1
|
Rosa R, de Paula Baptista R, Tran TT, Eskandari S, Rosello G, Arias CA, Martinez OV, Abbo LM. Changing trends in the sources and volumes of clinical cultures with Candida auris at an integrated health system in Miami, Florida, United States, 2019-2023. Am J Infect Control 2025:S0196-6553(25)00114-2. [PMID: 40107456 DOI: 10.1016/j.ajic.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Candida auris (C auris) has rapidly spread in the United States. We aimed to characterize the trends in volumes and sources of clinical cultures with C auris at a large health care system. METHODS We conducted a retrospective observational study including clinical cultures with C auris collected between April 1, 2019, and December 31, 2023. Surveillance cultures were excluded. Clinical specimens were processed through routine methods, and identification was performed using mass spectrometry. Whole-genome sequencing was performed on select specimens. RESULTS We identified 327 clinical cultures belonging to 231 unique patients. The number of clinical cultures increased each year, from 5 in 2019 to 29 in 2020 (580%), 71 in 2021 (251% relative to 2020), 107 in 2022 (46% relative to 2021), and 115 in 2023 (7% relative to 2022). Blood cultures were the most common source, but specimens originating from soft tissue/bone infections had a large increase in 2022 and 2023. All sequenced isolates belong to clade III (South African clade) and were resistant to fluconazole and susceptible to echinocandins and amphotericin B. CONCLUSIONS The volumes of clinical cultures with C auris have rapidly increased, accompanied by an expansion in the sources of infection.
Collapse
Affiliation(s)
- Rossana Rosa
- Infection Prevention and Control Program, Jackson Health System, Miami, FL.
| | - Rodrigo de Paula Baptista
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX; Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX; Department of Medicine, Weill Cornell Medical College, New York City, NY
| | - Truc T Tran
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX; Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX; Department of Medicine, Weill Cornell Medical College, New York City, NY
| | | | - Gemma Rosello
- Infection Prevention and Control Program, Jackson Health System, Miami, FL
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX; Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX; Department of Medicine, Weill Cornell Medical College, New York City, NY
| | - Octavio V Martinez
- Microbiology Section, Jackson Memorial Hospital, Miami, FL; Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Lilian M Abbo
- Infection Prevention and Control Program, Jackson Health System, Miami, FL; Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
2
|
Srisurapanont K, Lerttiendamrong B, Meejun T, Thanakitcharu J, Manothummetha K, Thongkam A, Chuleerarux N, Sanguankeo A, Li LX, Leksuwankun S, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Moonla C, Nematollahi S, Kates OS, Permpalung N. Candidemia Following Severe COVID-19 in Hospitalised and Critical Ill Patients: A Systematic Review and Meta-Analysis. Mycoses 2024; 67:e13798. [PMID: 39379339 PMCID: PMC11607781 DOI: 10.1111/myc.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
RATIONALE The epidemiology and clinical impact of COVID-19-associated candidemia (CAC) remained uncertain, leaving gaps in understanding its prevalence, risk factors and outcomes. METHODS A systematic review and meta-analysis were conducted by searching PubMed, Embase and Scopus for reports of CAC prevalence, risk factors and clinical outcomes up to June 18, 2024. The generalised linear mixed model was employed to determine the prevalence and 95% confidence intervals (CIs). The risk factors and clinical outcomes were compared between patients with and without CAC using the inverse variance method. RESULTS From 81 studies encompassing 29 countries and involving 351,268 patients, the global prevalence of CAC was 4.33% (95% Cl, 3.16%-5.90%) in intensive care unit (ICU) patients. In ICUs, the pooled prevalence of CAC in high-income countries was significantly higher than that of lower-middle-income countries (5.99% [95% Cl, 4.24%-8.40%] vs. 2.23% [95% Cl, 1.06%-4.61%], p = 0.02). Resistant Candida species, including C. auris, C. glabrata (Nakaseomyces glabratus) and C. krusei (Pichia kudriavzveii), constituted 2% of ICU cases. The mortality rate for CAC was 68.40% (95% Cl, 61.86%-74.28%) among ICU patients. Several risk factors were associated with CAC, including antibiotic use, central venous catheter placement, dialysis, mechanical ventilation, tocilizumab, extracorporeal membrane oxygenation and total parenteral nutrition. Notably, the pooled odds ratio of tocilizumab was 2.59 (95% CI, 1.44-4.65). CONCLUSIONS The prevalence of CAC is substantial in the ICU setting, particularly in high-income countries. Several risk factors associated with CAC were identified, including several that are modifiable, offering the opportunity to mitigate the risk of CAC.
Collapse
Affiliation(s)
| | | | - Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jaedvara Thanakitcharu
- Panyananthaphikkhu Cholprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lucy X. Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattapong Langsiri
- Panyananthaphikkhu Cholprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, and Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand
| | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Rapti V, Iliopoulou K, Poulakou G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023; 12:1444. [PMID: 38133327 PMCID: PMC10747958 DOI: 10.3390/pathogens12121444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Since its first description in 2009, Candida auris has, so far, resulted in large hospital outbreaks worldwide and is considered an emerging global public health threat. Exceptionally for yeast, it is gifted with a profoundly worrying invasive potential and high inter-patient transmissibility. At the same time, it is capable of colonizing and persisting in both patients and hospital settings for prolonged periods of time, thus creating a vicious cycle of acquisition, spreading, and infection. It exhibits various virulence qualities and thermotolerance, osmotolerance, filamentation, biofilm formation and hydrolytic enzyme production, which are mainly implicated in its pathogenesis. Owing to its unfavorable profile of resistance to diverse antifungal agents and the lack of effective treatment options, the implementation of robust infection prevention and control (IPC) practices is crucial for controlling and minimizing intra-hospital transmission of C. auris. Rapid and accurate microbiological identification, adherence to hand hygiene, use of adequate personal protective equipment (PPE), proper handling of catheters and implantable devices, contact isolation, periodical environmental decontamination, targeted screening, implementation of antimicrobial stewardship (AMS) programs and communication between healthcare facilities about residents' C. auris colonization status are recognized as coherent strategies for preventing its spread. Current knowledge on C. auris epidemiology, clinical characteristics, and its mechanisms of pathogenicity are summarized in the present review and a comprehensive overview of IPC practices ensuring yeast prevention is also provided.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
4
|
Santana DJ, Anku JAE, Zhao G, Zarnowski R, Johnson CJ, Hautau H, Visser ND, Ibrahim AS, Andes D, Nett JE, Singh S, O'Meara TR. A Candida auris-specific adhesin, Scf1 , governs surface association, colonization, and virulence. Science 2023; 381:1461-1467. [PMID: 37769084 PMCID: PMC11235122 DOI: 10.1126/science.adf8972] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Candida auris is an emerging fungal pathogen responsible for health care-associated outbreaks that arise from persistent surface and skin colonization. We characterized the arsenal of adhesins used by C. auris and discovered an uncharacterized adhesin, Surface Colonization Factor (Scf1), and a conserved adhesin, Iff4109, that are essential for the colonization of inert surfaces and mammalian hosts. SCF1 is apparently specific to C. auris, and its expression mediates adhesion to inert and biological surfaces across isolates from all five clades. Unlike canonical fungal adhesins, which function through hydrophobic interactions, Scf1 relies on exposed cationic residues for surface association. SCF1 is required for C. auris biofilm formation, skin colonization, virulence in systemic infection, and colonization of inserted medical devices.
Collapse
Affiliation(s)
- Darian J Santana
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Juliet A E Anku
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Guolei Zhao
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Haley Hautau
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, CA, USA
| | - Noelle D Visser
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Ashraf S Ibrahim
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Andes
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Shakti Singh
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Hassoun N, Kassem II, Hamze M, El Tom J, Papon N, Osman M. Antifungal Use and Resistance in a Lower-Middle-Income Country: The Case of Lebanon. Antibiotics (Basel) 2023; 12:1413. [PMID: 37760710 PMCID: PMC10525119 DOI: 10.3390/antibiotics12091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is a serious threat, particularly in low- and middle-income countries (LMICs). Antifungal resistance is often underestimated in both healthcare and non-clinical settings. In LMICs, it is believed that the inappropriate use of antifungals, limited surveillance systems, and low diagnostic capacities are significant drivers of resistance. Like other LMICs, Lebanon lacks antifungal use and resistance surveillance programs, and the impact of antifungal resistance in the country remains unclear, especially during the unfolding economic crisis that has severely affected medical care and access to safe food and water. Interestingly, the widespread use of antifungals in medicine and agriculture has raised concerns about the development of antifungal resistance in Lebanon. In this light, we aimed to survey available antifungal drugs in the country and evaluate susceptibility patterns of prevalent fungal species to guide empiric treatments and develop antifungal stewardship programs in Lebanon. We noted that the economic crisis resulted in significant increases in antifungal drug prices. Additionally, a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar databases identified 15 studies on fungal infections and antifungal resistance conducted from 1998 to 2023 in Lebanon. While data on antifungal resistance are limited, 87% of available studies in Lebanon focused on candidiasis, while the remaining 13% were on aspergillosis. Overall, we observed a marked antimicrobial resistance among Candida and Aspergillus species. Additionally, incidences of Candida auris infections have increased in Lebanese hospitals during the COVID-19 pandemic, with a uniform resistance to fluconazole and amphotericin-B. Taken together, a One Health approach, reliable diagnostics, and prudent antifungal use are required to control the spread of resistant fungal pathogens in healthcare and agricultural settings.
Collapse
Affiliation(s)
- Nesrine Hassoun
- Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Jad El Tom
- School of Pharmacy, Lebanese American University, Byblos 1401, Lebanon;
| | - Nicolas Papon
- University of Angers, University of Brest, IRF, SFR ICAT, F-49000 Angers, France;
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Bassetti M, Brucci G, Vena A, Giacobbe DR. Use of antibiotics in hospitalized patients with COVID-19: evolving concepts in a highly dynamic antimicrobial stewardship scenario. Expert Opin Pharmacother 2023; 24:1679-1684. [PMID: 37466425 DOI: 10.1080/14656566.2023.2239154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Excessive use of antibiotics has been frequently reported in hospitalized patients with COVID-19 worldwide, compared to the actual number of bacterial co-infections or super-infections. AREAS COVERED In this perspective, we discuss the current literature on the use of antibiotics and antimicrobial stewardship interventions in hospitalized patients with COVID-19. A search was conducted in PubMed up to March 2023. EXPERT OPINION The COVID-19 pandemic has witnessed an excessive use of antibiotics in hospitals worldwide, especially before the advent of COVID-19 vaccination, although according to the most recent data there is still an important disproportion between the prevalence of antibiotic use and that of proven bacterial coinfection or superinfections. An important reduction in the prevalence of antibiotic use in COVID-19 patients reported in the literature, from 70-100% to 50-60%, has been observed after successful vaccination campaigns, likely related to the reduced median disease severity of hospitalized COVID-19 patients and some successful interventions of antimicrobial and diagnostic stewardship. However, the disproportion between antibiotic use and the prevalence of bacterial infections (4-6%) is still uncomfortable from an antimicrobial stewardship perspective and requires further attention.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Giorgia Brucci
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
El Zakhem A, Mahmoud O, Zakhour J, Nahhal SB, El Ghawi N, Omran N, El Sheikh WG, Tamim H, Kanj SS. The Impact of COVID-19 on the Epidemiology and Outcomes of Candidemia: A Retrospective Study from a Tertiary Care Center in Lebanon. J Fungi (Basel) 2023; 9:769. [PMID: 37504757 PMCID: PMC10381108 DOI: 10.3390/jof9070769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Invasive fungal infections, notably candidemia, have been associated with COVID-19. The epidemiology of candidemia has significantly changed during the COVID-19 pandemic. We aim to identify the microbiological profile, resistance rates, and outcomes of COVID-19-associated candidemia (CAC) compared to patients with candidemia not associated with COVID-19. We retrospectively collected data on patients with candidemia admitted to the American University of Beirut Medical Center between 2004 and 2022. We compared the epidemiology of candidemia during and prior to the COVID-19 pandemic. Additionally, we compared the outcomes of critically ill patients with CAC to those with candidemia without COVID-19 from March 2020 till March 2022. Among 245 candidemia episodes, 156 occurred prior to the pandemic and 89 during the pandemic. Of the latter, 39 (43.8%) were CAC, most of which (82%) were reported from intensive care units (ICU). Non-albicans Candida (NAC) spp. were predominant throughout the study period (67.7%). Candida auris infection was the most common cause of NAC spp. in CAC. C. glabrata had decreased susceptibility rates to fluconazole and caspofungin during the pandemic period (46.1% and 38.4%, respectively). The mortality rate in the overall ICU population during the pandemic was 76.6%, much higher than the previously reported candidemia mortality rate observed in studies involving ICU patients. There was no significant difference in 30-day mortality between CAC and non-CAC (75.0% vs. 78.1%; p = 0.76). Performing ophthalmic examination (p = 0.002), CVC removal during the 48 h following the candidemia (p = 0.008) and speciation (p = 0.028) were significantly associated with a lower case-fatality rate. The epidemiology of candidemia has been significantly affected by the COVID-19 pandemic at our center. Rigorous infection control measures and proper antifungal stewardship are essential to combat highly resistant species such as C. auris.
Collapse
Affiliation(s)
- Aline El Zakhem
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Omar Mahmoud
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Johnny Zakhour
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Sarah B Nahhal
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Nour El Ghawi
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Nadine Omran
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Walaa G El Sheikh
- Biostatistics Unit, Clinical Research Institute, American University of Beirut, Beirut 110236, Lebanon
| | - Hani Tamim
- Biostatistics Unit, Clinical Research Institute, American University of Beirut, Beirut 110236, Lebanon
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut 110236, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut 110236, Lebanon
| |
Collapse
|
8
|
Roman-Montes CM, Bojorges-Aguilar S, Corral-Herrera EA, Rangel-Cordero A, Díaz-Lomelí P, Cervantes-Sanchez A, Martinez-Guerra BA, Rajme-López S, Tamez-Torres KM, Martínez-Gamboa RA, González-Lara MF, Ponce-de-Leon A, Sifuentes-Osornio J. Fungal Infections in the ICU during the COVID-19 Pandemic in Mexico. J Fungi (Basel) 2023; 9:583. [PMID: 37233294 PMCID: PMC10219464 DOI: 10.3390/jof9050583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Background: Invasive Fungal Infections (IFI) are emergent complications of COVID-19. In this study, we aim to describe the prevalence, related factors, and outcomes of IFI in critical COVID-19 patients. Methods: We conducted a nested case-control study of all COVID-19 patients in the intensive care unit (ICU) who developed any IFI and matched age and sex controls for comparison (1:1) to evaluate IFI-related factors. Descriptive and comparative analyses were made, and the risk factors for IFI were compared versus controls. Results: We found an overall IFI prevalence of 9.3% in COVID-19 patients in the ICU, 5.6% in COVID-19-associated pulmonary aspergillosis (CAPA), and 2.5% in invasive candidiasis (IC). IFI patients had higher SOFA scores, increased frequency of vasopressor use, myocardial injury, and more empirical antibiotic use. CAPA was classified as possible in 68% and 32% as probable by ECMM/ISHAM consensus criteria, and 57.5% of mortality was found. Candidemia was more frequent for C. parapsilosis Fluconazole resistant outbreak early in the pandemic, with a mortality of 28%. Factors related to IFI in multivariable analysis were SOFA score > 2 (aOR 5.1, 95% CI 1.5-16.8, p = 0.007) and empiric antibiotics for COVID-19 (aOR 30, 95% CI 10.2-87.6, p = <0.01). Conclusions: We found a 9.3% prevalence of IFIs in critically ill patients with COVID-19 in a single center in Mexico; factors related to IFI were associated with higher SOFA scores and empiric antibiotic use for COVID-19. CAPA is the most frequent type of IFI. We did not find a mortality difference.
Collapse
Affiliation(s)
- Carla M. Roman-Montes
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Saul Bojorges-Aguilar
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Ever Arturo Corral-Herrera
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Andrea Rangel-Cordero
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Paulette Díaz-Lomelí
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Axel Cervantes-Sanchez
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Bernardo A. Martinez-Guerra
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Sandra Rajme-López
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Karla María Tamez-Torres
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Rosa Areli Martínez-Gamboa
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Maria Fernanda González-Lara
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-Leon
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - José Sifuentes-Osornio
- General Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico;
| |
Collapse
|
9
|
Giacobbe DR, Mikulska M, Vena A, Di Pilato V, Magnasco L, Marchese A, Bassetti M. Challenges in the diagnosis and treatment of candidemia due to multidrug-resistant Candida auris. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1061150. [PMID: 37746122 PMCID: PMC10512377 DOI: 10.3389/ffunb.2023.1061150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/16/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Laura Magnasco
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Unità di Microbiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Ioannou P, Kofteridis DP, Alexakis K, Koutserimpas C, Papakitsou I, Maraki S, Samonis G. Candida Species Isolation from Hospitalized Patients with COVID-19-A Retrospective Study. Diagnostics (Basel) 2022; 12:3065. [PMID: 36553072 PMCID: PMC9776868 DOI: 10.3390/diagnostics12123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a disease characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has so far led to hundreds of millions of infections and millions of deaths. Fungal infections are known to complicate COVID-19 patients and are associated with significant morbidity and mortality. The aim of this study was to assess the incidence of positive cultures for Candida spp. among patients hospitalized with COVID-19, describe their characteristics and identify factors associated with overall mortality in this patient population. Hospitalized COVID-19 patients with Candida spp. isolation were retrospectively assessed and their clinical, laboratory and microbiological characteristics were assessed and evaluated. In total, 69 patients with COVID-19 had a positive culture for Candida spp., representing a rate of 4.5% among all hospitalized COVID-19 patients. Their median age was 78 years (IQR 67-85 years) and 44.9% were male. Hospitalized patients with COVID-19 and Candida spp. isolation who died were older, were more likely to have a diagnosis of dementia, and had higher Charlson comorbidity index, higher Candida score and higher 4C score. Candida score was identified with a multivariate logistic regression analysis model to be independently associated with mortality. The most commonly identified Candida species was C. albicans, followed by C. tropicalis and C. glabrata and the most common source was the urine, even though in most cases the positive culture was not associated with a true infection. Thus, Candida score may be used in COVID-19 patients with isolation of Candida spp. from different body specimens for mortality risk stratification.
Collapse
Affiliation(s)
- Petros Ioannou
- COVID-19 Department, University Hospital of Heraklion, 71500 Heraklion, Greece
| | | | | | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, “251” Hellenic Air Force General Hospital of Athens, 11525 Athens, Greece
| | - Ioanna Papakitsou
- COVID-19 Department, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - George Samonis
- Department of Medicine, University of Crete, 71500 Heraklion, Greece
- First Department of Medical Oncology, “Metropolitan” Hospital, Neon Faliron, 18547 Attica, Greece
| |
Collapse
|