1
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2025; 17:1-22. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
2
|
Reyes-Castillo PA, Esquivel-Campos AL, Torres-Maravilla E, Zúñiga-León E, Mendoza-Pérez F, González-Vázquez R, Córdova-Espinoza MG, Gutiérrez-Nava MA, González-Vázquez R, Mayorga-Reyes L. Hypoglycemic, Antioxidant Activities, and Probiotic Characteristics of Lacticaseibacillus rhamnosus LBUX2302 Isolated from Stool Samples of Neonates. Life (Basel) 2025; 15:804. [PMID: 40430230 DOI: 10.3390/life15050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Lacticaseibacillus species have shown potential in managing hyperglycemia, hypercholesterolemia, and oxidative stress, depending on the strain and species. This study aimed to isolate a novel Lacticaseibacillus rhamnosus strain from healthy newborns and assess its hypoglycemic and antioxidative activity, along with other probiotic properties. A non-hemolytic L. rhamnosus LBUX2302 was isolated, and it exhibited survival rates of 2.7%, 22%, and 27.5% at pH 2, 3, and 5 for 120 min. It metabolized various carbon sources and showed resistance to gentamicin, dicloxacillin, and penicillin; coaggregated with Salmonella typhi ATCC14028, Staphylococcus aureus STCC6538, and Escherichia coli O157:H7. L. rhamnosus LBUX2302 showed hydrophobicity, autoaggregation, and adhesion to HaCat, HeLa, MCF-7, SK-LU-1, and SW620 cell lines. It also exhibited extracellular activity of bile salt hydrolase. Enzymatic inhibition assays revealed 66% and 24% inhibitions of α-amylase and α-glucosidase, respectively. Its cell-free supernatant inhibited DPPH (89%), hydroxyl (81%), and superoxide anion radicals (61%). Also, antioxidant activity was observed in whole cells and cell fragments. Finally, the presence of ferulic acid activity was detected. The results highlight L. rhamnosus LBUX2302 as a promising probiotic with hypoglycemic and antioxidant effects, warranting further in vivo evaluation for its possible inclusion in functional food and health formulations.
Collapse
Affiliation(s)
- Pedro A Reyes-Castillo
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana, Mexico City 04960, Mexico
| | - Ana Laura Esquivel-Campos
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| | - Edgar Torres-Maravilla
- Facultad de Medicina Mexicali, Universidad Autonoma de Baja California, Mexicali 21000, Mexico
| | - Eduardo Zúñiga-León
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| | - Felipe Mendoza-Pérez
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| | - Rosa González-Vázquez
- Laboratorio de Bacteriologia Medica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional (IPN), Mexico City 11350, Mexico
- Unidad Medica de Alta Especialidad, Hospital de Especialidades, "Dr. Antonio Fraga Mouret", Centro Medico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
| | - María Guadalupe Córdova-Espinoza
- Laboratorio de Bacteriologia Medica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional (IPN), Mexico City 11350, Mexico
- Unidad Medica de Alta Especialidad, Hospital de Especialidades, "Dr. Antonio Fraga Mouret", Centro Medico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
- Laboratorio de Inmunologia, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico
| | - María Angélica Gutiérrez-Nava
- Laboratorio de Ecologia Microbiana, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Raquel González-Vázquez
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Secihti-Universidad Autonoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| | - Lino Mayorga-Reyes
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
3
|
Li H, He B, Ma N, Liu C, Cai K, Zhang X, Ma X. Quorum sensing of Bifidobacteria: Research and progress. Microbiol Res 2025; 294:128102. [PMID: 39965277 DOI: 10.1016/j.micres.2025.128102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Quorum sensing (QS) is a common method of communication among bacteria. While previous studies have discovered the mechanisms of QS in a variety of pathogenic bacteria, relatively little research has focused on probiotics, such as Bifidobacteria. Recent studies have detected QS signalling molecules in Bifidobacteria, but it remains unclear whether the probiotic properties of Bifidobacteria are mediated by QS. This review aims to provide an overview of the QS system in Bifidobacteria and its role in promoting the secretion of metabolites such as extracellular vesicles and biofilms. The review further examines the inhibition of virulence gene expression by Bifidobacteria QS through the luxS/AI-2 system, as well as its role in promoting host-microbial interactions. Understanding the QS mechanisms of Bifidobacteria can reveal beneficial interactions with hosts, which may facilitate the control of bacterial infections, including therapeutic strategies for intestinal diseases. This knowledge can also help improve gut health, thereby addressing the opportunities and challenges of enhancing the body's nutritional status.
Collapse
Affiliation(s)
- Huahui Li
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Bin He
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Ning Ma
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China
| | - Chunchen Liu
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Kun Cai
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China
| | - Xiujun Zhang
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Xi Ma
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
4
|
Sun M, Li Q, Zhang F, Yao D, Huang W, Lv Q, Jiang H, Kong D, Ren Y, Chen S, Jiang Y, Liu P. The Genomic Characteristics of Potential Probiotics: Two Streptococcus salivarius Isolates from a Healthy Individual in China. Microorganisms 2025; 13:694. [PMID: 40142586 PMCID: PMC11945364 DOI: 10.3390/microorganisms13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The isolation and characterization of novel probiotics from dairy products, fermented foods, and the gut have gained significant attention. In particular, Streptococcus salivarius shows promise for use in oral probiotic preparations. In this study, we isolated two strains of S. salivarius-S.82.15 and S.82.20-from the oral cavity of a healthy individual. These strains exhibited distinct antimicrobial profiles. We thoroughly assessed the morphology and growth patterns of both strains and confirmed auto-aggregation and hemolytic activity. Through comprehensive genomic analysis, we found notable strain differences within the same bacterial species isolated from the same individual. Notably, the presence or absence of plasmids varied between the two strains. The genome of S.82.15 spans 2,175,688 bps and contains 1994 coding DNA sequences (CDSs), while S.82.20 has a genome size of 2,414,610 bps, a GC content of 40.62%, and 2276 annotated CDSs. Both strains demonstrated antibacterial activity against Group A Streptococcus (GAS), Micrococcus. luteus, and Porphyromonas gingivalis. To investigate the antibacterial properties further, we identified a gene cluster of salivaricin 9 on the plasmid of S.82.20 and a blp gene family on the chromosomes of both S.82.15 and S.82.20. Moreover, the gene expression of the blp family was upregulated when the isolated strains were co-cultured with GAS.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Feiran Zhang
- Division of Fifth, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ding Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Peng Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| |
Collapse
|
5
|
Zhang LN, Tan JT, Ng HY, Liao YS, Zhang RQ, Chan KH, Hung IFN, Lam TTY, Cheung KS. Baseline Gut Microbiota Was Associated with Long-Term Immune Response at One Year Following Three Doses of BNT162b2. Vaccines (Basel) 2024; 12:916. [PMID: 39204040 PMCID: PMC11359560 DOI: 10.3390/vaccines12080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND This study explored neutralizing IgG antibody levels against COVID-19 decline over time post-vaccination. We conducted this prospective cohort study to investigate the function of gut microbiota in the host immune response following three doses of BNT162b2. METHODS Subjects who received three doses of BNT162b2 were recruited from three centers in Hong Kong. Blood samples were obtained before the first dose and at the one-year timepoint for IgG ELISA to determine the level of neutralizing antibody (NAb). The primary outcome was a high immune response (NAb > 600 AU/mL). We performed shotgun DNA metagenomic sequencing on baseline fecal samples to identify bacterial species and metabolic pathways associated with high immune response using linear discriminant analysis effect size analysis. RESULTS A total of 125 subjects were recruited (median age: 52 years [IQR: 46.2-59.0]; male: 43 [34.4%]), and 20 were regarded as low responders at the one-year timepoint. Streptococcus parasanguinis (log10LDA score = 2.38, p = 0.003; relative abundance of 2.97 × 10-5 vs. 0.03%, p = 0.001), Bacteroides stercoris (log10LDA score = 4.29, p = 0.024; relative abundance of 0.14% vs. 2.40%, p = 0.014) and Haemophilus parainfluenzae (log10LDA score = 2.15, p = 0.022; relative abundance of 0.01% vs. 0, p = 0.010) were enriched in low responders. Bifidobacterium pseudocatenulatum (log10LDA score = 2.99, p = 0.048; relative abundance of 0.09% vs. 0.36%, p = 0.049) and Clostridium leptum (log10LDA score = 2.38, p = 0.014; relative abundance of 1.2 × 10-5% vs. 0, p = 0.044) were enriched in high responders. S. parasanguinis was negatively correlated with the superpathway of pyrimidine ribonucleotides de novo biosynthesis (log10LDA score = 2.63), which contributes to inflammation and antibody production. H. parainfluenzae was positively correlated with pathways related to anti-inflammatory processes, including the superpathway of histidine, purine, and pyrimidine biosynthesis (log10LDA score = 2.14). CONCLUSION Among three-dose BNT162b2 recipients, S. parasanguinis, B. stercoris and H. parainfluenzae were associated with poorer immunogenicity at one year, while B. pseudocatenulatum and C. leptum was associated with a better response.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Jing-Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Ho-Yu Ng
- School of Clinical Medicine, The University of Hong Kong, Hong Kong, China;
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China; (Y.-S.L.); (T.T.-Y.L.)
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong, China
| | - Rui-Qi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Kwok-Hung Chan
- Department of Microbiology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China;
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China; (Y.-S.L.); (T.T.-Y.L.)
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
6
|
Paul A, Wellslager B, Williamson M, Yilmaz Ö. Bacterial Protein Signatures Identified in Porphyromonas gingivalis Containing-Autophagic Vacuoles Reveal Co-Evolution Between Oral Red/Orange Complex Bacteria and Gut Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602567. [PMID: 39026754 PMCID: PMC11257597 DOI: 10.1101/2024.07.11.602567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Modern oral bacterial species present as a concoction of commensal and opportunistic pathogens originating from their evolution in humans. Due to the intricate colonization mechanisms shared amongst oral and gut bacteria, these bacteria have likely evolved together to establish and adapt in the human oro-digestive tract, resulting in the transfer of genetic information. Our liquid chromatography-with-tandem-mass-spectrometry (LC-MS-MS) analyses have revealed protein signatures, Elongation Factor Tu, RagB/SusD nutrient uptake outer membrane protein and DnaK, specifically from Porphyromonas gingivalis -containing autophagic vacuoles isolated from the infected human primary gingival epithelial cells. Interestingly, our Mass-Spectrometry analysis reported similar proteins from closely related oral bacteria, Tannerella forsythia and Prevotella intermedia . In our phylogenetic study of these key protein signatures, we have established that pathogenic oral bacteria share extensive relatedness to each other and gut resident bacteria. We show that in the virulence factors identified from gut bacteria, Elongation Factor Tu and DnaK, there are several structural similarities and conservations with proteins from oral pathogenic bacteria. There are also major similarities in the RagB/SusD proteins of oral bacteria to prominent gut bacteria. These findings not only highlight the shared virulence mechanisms amongst oral bacterial pathogens/pathobionts but also gut bacteria and elucidate their co-evolutions in the human host.
Collapse
|
7
|
Chuang HH, Huang CG, Chou SH, Li HY, Lee CC, Lee LA. Comparative analysis of gut microbiota in children with obstructive sleep apnea: assessing the efficacy of 16S rRNA gene sequencing in metabolic function prediction based on weight status. Front Endocrinol (Lausanne) 2024; 15:1344152. [PMID: 38948515 PMCID: PMC11211266 DOI: 10.3389/fendo.2024.1344152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Background Analyzing bacterial microbiomes consistently using next-generation sequencing (NGS) is challenging due to the diversity of synthetic platforms for 16S rRNA genes and their analytical pipelines. This study compares the efficacy of full-length (V1-V9 hypervariable regions) and partial-length (V3-V4 hypervariable regions) sequencing of synthetic 16S rRNA genes from human gut microbiomes, with a focus on childhood obesity. Methods In this observational and comparative study, we explored the differences between these two sequencing methods in taxonomic categorization and weight status prediction among twelve children with obstructive sleep apnea. Results The full-length NGS method by Pacbio® identified 118 genera and 248 species in the V1-V9 regions, all with a 0% unclassified rate. In contrast, the partial-length NGS method by Illumina® detected 142 genera (with a 39% unclassified rate) and 6 species (with a 99% unclassified rate) in the V3-V4 regions. These approaches showed marked differences in gut microbiome composition and functional predictions. The full-length method distinguished between obese and non-obese children using the Firmicutes/Bacteroidetes ratio, a known obesity marker (p = 0.046), whereas the partial-length method was less conclusive (p = 0.075). Additionally, out of 73 metabolic pathways identified through full-length sequencing, 35 (48%) were associated with level 1 metabolism, compared to 28 of 61 pathways (46%) identified through the partial-length method. The full-length NGS also highlighted complex associations between body mass index z-score, three bacterial species (Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and Streptococcus parasanguinis ATCC 15912), and 17 metabolic pathways. Both sequencing techniques revealed relationships between gut microbiota composition and OSA-related parameters, with full-length sequencing offering more comprehensive insights into associated metabolic pathways than the V3-V4 technique. Conclusion These findings highlight disparities in NGS-based assessments, emphasizing the value of full-length NGS with amplicon sequence variant analysis for clinical gut microbiome research. They underscore the importance of considering methodological differences in future meta-analyses.
Collapse
Affiliation(s)
- Hai-Hua Chuang
- Department of Family Medicine, Chang Gung Memorial Hospital, Taipei Branch and Linkou Main Branch, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sleep Center, Metabolism and Obesity Institute, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsuan Chou
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Biotools Co., Ltd., New Taipei City, Taiwan
| | - Hsueh-Yu Li
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sleep Center, Metabolism and Obesity Institute, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Chia Lee
- Taipei Wego Private Bilingual Senior High School, Taipei, Taiwan
| | - Li-Ang Lee
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sleep Center, Metabolism and Obesity Institute, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
8
|
Cardoso BB, Amorim C, Franco-Duarte R, Alves JI, Barbosa SG, Silvério SC, Rodrigues LR. Epilactose as a Promising Butyrate-Promoter Prebiotic via Microbiota Modulation. Life (Basel) 2024; 14:643. [PMID: 38792663 PMCID: PMC11123345 DOI: 10.3390/life14050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.
Collapse
Affiliation(s)
- Beatriz B. Cardoso
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
| | - Cláudia Amorim
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Joana I. Alves
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sónia G. Barbosa
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sara C. Silvério
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Reyes-Castillo PA, González-Vázquez R, Torres-Maravilla E, Bautista-Hernández JI, Zúñiga-León E, Leyte-Lugo M, Mateos-Sánchez L, Mendoza-Pérez F, Gutiérrez-Nava MA, Reyes-Pavón D, Azaola-Espinosa A, Mayorga-Reyes L. Bifidobacterium longum LBUX23 Isolated from Feces of a Newborn; Potential Probiotic Properties and Genomic Characterization. Microorganisms 2023; 11:1648. [PMID: 37512821 PMCID: PMC10385183 DOI: 10.3390/microorganisms11071648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bifidobacterium longum is considered a microorganism with probiotic potential, which has been extensively studied, but these probiotic effects are strain dependent. This work aims to characterize the probiotic potential, based on the biochemical and genomic functionality, of B. longum LBUX23, isolated from neonates' feces. B. longum LBUX23 contains one circular genome of 2,287,838 bp with a G+C content of 60.05%, no plasmids, no CRISPR-Cas operon, possesses 56 tRNAs, 9 rRNAs, 1 tmRNA and 1776 coding sequences (CDSs). It has chromosomally encoded resistance genes to ampicillin and dicloxacillin, non-hemolytic activity, and moderate inhibition of Escherichia coli ATCC 25922 and to some emergent pathogen's clinical strains. B. longum LBUX23 was able to utilize lactose, sucrose, fructooligosaccharides (FOS), and lactulose. The maximum peak of bacterial growth was observed in sucrose and FOS at 6 h; in lactose and lactulose, it was shown at 8 h. B. longum LBUX23 can survive in gastrointestinal conditions (pH 4 to 7). A decrease in survival (96.5 and 93.8%) was observed at pH 3 and 3.5 during 120 min. argC, argH, and dapA genes could be involved in this tolerance. B. longum LBUX23 can also survive under primary and secondary glyco- or tauro-conjugated bile salts, and a mixture of bile salts due to the high extracellular bile salt hydrolase (BSH) activity (67.3 %), in taurocholic acid followed by taurodeoxycholic acid (48.5%), glycocholic acid (47.1%), oxgall (44.3%), and glycodeoxycholic acid (29.7%) probably due to the presence of the cbh and gnlE genes which form an operon (start: 119573 and end: 123812). Low BSH activity was determined intracellularly (<7%), particularly in glycocholic acid; no intracellular activity was shown. B. longum LBUX23 showed antioxidant effects in DPPH radical, mainly in intact cells (27.4%). In the case of hydroxyl radical scavenging capacity, cell debris showed the highest reduction (72.5%). In the cell-free extract, superoxide anion radical scavenging capacity was higher (90.5%). The genome of B. longum LBUX23 contains PNPOx, AhpC, Bcp, trxA, and trxB genes, which could be involved in this activity. Regarding adherence, it showed adherence up to 5% to Caco-2 cells. B. longum LBUX23 showed in vitro potential probiotic properties, mainly in BSH activity and antioxidant capacity, which indicates that it could be a good candidate for antioxidant or anti-cholesterol tests using in vivo models.
Collapse
Affiliation(s)
- Pedro A Reyes-Castillo
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Raquel González-Vázquez
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, CONAHCYT-Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Edgar Torres-Maravilla
- Facultad de Medicina Mexicali, Universidad Autonoma de Baja California, Mexicali 21000, Mexico
| | - Jessica I Bautista-Hernández
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Eduardo Zúñiga-León
- Centro de Investigación en Recursos Bioticos, Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico
| | - Martha Leyte-Lugo
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, CONAHCYT-Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Leovigildo Mateos-Sánchez
- Unidad de Cuidados Intensivos de Neonatos, Unidad Medica de Alta Especialidad, Hospital Gineco Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Ciudad de Mexico 01090, Mexico
| | - Felipe Mendoza-Pérez
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - María Angélica Gutiérrez-Nava
- Laboratorio de Ecologia Microbiana, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Diana Reyes-Pavón
- Facultad de Medicina Mexicali, Universidad Autonoma de Baja California, Mexicali 21000, Mexico
| | - Alejandro Azaola-Espinosa
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Lino Mayorga-Reyes
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| |
Collapse
|