1
|
Zhou H, Zhang S, Chen Y, Zhang S, Xu Z, Cui D, Guo W. Research on Pine Wilt Disease Spread Prediction Based on an Improved Light Gradient Boosting Machine Model. PHYTOPATHOLOGY 2025; 115:410-421. [PMID: 39745355 DOI: 10.1094/phyto-07-24-0202-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pine wilt disease has caused significant damage to China's ecological and financial resources. To prevent its further spread across the country, proactive control measures are necessary. Given the low accuracy of traditional models, we have employed an enhanced light gradient boosting machine (LGBM) model to predict the development trend of pine wilt disease in China, providing a theoretical basis for its monitoring and prevention. We collected and organized data on the occurrence points of pine wilt disease at the county level in China. By incorporating anthropogenic factors such as the volume of pine wood imports from 2017 to 2022, the density of graded roads, the number of adjacent counties, and the presence of wood processing factories, as well as natural factors such as temperature, humidity, and wind speed, we employed Pearson correlation and LGBM model's feature importance analysis to select the 17 most significant influencing factors. Spatial analysis was conducted on the epidemic subcompartments (a divisional unit smaller than a township) of pine wilt disease for 2022 and 2023, revealing the distribution patterns of epidemic subcompartments within 2 km of roads and the spatial relationships between new and old epidemic subcompartments. We improved the LGBM model using a Bayesian algorithm, sparrow search algorithm, and hunter-prey optimization algorithm. By comparison, the enhanced model was validated to outperform in terms of accuracy, precision, recall, sensitivity, and specificity. Based on the results of correlation analysis and spatial analysis, an enhanced model was used to predict the emergence of pine wilt disease in new counties and districts in the future. Currently, pine wilt disease is primarily concentrated in the central-southern and northeastern provinces of China. Predictions indicate that the disease will further spread to the northeastern and southern regions of the country in the future.
Collapse
Affiliation(s)
- Hongwei Zhou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Siyan Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yifan Chen
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Shibo Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zihan Xu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Di Cui
- Heilongjiang Forestry Technology Service Center, Harbin 150010, China
| | - Wenhui Guo
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| |
Collapse
|
2
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
3
|
Ahmed W, Ye W, Pan J, Liu S, Ji W, Zhou S, Wang F, Li Z, Mohany M, Wang X. Evaluation the role of Luteibacter pinisoli DP2-30 in mitigating pine wilt disease caused by Bursaphelenchus xylophilus through modulation of host microbiome. FRONTIERS IN PLANT SCIENCE 2025; 16:1515506. [PMID: 40110359 PMCID: PMC11921891 DOI: 10.3389/fpls.2025.1515506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Background and aim Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, poses a significant threat to pine forests worldwide. This study aimed to isolate bacterial strains from the rhizosphere of healthy Pinus massoniana and elucidate their biocontrol potential in mitigating PWD through direct nematicidal activity and manipulation of host microbiome. Results We successfully isolated the rhizobacterium strain DP2-30 from rhizosphere of healthy pine plants, which was identified as Luteibacter pinisoli on the basis of morphological, biochemical, and molecular analyses. The fermentation filtrates of strain DP2-30 displayed direct nematicidal activity of >95% (corrected mortality rate) on PWN after 48 hours of treatment. The fermentation broth and filtrates of strain DP2-30 significantly inhibited PWN egg hatching by 49.38% and 43.05%, respectively. Additionally, root drenching of strain DP2-30 fermentation broth significantly reduced PWD severity in pine seedlings (2 years old), with a control effect of 62.50%. Microbiome analyses revealed significant variations in the diversity, structure, and relative abundance of bacterial and fungal communities of pine plants combined treated with DP2-30 and PWN (T2), solely treated with PWN (T1), and control (treated with water). Bacterial phyla, Proteobacteria, Actinobacteriota, Chloroflexi, Acidobacteriota, and Armatimonadota and fungal phyla Ascomycota, Basidiomycota and Mortierellomycota were dominant in the all root and stem samples. The application of L. pinisoli DP2-30 significantly increased the relative abundance of the family Rhodanobacteraceae in the roots and stems of pine seedlings. Additionally, intra-kingdom co-occurrence network analysis revealed reduced complexity in the bacterial networks but increased complexity in the fungal networks of treated plants, suggesting enhanced functional redundancy and ecosystem stability. Conclusions Overall, this study highlights the potential of L. pinisoli DP2-30 as an effective biocontrol agent against PWD by directly killing PWN and manipulating the host microbiota.
Collapse
Affiliation(s)
- Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenhua Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jidong Pan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Songsong Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenxia Ji
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fusheng Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhiguang Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Yu L, Wang Y, Wang X, Han S, Wang L, Wang X. Transcriptomic, metabonomic and proteomic analyses reveal that terpenoids and flavonoids are required for Pinus koraiensis early defence against Bursaphelenchus xylophilus infection. BMC PLANT BIOLOGY 2025; 25:185. [PMID: 39934660 PMCID: PMC11816754 DOI: 10.1186/s12870-025-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, threatens Pinus seriously. Pinus koraiensis is one of the most important pine species in China and is the host for PWN. However, our understanding of the defence-regulating process following infection by B. xylophilus at the molecular level remains limited. To understand the mechanisms that P. koraiensis responds to B. xylophilus invasion, P. koraiensis was inoculated with B. xylophilus solutions and observed no obvious symptoms during the early stage; symptoms began to appear at 5 dpi. Therefore, we conducted comparative transcriptomic, metabonomic and proteomic analyses between P. koraiensis 5dpi and 0 dpi. In infected plants, 1574 genes were significantly up-regulated, including 17 terpenoid-, 41 phenylpropanoid- and 22 flavonoid-related genes. According to GO and KEGG enrichment analyses of significantly up-regulated genes, 86 GO terms and 16 KEGG pathways were significantly enriched. Most terms and pathways were associated with terpenoid-, phenylpropanoid-, flavonoid- and carbohydrate-related events. Similarly, the abundance of 36 and 30 metabolites, significantly increased in positive and negative polarity modes, respectively. Among them, naringenin and 3-methyl-2-oxovaleric acid exhibited significant toxic effects on B. xylophilus. According to functional analysis of significantly up-regulated metabolites, most terms were enriched in above pathways, in addition to alkaloid biosynthesis. Although the abundance of few proteins changed, response to stress term was significantly enriched in significant up-regulated proteins. Furthermore, plant receptor-like serine/threonine kinases, pectin methylation modulators, pinosylvin O-methyltransferase and arabinogalactan/proline-rich proteins were significantly up-regulated in the infected P. koraiensis compared to healthy plants. These proteins were not abundant in the healthy plant. Overall, these results indicate that P. koraiensis can actively response to PWN via various defense strategies, including events related to terpenoids, flavonoids, phenylpropanoids, lipids and alkaloids. Particularly, terpenoids and flavonoids are required for the early defence of P. koraiensis against B. xylophilus infection.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanna Wang
- Chinese Society of Forestry, Beijing, 100091, China
| | - Xiang Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Sichuan, 611130, China
| | - Laifa Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xizhuo Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
5
|
Pires D, Vicente CSL, Mota M, Inácio ML. Polyphasic approach to the selection of Esteya isolates for the control of the pinewood nematode, Bursaphelenchus xylophilus. Fungal Biol 2024; 128:2242-2249. [PMID: 39643391 DOI: 10.1016/j.funbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024]
Abstract
Pine wilt disease, caused by the pinewood nematode, Bursaphelenchus xylophilus, is a major phytosanitary concern to pine forests worldwide. Managing pine wilt disease involves a complex logistical undertaking, with limited effectiveness and significant ecological repercussions. An increasing demand for biosolutions has sparked an interest in microbial antagonists capable of controlling the nematode. Esteya spp. are promising fungal biocontrol agents of the pinewood nematode. Here, we carry out an integrative characterization of Esteya vermicola and Esteya floridanum isolates, through biological, biochemical, and molecular methods, and provide insights into the selection of these isolates for the biological control of the pinewood nematode. Dual culture assays revealed that Esteya spp. can compete with ophiostomatoid fungi (Leptographium terebrantis and Ophiostoma ips) occurring in the pathosystem of pine wilt disease, an often-neglected ecological perspective that could hinder their success as biocontrol agents. Moreover, E. vermicola can metabolize more carbon sources than E. floridanum, which can have implications on their successful establishment in pine trees. Our experimental approach further shows that both Esteya spp. are equally competent in suppressing the pinewood nematode in vitro. Overall, our results suggest that a prophylactic application of Esteya in pine trees may be preferable for optimal bioprotective effects against the pinewood nematode and fungal pathogens.
Collapse
Affiliation(s)
- David Pires
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159, Oeiras, Portugal; Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Cláudia S L Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal.
| | - Manuel Mota
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Maria L Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159, Oeiras, Portugal; GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
6
|
Kamaruzzaman M, Zheng L, Zhou S, Ye W, Yuan Y, Qi Q, Gao Y, Tan J, Wang Y, Chen B, Li Z, Liu S, Mi R, Zhang K, Zhao C, Ahmed W, Wang X. Evaluation of the novel endophytic fungus Chaetomium ascotrichoides 1-24-2 from Pinus massoniana as a biocontrol agent against pine wilt disease caused by Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2024; 80:4924-4940. [PMID: 38860543 DOI: 10.1002/ps.8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD), is an ever-increasing threat to Pinus forests worldwide. This study aimed to develop biological control of PWD by the application of endophytic fungi isolated from healthy pine trees. RESULTS We successfully isolated a novel endophytic fungal strain 1-24-2 from branches of healthy Pinus massoniana. The culture filtrates (CFs) of strain 1-24-2 exhibited strong nematicidal activity against Bursaphelenchus xylophilus, with a corrected mortality rate of 99.00%. Based on the morphological and molecular characteristics, the isolated strain 1-24-2 was identified as Chaetomium ascotrichoides. In the in-planta assay, pine seedlings (2-years-old) treated with 1-24-2 CFs + pine wood nematode (T2) showed a significant control effect of 80%. A total of 24 toxic compounds were first identified from 1-24-2 CFs through gas chromatography-mass spectrometry (GC-MS) analysis, from which O-methylisourea, 2-chlorobenzothiazole, and 4,5,6-trihydroxy-7-methylphthalide showed robust binding sites at Tyr119 against phosphoethanolamine methyltransferase (PMT) protein of Bursaphelenchus xylophilus by molecular docking approach and could be used as potential compounds for developing effective nematicides. Interestingly, strain 1-24-2 produces toxic volatile organic compounds (VOCs), which disturb the natural development process of B. xylophilus, whose total number decreased by up to 83.32% in the treatment group as compared to control and also reduced Botrytis cinerea growth by up to 71.01%. CONCLUSION Our results highlight the potential of C. ascotrichoides 1-24-2 as a promising biocontrol agent with solid nematicidal activity against B. xylophilus. This is the first report of C. ascotrichoides isolated from P. massoniana exhibiting strong biocontrol potential against B. xylophilus in the world. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Md Kamaruzzaman
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lijun Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wenhua Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yongqiang Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qiu Qi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Jiajin Tan
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| | - Yan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Bingjia Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhiguang Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songsong Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Renjun Mi
- Forestry Bureau of Chenxi County, Huaihua, China
| | - Ke Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Chen C, Hu Z, Zheng X, Yuan J, Zou R, Wang Y, Peng X, Xie C. The essential role of arginine biosynthetic genes in lunate conidia formation, conidiation, mycelial growth, and virulence of nematophagous fungus, Esteya vermicola CBS115803. PEST MANAGEMENT SCIENCE 2024; 80:786-796. [PMID: 37781870 DOI: 10.1002/ps.7809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The pinewood nematode (Bursaphelenchus xylophilus) causes severe damage to pine trees. The nematophagous fungus, Esteya vermicola, exhibits considerable promise in the biological control of Bursaphelenchus xylophilus due to its infectivity. Notably, the lunate conidia produced by E. vermicola can infect Bursaphelenchus xylophilus. In the study, we aim to investigate the genes involved in the formation of the lunate conidia of E. vermicola CBS115803. RESULTS Esteya vermicola CBS115803 yielded 95% lunate conidia on the complete medium (CM) and 86% bacilloid conidia on the minimal medium (MM). Transcriptomic analysis of conidia from both media revealed a significant enrichment of differentially expressed genes in the pathway related to 'cellular amino acid biosynthesis and metabolism'. Functional assessment showed that the knockout of two arginine biosynthesis genes (EV232 and EV289) resulted in defects in conidia germination, mycelial growth, lunate conidia formation, and virulence of E. vermicola CBS115803 in Bursaphelenchus xylophilus. Remarkably, the addition of arginine to the MM improved mycelial growth, conidiation and lunate conidia formation in the mutants and notably increased conidia yield and the lunate conidia ratio in the wild-type E. vermicola CBS115803. CONCLUSION This investigation confirms the essential role of two arginine biosynthesis genes in lunate conidia formation in E. vermicola CBS115803. The findings also suggest that the supplementation of arginine to the culture medium can enhance the lunate conidia yield. These insights contribute significantly to the application of E. vermicola CBS115803 in managing Bursaphelenchus xylophilus infections. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chi Chen
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Zhijuan Hu
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xinyao Zheng
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Jingjie Yuan
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Run Zou
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yilan Wang
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xuan Peng
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
8
|
Inácio ML, Faria JMS, Haukeland S. Editorial: Novel approaches for sustainable crop yield and management of plant-parasitic nematodes. FRONTIERS IN PLANT SCIENCE 2023; 14:1274757. [PMID: 37711305 PMCID: PMC10498114 DOI: 10.3389/fpls.2023.1274757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Maria L. Inácio
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Jorge M. S. Faria
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
- MED, Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Évora, Portugal
| | - Solveig Haukeland
- Plant Health Theme, ICIPE, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute for Bioeconomy Research, Ås, Norway
| |
Collapse
|
9
|
Yu L, Yang M, Jiang D, Jin H, Jin Z, Chu X, Zhao M, Wu S, Zhang F, Hu X. Antibacterial peptides from Monochamus alternatus induced oxidative stress and reproductive defects in pine wood nematode through the ERK/MAPK signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105511. [PMID: 37532327 DOI: 10.1016/j.pestbp.2023.105511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.
Collapse
Affiliation(s)
- Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haole Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehong Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhen Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Gong JT, Li TP, Wang MK, Hong XY. Wolbachia-based strategies for control of agricultural pests. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101039. [PMID: 37105498 DOI: 10.1016/j.cois.2023.101039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023]
Abstract
Wolbachia-based incompatible insect technique (IIT) and pathogen blocking technique (PBT) have been shown to be effective at protecting humans from mosquito-borne diseases in the past decades. Population suppression based on IIT and population replacement based on PBT have become major field application strategies that have continuously been improved by the translational research on Wolbachia-transinfected mosquitoes. Similarly, Wolbachia-based approaches have been proposed for the protection of plants from agricultural pests and their associated diseases. However, a bottleneck in Wolbachia-based strategies for the control of agricultural pests is the need for methods to establish Wolbachia-transinfected insect lines. As a first step in this direction, we compare field control strategies for mosquitos with the potential strategies for agricultural pests based on Wolbachia. Our results show that there is a critical need for establishing productive insect lines and accumulating field test data.
Collapse
Affiliation(s)
- Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Guangzhou Wolbaki Biotech Co., Ltd., Guangzhou, Guangdong 510535, China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
11
|
Hao X, Chen J, Li Y, Liu X, Li Y, Wang B, Cao J, Gu Y, Ma W, Ma L. Molecular Defense Response of Bursaphelenchus xylophilus to the Nematophagous Fungus Arthrobotrys robusta. Cells 2023; 12:cells12040543. [PMID: 36831210 PMCID: PMC9953903 DOI: 10.3390/cells12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Bursaphelenchus xylophilus causes pine wilt disease, which poses a serious threat to forestry ecology around the world. Microorganisms are environmentally friendly alternatives to the use of chemical nematicides to control B. xylophilus in a sustainable way. In this study, we isolated a nematophagous fungus-Arthrobotrys robusta-from the xylem of diseased Pinus massoniana. The nematophagous activity of A. robusta against the PWNs was observed after just 6 h. We found that B. xylophilus entered the trap of A. robusta at 24 h, and the nervous system and immunological response of B. xylophilus were stimulated by metabolites that A. robusta produced. At 30 h of exposure to A. robusta, B. xylophilus exhibited significant constriction, and we were able to identify xenobiotics. Bursaphelenchus xylophilus activated xenobiotic metabolism, which expelled the xenobiotics from their bodies, by providing energy through lipid metabolism. When PWNs were exposed to A. robusta for 36 h, lysosomal and autophagy-related genes were activated, and the bodies of the nematodes underwent disintegration. Moreover, a gene co-expression pattern network was constructed by WGCNA and Cytoscape. The gene co-expression pattern network suggested that metabolic processes, developmental processes, detoxification, biological regulation, and signaling were influential when the B. xylophilus specimens were exposed to A. robusta. Additionally, bZIP transcription factors, ankyrin, ATPases, innexin, major facilitator, and cytochrome P450 played critical roles in the network. This study proposes a model in which mobility improved whenever B. xylophilus entered the traps of A. robusta. The model will provide a solid foundation with which to understand the molecular and evolutionary mechanisms underlying interactions between nematodes and nematophagous fungi. Taken together, these findings contribute in several ways to our understanding of B. xylophilus exposed to microorganisms and provide a basis for establishing an environmentally friendly prevention and control strategy.
Collapse
Affiliation(s)
- Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Xuefeng Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Hangzhou 310028, China
| | - Jingxin Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yaru Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
12
|
Ryss AY, Subbotin SA. New Records of Wood- and Bark-Inhabiting Nematodes from Woody Plants with a Description of Bursaphelenchus zvyagintsevi sp. n. (Aphelenchoididae: Parasitaphelenchinae) from Russia. PLANTS (BASEL, SWITZERLAND) 2023; 12:382. [PMID: 36679095 PMCID: PMC9860568 DOI: 10.3390/plants12020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Wood- and bark-inhabiting parasitic nematodes are of great economic importance. Nematodes can cause wilt diseases in conifers and deciduous trees. In 2014-2022, during nematology surveys conducted in different regions of Russia and Belarus, adults and dauer juveniles of nematodes were collected from wood, bark and beetle vectors. Using traditional morphological taxonomic characters integrated with molecular criteria, we identified in the studied samples the following nematode species: Aphelenchoides heidelbergi, Bursaphelenchus eremus, B. fraudulentus, B. michalskii, B. mucronatus, B. willibaldi, Deladenus posteroporus, Diplogasteroides nix and Laimaphelenchus hyrcanus, several unidentified species: Aphelenchoides sp.1 and sp.2, Cryptaphelenchus sp.1, sp.2 and sp.3, Laimaphelenchus sp.1, Micoletzkya sp.1, Parasitaphelenchus sp.1, Parasitorhabditis sp.1, three unidentified tylenchid nematodes and a new species, Bursaphelenchus zvyagintsevi sp.n. Morphological descriptions and molecular characterization are provided for B. zvyagintsevi sp. n. belonging to the Abietinus group and B. michalskii belonging to the Eggersi group. Findings of Aphelenchoides heidelbergi, Bursaphelenchus eremus, B. michalskii, Deladenus posteroporus, Diplogasteroides nix and Laimaphelenchus hyrcanus are new records for Russia. Phylogenetic positions of studied species were reconstructed using D2-D3 expansion segments of 28S rRNA gene sequence analysis. The data obtained in this study may help to detect the refugia of opportunistic plant pests and find possible native biocontrol nematode agents of insect vectors causing diseases.
Collapse
Affiliation(s)
- Alexander Y. Ryss
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Petersburg, Russia
| | - Sergei A. Subbotin
- Plant Pest Diagnostic Centre, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA
- Department of Entomology and Nematology, Hutchison Hall, University of California, Davis, CA 95616, USA
- Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, 117071 Moscow, Russia
| |
Collapse
|
13
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. The Changes of Microbial Communities and Key Metabolites after Early Bursaphelenchus xylophilus Invasion of Pinus massoniana. PLANTS (BASEL, SWITZERLAND) 2022; 11:2849. [PMID: 36365304 PMCID: PMC9653782 DOI: 10.3390/plants11212849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a worldwide pest of pine trees, spreading at an alarming rate and with great ecological adaptability. In the process of causing disease, the nematode causes metabolic disorders and changes in the endophytic microbial community of the pine tree. However, the changes at the pine nidus during early nematode invasion have not been well studied, especially the differential metabolites, in Pinus massoniana, the main host of B. xylophilus in China. In this study, we analyzed the endophytic bacterial and fungal communities associated with healthy and B. xylophilus-caused wilted pine trees. The results show that 1333 bacterial OTUs and 502 fungal OTUs were annotated from P. massoniana stem samples. The abundance of bacterial communities in pine trees varies more following infection by B. xylophilus, but the abundance changes of fungal communities are less visible. There were significant differences in endophytic microbial diversity between wilted and healthy P. massoniana. In wilted pine trees, Actinobacteria and Bacteroidia were differential indicators of bacterial communities, whereas, in healthy pine trees, Rhizobiales in the Proteobacteria phylum were the major markers of bacterial communities. Meanwhile, the differential markers of fungal communities in healthy pines are Malasseziales, Tremellales, Sordariales, and Fusarium, whereas Pleosporaceae is the key marker of fungal communities in wilted pines. Our study examines the effect of changes in the endophytic microbial community on the health of pine trees that may be caused by B. xylophilus infection. In parallel, a non-targeted metabolomic study based on liquid mass spectrometry (LC-MS) technology was conducted on pine trees inoculated with pine nematodes and healthy pine trees with a view to identifying key compounds affecting early pine lesions. Ultimately, 307 distinctly different metabolites were identified. Among them, the riboflavin metabolic pathway in pine trees may play a key role in the early pathogenesis of pine wood nematode disease.
Collapse
Affiliation(s)
- Yibo An
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Pires D, Vicente CSL, Menéndez E, Faria JMS, Rusinque L, Camacho MJ, Inácio ML. The Fight against Plant-Parasitic Nematodes: Current Status of Bacterial and Fungal Biocontrol Agents. Pathogens 2022; 11:1178. [PMID: 36297235 PMCID: PMC9606992 DOI: 10.3390/pathogens11101178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) are among the most notorious and underrated threats to food security and plant health worldwide, compromising crop yields and causing billions of dollars of losses annually. Chemical control strategies rely heavily on synthetic chemical nematicides to reduce PPN population densities, but their use is being progressively restricted due to environmental and human health concerns, so alternative control methods are urgently needed. Here, we review the potential of bacterial and fungal agents to suppress the most important PPNs, namely Aphelenchoides besseyi, Bursaphelenchus xylophilus, Ditylenchus dipsaci, Globodera spp., Heterodera spp., Meloidogyne spp., Nacobbus aberrans, Pratylenchus spp., Radopholus similis, Rotylenchulus reniformis, and Xiphinema index.
Collapse
Affiliation(s)
- David Pires
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Cláudia S. L. Vicente
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Esther Menéndez
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jorge M. S. Faria
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Leidy Rusinque
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
| | - Maria J. Camacho
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|