1
|
Mettler MK, Espinosa-Ortiz EJ, Goeres DM, Peyton BM. Considerations for testing anti-fouling coatings designed for implementation into Earth-based and spacecraft water systems. BIOFOULING 2025; 41:225-243. [PMID: 40143541 DOI: 10.1080/08927014.2025.2479692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
Biofilms are common in water systems and can lead to mechanical failure or illness of water system users. Methods for evaluating anti-fouling coatings have largely been informed by the medical industry and have not been tailored to industrial or spacecraft water systems. The goal of the paper is to help guide researchers in designing experiments to evaluate coatings that accurately represent the system under investigation. This review identified eight experimental design considerations when evaluating coatings in water systems: biofilm reactor operation, microorganism selection, reinoculation, coating surface area, liquid medium, experiment duration, coating performance evaluation, and the use of microgravity. The impact of each decision made within each of these considerations is presented. Further, the methods featured in eight studies investigating coatings for Earth-based or spacecraft water systems are discussed. This review serves to guide researchers toward improved experimental design to enable successful technology transfer from the lab bench to Earth and beyond.
Collapse
Affiliation(s)
- Madelyn K Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | | | - Darla M Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Brent M Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Zhu L, Liang Y. Quality risk management for microbial control in membrane-based water for injection production using fuzzy-failure mode and effects analysis. PeerJ Comput Sci 2024; 10:e2565. [PMID: 39896404 PMCID: PMC11784823 DOI: 10.7717/peerj-cs.2565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025]
Abstract
Microbial proliferation presents a significant challenge in membrane-based water for injection (WFI) production, particularly in systems with storage and ambient distribution, commonly refered to as cold WFI production. A comprehensive microbial risk assessment of membrane-based WFI systems was performed by employing Fuzzy-Failure Mode and Effects Analysis (Fuzzy-FMEA) to evaluate the potential microbial risks. Failure modes were identified and prioritized based on the Risk Priority Number (RPN), with appropriate preventive measures recommended to control failure modes that could increase the microbial load and mitigate their impact. Key hazards were identified including fouling of ultrafiltration (UF) membranes, insufficient sealing of heat exchangers, leakage in reverse osmosis (RO) membranes, and ineffective vent filters unable to remove airborn microorganism. Based on Fuzzy-FMEA results, suggestions for optimization were proposed to improve microbial control in membrane-based WFI systems in the pharmaceutical industry.
Collapse
Affiliation(s)
- Luoyin Zhu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Yi Liang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Screpis GA, Aleo A, Privitera N, Capuano GE, Farina R, Corso D, Libertino S, Coniglio MA. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms 2024; 12:1855. [PMID: 39338529 PMCID: PMC11434302 DOI: 10.3390/microorganisms12091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The detection of Legionella in environmental samples, such as water, is crucial for public health monitoring and outbreak prevention. Although effective, traditional detection methods, including culture-based techniques and polymerase chain reaction, have limitations such as long processing times, trained operators, and the need for specialized laboratory equipment. Biosensing technologies offer a promising alternative due to their rapid, sensitive, cost-effectiveness, and on-site detection capabilities. To summarize the current advancements in biosensor development for detecting Legionella in environmental samples, we used 'Legionella' AND 'biosensors' NEAR 'environmental samples' OR 'water' as keywords searching through the most relevant biomedical databases for research articles. After removing duplicates and inadequate articles from the n.1268 records identified using the PRISMA methodology exclusion criteria, we selected n.65 full-text articles which suited the inclusion criteria. Different results between the studies describing the current biosensing techniques, including optical, electrochemical, magnetic, and mass-sensitive sensors were observed. For each biosensing technique, sensitivity, specificity, and detection limits were evaluated. Furthermore, the integration of nanomaterials, microfluidics, and portable devices in biosensor systems' design were discussed, highlighting their role in enhancing detection performance. The potential challenges and future directions in the field of Legionella biosensing were also addressed, providing insights into the feasibility of implementing these technologies in routine environmental monitoring. Undoubtedly, biosensors can play a crucial role in the early detection and management of Legionella infections and outbreaks, ultimately protecting public health and safety.
Collapse
Affiliation(s)
- Giuseppe Andrea Screpis
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Andrea Aleo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Natalia Privitera
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Giuseppe Emanuele Capuano
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Roberta Farina
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Corso
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Sebania Libertino
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
4
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
5
|
Capuano GE, Corso D, Farina R, Pezzotti Escobar G, Screpis GA, Coniglio MA, Libertino S. Miniaturizable Chemiluminescence System for ATP Detection in Water. SENSORS (BASEL, SWITZERLAND) 2024; 24:3921. [PMID: 38931704 PMCID: PMC11207618 DOI: 10.3390/s24123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.
Collapse
Affiliation(s)
- Giuseppe E. Capuano
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Domenico Corso
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Roberta Farina
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianni Pezzotti Escobar
- URT “LabSens of Beyond Nano” of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR-DSFTM-ME), Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Giuseppe A. Screpis
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Maria Anna Coniglio
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Sebania Libertino
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| |
Collapse
|
6
|
Laganà P, Facciolà A, Palermo R, De Giglio O, Delia SA, Gioffrè ME. The Presence of Legionella in Water Used for Car Washing: Implications for Public Health. Microorganisms 2023; 11:2992. [PMID: 38138135 PMCID: PMC10745634 DOI: 10.3390/microorganisms11122992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Although today all of the aspects of Legionella are better understood than in the past, in many countries the interest is still mainly focused on healthcare and tourism facilities. Other at-risk areas are less explored, such as those where workers are often in contact with water during their activities. In reality, any water system capable of producing aerosols can be considered a potential source of Legionella transmission, including car washes, where a large number of users work and flow through annually. From January to May 2022, 120 samples were carried out in 30 car washes located in Messina (Italy): 60 samples of water and 60 of aerosols. The aim of this investigation was to evaluate the risk of legionellosis in car washing workers exposed to potentially contaminated aerosols. To increase the probability of finding Legionella, the sample collections were organized on different days of the week. Of the total samples taken, 10 (8.3%) were positive for Legionella: seven (11.7%) water (range 100-1000 CFU) and three (5%) aerosol (range 10-150 CFU) samples. Detected serogroups were L. pneumophila sgr 1, 7, 10 and Legionella gormanii. Given the results obtained, preventative measures should be implemented in such facilities in order to protect the health of users and car wash operators.
Collapse
Affiliation(s)
- Pasqualina Laganà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Branch of Messina, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.F.); (S.A.D.)
| | - Alessio Facciolà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Branch of Messina, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.F.); (S.A.D.)
| | - Roberta Palermo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Osvalda De Giglio
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, Section of Hygiene, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Santi Antonino Delia
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Branch of Messina, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.F.); (S.A.D.)
| | - Maria Eufemia Gioffrè
- Multispecialty Clinical Institute, Trauma Orthopedic Care, Via Ducezio 1, 98124 Messina, Italy;
| |
Collapse
|
7
|
Fasciana T, Palermo M, Arrigo I, Tricoli MR, Diquattro O, Giammanco A. Editorial: Special Issue: " Legionella pneumophila: A Microorganism with a Thousand Faces". Microorganisms 2023; 11:2392. [PMID: 37894050 PMCID: PMC10609420 DOI: 10.3390/microorganisms11102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023] Open
Abstract
Legionella pneumophila is a microorganism that is able to contaminate the freshwater environment and, consequently, human-made water systems [...].
Collapse
Affiliation(s)
- Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (M.R.T.)
| | - Mario Palermo
- Sicilian Health Department, Public Health and Environmental Risks Service, 90127 Palermo, Italy;
| | - Ignazio Arrigo
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (M.R.T.)
| | - Maria Rita Tricoli
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (M.R.T.)
| | - Orazia Diquattro
- Laboratory of Microbiology, A. O. Ospedali Riuniti “Villa Sofia-Cervello”, 90100 Palermo, Italy;
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (M.R.T.)
| |
Collapse
|
8
|
Guo L, Xu J, Du B. Self-assembly of ABCBA Linear Pentablock Terpolymers. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2178008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Lei Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Junting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Noura Z, Shah I, Aziz S, Ahmed A, Jung DW, Brahim L, ElMostafa R. Wearable Healthcare Monitoring Based on a Microfluidic Electrochemical Integrated Device for Sensing Glucose in Natural Sweat. SENSORS (BASEL, SWITZERLAND) 2022; 22:8971. [PMID: 36433566 PMCID: PMC9698867 DOI: 10.3390/s22228971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Wearable sweat sensors offer the possibility of continuous real-time health monitoring of an individual at a low cost without invasion. A variety of sweat glucose sensors have been developed thus far to help diabetes patients frequently monitor blood glucose levels through sweat glucose as a surrogate marker. The present study demonstrates the development and characterization of a three-dimensional paper-based microfluidic electrochemical integrated device (3D PMED) for measuring glucose concentration in sweat in real-time via simple, non-invasive, capillary-action-based sample collection. The device was selective for glucose, and it detected glucose accurately in the clinically relevant range (0~2 mM) in an off-body setup. To the best of our knowledge, this is the first time NEXAR™ has been used for biosensing applications. Further, the developed glucose sensor has acceptable sensitivity of 16.8 µA/mM/cm2. Importantly, in an on-body setup, the device achieved a significant amperometric response to sweat glucose in a very short amount of time (a few seconds). With detailed investigations, this proof-of-concept study could help further the development of sensitive and selective sweat-based glucose sensing devices for real-time glucose monitoring in diabetes patients.
Collapse
Affiliation(s)
- Zouaghi Noura
- National School of Applied Sciences, LISA Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco
- Moroccan Foundation for Advanced Science, Innovation and Research, Digitalization & Microelectronics Smart Devices Laboratory, Rabat 10100, Morocco
| | - Imran Shah
- Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Risalpur 24090, Pakistan
| | - Shahid Aziz
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Aamouche Ahmed
- National School of Applied Sciences, LISA Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Dong-Won Jung
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Lakssir Brahim
- Moroccan Foundation for Advanced Science, Innovation and Research, Digitalization & Microelectronics Smart Devices Laboratory, Rabat 10100, Morocco
| | - Ressami ElMostafa
- Moroccan Foundation for Advanced Science, Innovation and Research, Digitalization & Microelectronics Smart Devices Laboratory, Rabat 10100, Morocco
| |
Collapse
|
10
|
Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76532-76542. [PMID: 36161570 PMCID: PMC9511453 DOI: 10.1007/s11356-022-22950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2022] [Indexed: 05/28/2023]
Abstract
An increase in the number of reports of legionellosis in the European Union and the European Economic Area have been recorded in recent years. The increase in cases is significant: from 6947 reports in 2015 to 11,298 in 2019. This is alarming as genus Legionella, which comprises a large group of bacteria inhabiting various aquatic systems, poses a serious threat to human health and life, since more than 20 species can cause legionellosis, with L. pneumophila being responsible for the majority of cases. The ability to colonize diverse ecosystems makes the eradication of these microorganisms difficult. A detailed understanding of the Legionella habitat may be helpful in the effective control of this pathogen. This paper provides an overview of Legionella environments in Europe: natural (lakes, groundwater, rivers, compost, soil) and anthropogenic (fountains, air humidifiers, water supply systems), and the role of Legionella spp. in nosocomial infections, which are potentially fatal for children, the elderly and immunocompromised patients.
Collapse
Affiliation(s)
- Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029, Bydgoszcz, Poland
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Street, 85-094, Bydgoszcz, Poland
| | - Barbara Breza-Boruta
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029, Bydgoszcz, Poland.
| |
Collapse
|
11
|
Filice S, Scuderi V, Libertino S, Zimbone M, Galati C, Spinella N, Gradon L, Falqui L, Scalese S. Sulfonated Pentablock Copolymer Coating of Polypropylene Filters for Dye and Metal Ions Effective Removal by Integrated Adsorption and Filtration Process. Int J Mol Sci 2022; 23:ijms231911777. [PMID: 36233077 PMCID: PMC9570310 DOI: 10.3390/ijms231911777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we coated polypropylene (PP) fibrous filters with sulfonated pentablock copolymer (s-PBC) layers and tested them for the removal of cationic organic dyes, such as methylene blue (MB), and heavy metal ions (Fe3+ and Co2+) from water by adsorption and filtration experiments. Some of the coated filters were irradiated by UV light before being exposed to contaminated water and then were tested with unirradiated filters in the same adsorption and filtration experiments. Polymer-coated filters showed high efficiency in removing MB from an aqueous solution in both absorption and filtration processes, with 90% and 80% removal, respectively. On the other hand, for heavy metal ions (Fe3+ and Co2+), the coated filters showed a better removal performance in the filtration process than for the adsorption one. In fact, in the adsorption process, controlled interaction times allow the ionic species to interact with the surface of the filters leading to the formation and release of new species in solution. During filtration, the ionic species are easily trapped in the filters, in particular by UV modified filters, and we observed for Fe3+ ions a total removal (>99%) in a single filtration process and for Co2+ ions a larger removal with respect to the untreated filter. The mechanisms involved in the removal of the contaminants processes were investigated by characterizing the filters before and after use by means of scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) analysis and Fourier transform infrared spectroscopy (FT-IR).
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| | - Viviana Scuderi
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
- Correspondence: (V.S.); (S.S.)
| | - Sebania Libertino
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| | - Massimo Zimbone
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Via S. Sofia 64, 95123 Catania, Italy
| | - Clelia Galati
- STMicroelectronics Stradale Primosole 50, 95121 Catania, Italy
| | | | - Leon Gradon
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warsaw, Poland
| | - Luciano Falqui
- Plastica Alfa SpA, Zona Industriale, C.da S.M.Poggiarelli, 95041 Caltagirone (CT), Italy
| | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
- Correspondence: (V.S.); (S.S.)
| |
Collapse
|