological damage, and reducing the skin damage area. These results demonstrated that NZ2114 may be a promising antibacterial candidate against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Shuang Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
9
|
Lenart-Boroń A, Stankiewicz K, Bulanda K, Czernecka N, Heliasz M, Hunter W, Ratajewicz A, Khachatryan K, Khachatryan G. In Vitro Antibacterial Activity of Ozonated Olive Oil against Bacteria of Various Antimicrobial Resistance Profiles Isolated from Wounds of Companion Animals. Int J Mol Sci 2024; 25:3557. [PMID: 38542531 PMCID: PMC10971217 DOI: 10.3390/ijms25063557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
Frequent colonization and bacterial infection of skin wounds in small animals prevent or impair their healing. However, the broadly applied antimicrobial therapy of wounds is not always necessary and promotes the spread of bacterial resistance. Thus, alternatives to antimicrobial therapy, including preventive measures in the form of wound dressings with antibiotic properties, should be searched for. The aim of this study was to develop a new, efficient, cost-effective and non-toxic formulation with antimicrobial properties to serve as an alternative to antibiotic administration in wound-healing stimulation in companion animals. Nano/microencapsulated ozonated olive oil in a hyaluronan matrix was developed, with ozone concentration high enough to prevent bacterial growth. The presence and size of nano- and microcapsules were determined with scanning electron microscopy (SEM). Antibacterial activity of developed formulations was examined in vitro on 101 Gram-positive and Gram-negative bacteria isolated from the wounds of companion animals. The highest ozone concentration in the developed formulations inhibited the growth of 40.59% bacteria. Species and genus-specific differences in reactions were observed. Enterococcus spp. proved the least susceptible while non-pathogenic Gram-positive bacteria were the most susceptible to the examined formulations. Changes in the bacterial morphology and cell structure of Psychrobacter sanguinis suspension mixed with Ca-stabilized formulations with nano/microencapsulated ozonized olive oil were revealed during SEM observations. The combination of compounds that promote wound healing (hyaluronic acid, olive oil, ozone and calcium) with the antibacterial activity of the developed formula makes it a promising bionanocomposite for use as a topical dressing.
Collapse
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Klaudia Bulanda
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Natalia Czernecka
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Anna Ratajewicz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland;
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland;
| |
Collapse
|
10
|
Commission for Hospital Hygiene and Infection Prevention (KRINKO). Hygiene requirements for cleaning and disinfection of surfaces: recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc13. [PMID: 38655122 PMCID: PMC11035912 DOI: 10.3205/dgkh000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) addresses not only hospitals, but also outpatient health care facilities and compiles current evidence. The following criteria are the basis for the indications for cleaning and disinfection: Infectious bioburden and tenacity of potential pathogens on surfaces and their transmission routes, influence of disinfecting surface cleaning on the rate of nosocomial infections, interruption of cross infections due to multidrug-resistant organisms, and outbreak control by disinfecting cleaning within bundles. The criteria for the selection of disinfectants are determined by the requirements for effectiveness, the efficacy spectrum, the compatibility for humans and the environment, as well as the risk potential for the development of tolerance and resistance. Detailed instructions on the organization and implementation of cleaning and disinfection measures, including structural and equipment requirements, serve as the basis for their implementation. Since the agents for surface disinfection and disinfecting surface cleaning have been classified as biocides in Europe since 2013, the regulatory consequences are explained. As possible addition to surface disinfection, probiotic cleaning, is pointed out. In an informative appendix (only in German), the pathogen characteristics for their acquisition of surfaces, such as tenacity, infectious dose and biofilm formation, and the toxicological and ecotoxicological characteristics of microbicidal agents as the basis for their selection are explained, and methods for the evaluation of the resulting quality of cleaning or disinfecting surface cleaning are presented.
Collapse
|
11
|
Rodrigues VS, Trevisan LAC, Cintra BS, Pires RH, Ribeiro AB, Tavares DC, Oberhaus E, Ferreira JC. Effectiveness of photo-ozone therapy against equine Pythium insidiosum. J Equine Vet Sci 2024; 134:105030. [PMID: 38342358 DOI: 10.1016/j.jevs.2024.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Cutaneous pythiosis is a life-threatening infectious disease. Low-level laser therapy (LLLT) and ozone (O3) have been used individually in the treatment of infected wounds. The goals of the study were a) to characterize the antimicrobial action of the photo-ozone therapy (LLLT-O3) against equine Pythium insidiosum, and b) to assess the cytotoxic potential of the LLLT-O3 in keratinocytes. Specimens of pathogen were isolated from 10 horses. After culturing, 120 hyphae plugs were distributed among four groups (n=30 hyphae plugs/group): LLLT (laser irradiation for 160 sec;), O3 (exposition to O3 for 15 min;), LLLT-O3 (LLLT and O3 treatments in sequence) and control (untreated plugs). The hyphae growth was measured during the first 14 days post-treatment. Where there was an absence of hyphae growth, the plug was recultured for an additional 7 days. The cytotoxic potential of the treatments against HaCaT keratinocytes was assessed by colorimetric assays. The LLLT-O3 and O3 treatments inactivated, respectively, 92.3% (28/30) and 30% (9/30) of the samples. No growth was detected after 7 days reculture of inactivated hyphae plugs on new media. Hyphae growth was visualized in 100% of the control and LLLT hyphae plugs. The viability of HaCaT cells was not affected by the isolated treatments (LLLT and O3), while the LLLT-O3 showed slight cytotoxic effect (20%) when compared to the control group (P<0.05). Photo-ozone therapy inactivated equine P. insidiosum hyphae with minimal cytotoxicity in skin cells in vitro.
Collapse
Affiliation(s)
- V S Rodrigues
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600
| | - L A C Trevisan
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600
| | - B S Cintra
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600
| | - R H Pires
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600
| | - A B Ribeiro
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600
| | - D C Tavares
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600
| | - E Oberhaus
- School of Animal Sciences, Louisiana State University, 201D Animal & Food Sciences Lab Bldg., Baton Rouge, LA, USA, 70803
| | - J C Ferreira
- Post-graduation Program in Animal Sciences, University of Franca, 201 Dr. Armando de Sáles Oliveira, Franca, SP, Brazil, 14404-600.
| |
Collapse
|
12
|
Xiang JL, Wang JJ, Wu ZJ, Xu BJ, Du HS, Chen Y, Liu M, Lee MY, Wang WL, Du Y. Efficient wastewater disinfection using a novel microwave discharge electrodeless ultraviolet system with ozone at an ultra-low dose. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133011. [PMID: 37988868 DOI: 10.1016/j.jhazmat.2023.133011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.
Collapse
Affiliation(s)
- Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zhi-Jing Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Bao-Jun Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
13
|
Izadi M, Jafari-Oori M, Eftekhari Z, Jafari NJ, Maybodi MKE, Heydari S, Vahedian-Azimi A, Atkin SL, Jamialahmadi T, Sahebkar A. Effect of Ozone Therapy on Diabetes-related Foot Ulcer Outcomes: A Systematic Review and Meta-analysis. Curr Pharm Des 2024; 30:2152-2166. [PMID: 38982924 DOI: 10.2174/0113816128302890240521065453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE This study aimed to assess the effectiveness of ozone therapy in treating Diabetes-related Foot Ulcer (DFU) and its outcomes. METHODS A systematic search was conducted in PubMed/MEDLINE, Scopus, Web of Science, and ProQuest databases for published studies evaluating the use of ozone as an adjunct treatment for DFU, from inception to December 21, 2022. The primary outcome measure was the change in wound size after the intervention compared to pretreatment. Secondary outcomes included time to complete ulcer healing, number of healed patients, adverse events, amputation rates, and hospital length of stay. Quantitative data synthesis for the meta-analysis was performed using a random-effects model and generic inverse variance method, while overall heterogeneity analysis was conducted using a fixed-effects model. Interstudy heterogeneity was assessed using the I2 index (>50%) and the Cochrane Q statistic test. Sensitivity analysis was performed using the leave-one-out method. RESULTS The meta-analysis included 11 studies comprising 960 patients with DFU. The results demonstrated a significant positive effect of ozone therapy on reducing foot ulcer size (Standardized Mean Difference (SMD): -25.84, 95% CI: -51.65 to -0.04, p = 0.05), shortening mean healing time (SMD: -38.59, 95% CI: -51.81 to -25.37, p < 0.001), decreasing hospital length of stay (SMD: -8.75, 95% CI: -14.81 to -2.69, p < 0.001), and reducing amputation rates (Relative Risk (RR): 0.46, 95% CI: 0.30-0.71, p < 0.001), compared to standard treatment. CONCLUSION This meta-analysis indicates that ozone therapy has additional benefits in expediting complete DFU healing, reducing the amputation rates, and decreasing hospital length of stay, though its effects do not differ from standard treatments for complete ulcer resolution. Further research is needed to address the heterogeneity among studies and to better understand the potential beneficial effects of ozone therapy.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Jafari-Oori
- Faculty of Nursing, Atherosclerosis Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohre Eftekhari
- Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Nematollah Jonaidi Jafari
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Soleyman Heydari
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Vahedian-Azimi
- Nursing Faculty, Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland-Bahrain, Adliya, Manama, Kingdom of Bahrain
| | - Tannaz Jamialahmadi
- International UNESCO Center for Health-related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Chirumbolo S, Valdenassi L, Tirelli U, Pandolfi S, Franzini M. The use of the medical ozone in the immune challenge of multidrug resistant (MDR) bacteria and the role of mitochondria. Microbes Infect 2024; 26:105242. [PMID: 38380603 DOI: 10.1016/j.micinf.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Affiliation(s)
| | - Luigi Valdenassi
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy
| | | | - Sergio Pandolfi
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy
| | - Marianno Franzini
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy.
| |
Collapse
|
15
|
Epelle EI, Cojuhari N, Mohamedsalih A, Macfarlane A, Cusack M, Burns A, McGinness C, Yaseen M. The synergistic antibacterial activity of ozone and surfactant mists. RSC Adv 2023; 13:22593-22605. [PMID: 37501772 PMCID: PMC10369041 DOI: 10.1039/d3ra03346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The microbiological safety of medical equipment and general surfaces is paramount to both the well-being of patients and the public. The application of ozone (a potent oxidant) has been recognised and implemented for this purpose, globally. However, it has primarily been utilised in the gaseous and aqueous forms. In this study, we investigate the potency of fine ozone mists and evaluate the synergistic effect when combined with cationic, anionic and non-ionic surfactants (dodecyl trimethyl ammonium bromide - DTAB, sodium dodecyl sulfate - SDS, alkyl polyglycoside - APG) as well as polyethylene glycol (PEG). Ozone mist is generated via a nebuliser (equipped with a compressed gas stream) and the piezoelectric method; whereas fabric substrates contaminated with Escherichia coli and Staphylococcus aureus are utilised in this study. Contamination levels on the fabric swatches are evaluated using agar dipslides. Compared to gaseous ozonation and aqueous ozonation (via nanobubble generation), the produced ozone mists showed significantly inferior antimicrobial properties for the tested conditions (6 ppm, 5-15 min). However, the hybrid mist-based application of 'ozone + surfactants' and 'ozone + PEG' showed considerable improvements compared to their independent applications (ozone mist only and surfactant mist only). The 'ozone + DTAB' mist had the highest activity, with better results observed with the micron-mist nebuliser than the piezoelectric transducer. We propose a likely mechanism for this synergistic performance (micellar encapsulation) and demonstrate the necessity for continued developments of novel decontamination technologies.
Collapse
Affiliation(s)
- Emmanuel I Epelle
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh Sanderson Building, Robert Stevenson Road Edinburgh EH9 3FB UK
- ACS Clothing 6 Dovecote Road Central Point Logistics Park ML1 4GP UK
| | - Neli Cojuhari
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| | - Abdalla Mohamedsalih
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| | - Andrew Macfarlane
- ACS Clothing 6 Dovecote Road Central Point Logistics Park ML1 4GP UK
| | - Michael Cusack
- ACS Clothing 6 Dovecote Road Central Point Logistics Park ML1 4GP UK
| | - Anthony Burns
- ACS Clothing 6 Dovecote Road Central Point Logistics Park ML1 4GP UK
| | - Charles McGinness
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| |
Collapse
|
16
|
Beltrán FJ, Chávez AM, Cintas P, Martínez RF. Mechanistic Insights into the Oxidative Degradation of Formic and Oxalic Acids with Ozone and OH Radical. A Computational Rationale. J Phys Chem A 2023; 127:1491-1498. [PMID: 36749871 PMCID: PMC9940222 DOI: 10.1021/acs.jpca.2c08091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Gas-phase and aqueous oxidations of formic and oxalic acids with ozone and OH radicals have been thoroughly examined by DFT methods. Such acids are not only important feedstocks for the iterative construction of other organic compounds but also final products generated by mineralization and advanced oxidation of higher organics. Our computational simulation unravels both common and distinctive reaction channels, albeit consistent with known H atom abstraction pathways and formation of hydropolyoxide derivatives. Notably, reactions with neutral ozone and OH radical proceed through low-energy concerted mechanisms involving asynchronous transition structures. For formic acid, carbonylic H-abstraction appears to be more favorable than the dissociative abstraction of the acid proton. Formation of long oxygen chains does not cause a significant energy penalty and highly oxygenated products are stable enough, even if subsequent decomposition releases environmentally benign side substances like O2 and H2O.
Collapse
Affiliation(s)
- Fernando J. Beltrán
- Departamento
de Ingeniería Química y Química Física,
Facultad de Ciencias, and Instituto Universitario de Investigación
del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain,
| | - Ana María Chávez
- Departamento
de Ingeniería Química y Química Física,
Facultad de Ciencias, and Instituto Universitario de Investigación
del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Pedro Cintas
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto Universitario de Investigación del
Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - R. Fernando Martínez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto Universitario de Investigación del
Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain,
| |
Collapse
|
17
|
Lillo E, Cordisco M, Trotta A, Greco G, Carbonari A, Rizzo A, Sciorsci RL, Corrente M. Evaluation of antibacterial oxygen/ozone mixture in vitro activity on bacteria isolated from cervico-vaginal mucus of cows with acute metritis. Theriogenology 2023; 196:25-30. [PMID: 36375213 DOI: 10.1016/j.theriogenology.2022.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Ozone is an oxidating gas showing a strong microbicidal activity on bacteria, fungi, viruses and protozoa. The aim of this study was to test the in vitro bacteriocidal action of an Ozone/Oxygen gas mixture on bacteria isolated from the cervico-vaginal mucus of cows affected by acute metritis. A pilot study was initially carried out on reference strains (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Mycoplasma bovigenitalium ATCC 19852) that were tested with three different treatments: a control positive baseline group (B-group) was incubated without gas treatment, a control positive oxygen group (O2-group) was treated with pure oxygen 100%, and the treated group (T-group) was exposed to a gaseous constant flow of an Ozone/Oxygen mixture, at 50, 35, 20 μg Ozone/ml and for 5, 3 and 1 min for every different Ozone concentration. In both positive control groups, the number of colony forming units (CFU) per ml was higher than 300 CFU/ml (E. coli and S. aureus) and higher than 30 CFU/ml for M. bovigenitalium, after incubation. The T-groups showed a minimal bacterial growth equal to or lower than 1 CFU/ml per plate. Based on the results of the pilot study, a second phase was performed on bacteria isolated from the cervico-vaginal mucus (Klebsiella pneumoniae, Enterobacter agglomerans, E. coli, Proteus mirabilis and M. bovigenitalium) using the lower concentration of 20 μg/ml of Ozone for the minimum exposure time of 1 min. The E. coli and S. aureus reference strains and the clinical isolates (K. pneumoniae, E. agglomerans, E. coli, P. mirabilis) were incubated at 37 °C for 48 h and the colonies were manually counted at 24 h and 48 h following inoculation. The cultures of M. bovigenitalium (both ATCC and clinical isolate) were incubated in a jar with modified atmosphere conditions with 5% CO2 at 37 °C for 4-7 days and colony counting was performed. The second phase showed a low number of CFUs (equal to or less than 7 CFU/ml) for the clinical isolates K. pneumoniae, E. agglomerans, E. coli and P. mirabilis, and, of note, for M. bovigenitalium, both ATCC and clinical isolate, the growth was completely inhibited. Ozone was demonstrated to have a bacteriocidal activity. This study encourages further research of in vivo application of low doses of gaseous Ozone for the treatment of metritis in cows by using minimal exposure times.
Collapse
Affiliation(s)
- Edoardo Lillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - Marco Cordisco
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - Adriana Trotta
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - Alice Carbonari
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - Raffaele Luigi Sciorsci
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy.
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010, Valenzano, BA, Italy
| |
Collapse
|
18
|
Guadalupe Armas GDC, Martel-Benítez CJ, Alayón-Afonso R, Clavo B, Bordes Benítez A, González-Martín JM, Torres-Mata LB, Martín-Barrasa JL. In vitro antimicrobial activity of ozonated sunflower oil in milk against Escherichia coli: comparative study in cow, goat and sheep. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2147186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gloria del Carmen Guadalupe Armas
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
| | - Carlos José Martel-Benítez
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Group of Fish Health and Infectious Diseases, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Rafael Alayón-Afonso
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Group of Fish Health and Infectious Diseases, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Bernardino Clavo
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- BioPharm Group, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Bordes Benítez
- Microbiology Department, Hospital Universitario de Gran Canaria, Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jesús María González-Martín
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura B Torres-Mata
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- BioPharm Group, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Chemical Engineering & Materials Department, Universidad Complutense, Madrid, Spain
| | - José Luis Martín-Barrasa
- Research Unit Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Group of Fish Health and Infectious Diseases, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Animal Facility, Research Unit, Hospital Universitario de Gran Canaria, Dr. Negrín, Fundación Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Çetinkaya N, Pazarlar S, Paylan İC. Ozone treatment inactivates common bacteria and fungi associated with selected crop seeds and ornamental bulbs. Saudi J Biol Sci 2022; 29:103480. [DOI: 10.1016/j.sjbs.2022.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
|
20
|
Cavallo FM, Kommers R, Friedrich AW, Glasner C, van Dijl JM. Exploration of oxygen-mediated disinfection of medical devices reveals a high sensitivity of Pseudomonas aeruginosa to elevated oxygen levels. Sci Rep 2022; 12:18243. [PMID: 36309557 PMCID: PMC9617943 DOI: 10.1038/s41598-022-23082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
The microbiological safety of medical devices is of paramount importance for patients and manufacturers alike. However, during usage medical devices will inevitably become contaminated with microorganisms, including opportunistic pathogens. This is a particular problem if these devices come in contact with body sites that carry high bacterial loads, such as the oral cavity. In the present study, we investigated whether high oxygen concentrations can be applied to disinfect surfaces contaminated with different Gram-positive and Gram-negative bacteria. We show that some opportunistic pathogens, exemplified by Pseudomonas aeruginosa, are particularly sensitive to oxygen concentrations above the atmospheric oxygen concentration of 21%. Our observations also show that high oxygen concentrations can be applied to reduce the load of P. aeruginosa on nebulizers that are used by cystic fibrosis patients, who are particularly susceptible to colonization and infection by this bacterium. We conclude that the efficacy of oxygen-mediated disinfection depends on the bacterial species, duration of oxygen exposure and the oxygen concentration. We consider these observations relevant, because gas mixtures with high oxygen content can be readily applied for microbial decontamination. However, the main challenge for oxygen-based disinfection approaches resides in a potentially incomplete elimination of microbial contaminants, which makes combined usage with other disinfectants like ethanol or hydrogen peroxide recommendable.
Collapse
Affiliation(s)
- Francis M Cavallo
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, HPC EB80, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Richard Kommers
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, HPC EB80, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, HPC EB80, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, HPC EB80, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, HPC EB80, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, the Netherlands.
| |
Collapse
|
21
|
Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:1074-1115. [PMID: 36173419 PMCID: PMC9521013 DOI: 10.1007/s00103-022-03576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
22
|
Effects of gaseous ozone treatment on the quality and microbial community of salmon (Salmo salar) during cold storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Rangel K, Cabral FO, Lechuga GC, Carvalho JPRS, Villas-Bôas MHS, Midlej V, De-Simone SG. Potent Activity of a High Concentration of Chemical Ozone against Antibiotic-Resistant Bacteria. Molecules 2022; 27:3998. [PMID: 35807244 PMCID: PMC9268618 DOI: 10.3390/molecules27133998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Health care-associated infections (HAIs) are a significant public health problem worldwide, favoring multidrug-resistant (MDR) microorganisms. The SARS-CoV-2 infection was negatively associated with the increase in antimicrobial resistance, and the ESKAPE group had the most significant impact on HAIs. The study evaluated the bactericidal effect of a high concentration of O3 gas on some reference and ESKAPE bacteria. MATERIAL AND METHODS Four standard strains and four clinical or environmental MDR strains were exposed to elevated ozone doses at different concentrations and times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. Scanning electron microscopy (SEM) was performed. RESULTS The culture exposure to a high level of O3 inhibited the growth of all bacterial strains tested with a statistically significant reduction in colony count compared to the control group. The cell viability of S. aureus (MRSA) (99.6%) and P. aeruginosa (XDR) (29.2%) was reduced considerably, and SEM showed damage to bacteria after O3 treatment Conclusion: The impact of HAIs can be easily dampened by the widespread use of ozone in ICUs. This product usually degrades into molecular oxygen and has a low toxicity compared to other sanitization products. However, high doses of ozone were able to interfere with the growth of all strains studied, evidencing that ozone-based decontamination approaches may represent the future of hospital cleaning methods.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Fellipe O. Cabral
- Microbiology Department, National Institute for Quality Control in Health (INCQS), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (F.O.C.); (M.H.S.V.-B.)
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| | - Maria H. S. Villas-Bôas
- Microbiology Department, National Institute for Quality Control in Health (INCQS), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (F.O.C.); (M.H.S.V.-B.)
| | - Victor Midlej
- Laboratory of Cellular and Ultrastructure, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| |
Collapse
|
24
|
Piletić K, Kovač B, Perčić M, Žigon J, Broznić D, Karleuša L, Lučić Blagojević S, Oder M, Gobin I. Disinfecting Action of Gaseous Ozone on OXA-48-Producing Klebsiella pneumoniae Biofilm In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106177. [PMID: 35627712 PMCID: PMC9140702 DOI: 10.3390/ijerph19106177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Klebsiella pneumoniae is an emerging multidrug-resistant pathogen that can contaminate hospital surfaces in the form of a biofilm which is hard to remove with standard disinfectants. Because of biofilm resistance to conservative disinfectants, the application of new disinfection technologies is becoming more frequent. Ozone gas has antimicrobial activity but there is lack of data on its action against K. pneumoniae biofilm. The aim of this study was to investigate the effects and mechanisms of action of gaseous ozone on the OXA-48-procuding K. pneumoniae biofilm. A 24 h biofilm of K. pneumoniae formed on ceramic tiles was subsequently exposed to different concentrations of ozone during one and two hours to determine the optimal ozone concentration. Afterwards, the total bacteria count, total biomass and oxidative stress levels were monitored. A total of 25 ppm of gaseous ozone was determined to be optimal ozone concentration and caused reduction in total bacteria number in all strains of K. pneumoniae for 2.0 log10 CFU/cm2, followed by reduction in total biomass up to 88.15%. Reactive oxygen species levels significantly increased after the ozone treatment at 182% for the representative K. pneumoniae NCTC 13442 strain. Ozone gas in the concentration of 25 ppm caused significant biofilm reduction but did not completely eradicate the K. pneumoniae biofilm formed on ceramics. In conclusion, ozone gas has great potential to be used as an additional hygiene measure in joint combat against biofilm in hospital environments.
Collapse
Affiliation(s)
- Kaća Piletić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (K.P.); (B.K.)
| | - Bruno Kovač
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (K.P.); (B.K.)
| | - Marko Perčić
- Faculty of Engineering & Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia;
| | - Jure Žigon
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Dalibor Broznić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Sanja Lučić Blagojević
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Martina Oder
- Department of Sanitary Engineering, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (K.P.); (B.K.)
- Correspondence:
| |
Collapse
|
25
|
Liu J, Song M, Wei X, Zhang H, Bai Z, Zhuang X. Responses of Phyllosphere Microbiome to Ozone Stress: Abundance, Community Compositions and Functions. Microorganisms 2022; 10:microorganisms10040680. [PMID: 35456732 PMCID: PMC9024792 DOI: 10.3390/microorganisms10040680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Ozone is a typical hazardous pollutant in Earth’s lower atmosphere, but the phyllosphere and its microbiome are promising for air pollution remediation. Despite research to explore the efficiency and mechanism of ozone phylloremediation, the response and role of the phyllosphere microbiome remains untouched. In this study, we exposed Euonymus japonicus to different ozone levels and revealed microbial successions and roles of the phyllosphere microbiome during the exposure. The low-level exposure (156 ± 20 ppb) induced limited response compared to other environmental factors. Fungi failed to sustain the community richness and diversity, despite the stable ITS concentration, while bacteria witnessed an abundance loss. We subsequently elevated the exposure level to 5000~10,000 ppb, which considerably deteriorated the bacterial and fungal diversity. Our results identified extremely tolerant species, including bacterial genera (Curtobacterium, Marmoricola, and Microbacterium) and fungal genera (Cladosporium and Alternaria). Compositional differences suggested that most core fungal taxa were related to plant diseases and biocontrol, and ozone exposure might intensify such antagonism, thus possibly influencing plant health and ozone remediation. This assumption was further evidenced in the functional predictions via a pathogen predominance. This study shed light on microbial responses to ozone exposure in the phyllosphere and enlightened the augmentation of ozone phylloremediation through the microbial role.
Collapse
Affiliation(s)
- Jiayu Liu
- Beijing Key Laboratory of Water Resources and Environment Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (J.L.); (H.Z.)
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.S.); (X.W.)
| | - Manjiao Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.S.); (X.W.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wei
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.S.); (X.W.)
| | - Huanzhen Zhang
- Beijing Key Laboratory of Water Resources and Environment Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (J.L.); (H.Z.)
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.S.); (X.W.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiongan Institute of Innovation, Xiongan New Area 071000, China
- Correspondence: (Z.B.); (X.Z.); Tel.: +86-10-6284-9156 (Z.B.); +86-10-6284-9193 (X.Z.)
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.S.); (X.W.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Z.B.); (X.Z.); Tel.: +86-10-6284-9156 (Z.B.); +86-10-6284-9193 (X.Z.)
| |
Collapse
|