1
|
Kelly PH, Kwark R, Marick HM, Davis J, Stark JH, Madhava H, Dobler G, Moïsi JC. Different environmental factors predict the occurrence of tick-borne encephalitis virus (TBEV) and reveal new potential risk areas across Europe via geospatial models. Int J Health Geogr 2025; 24:3. [PMID: 40087786 PMCID: PMC11908066 DOI: 10.1186/s12942-025-00388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is the most serious tick-borne viral disease in Europe. Identifying TBE risk areas can be difficult due to hyper focal circulation of the TBE virus (TBEV) between mammals and ticks. To better define TBE hazard risks and elucidate regional-specific environmental factors that drive TBEV circulation, we developed two machine-learning (ML) algorithms to predict the habitat suitability (maximum entropy), and occurrence of TBEV (extreme gradient boosting) within distinct European regions (Central Europe, Nordics, and Baltics) using local variables of climate, habitat, topography, and animal hosts and reservoirs. METHODS Geocoordinates that reported the detection of TBEV in ticks or rodents and anti-TBEV antibodies in rodent reservoirs in 2000 or later were extracted from published and grey literature. Region-specific ML models were defined via K-means clustering and trained according to the distribution of extracted geocoordinates relative to explanatory variables in each region. Final models excluded colinear variables and were evaluated for performance. RESULTS 521 coordinates (455 ticks; 66 rodent reservoirs) of TBEV occurrence (2000-2022) from 100 records were extracted for model development. The models had high performance across regions (AUC: 0.72-0.92). The strongest predictors of habitat suitability and TBEV occurrence in each region were associated with different variable categories: climate variables were the strongest predictors of habitat suitability in Central Europe; rodent reservoirs and elevation were strongest in the Nordics; and animal hosts and land cover contributed most to the Baltics. The models predicted several areas with few or zero reported TBE incidence as highly suitable (≥ 60%) TBEV habitats or increased probability (≥ 25%) of TBEV occurrence including western Norway coastlines, northern Denmark, northeastern Croatia, eastern France, and northern Italy, suggesting potential capacity for locally-acquired autochthonous TBEV infections or possible underreporting of TBE cases based on reported human surveillance data. CONCLUSIONS This study shows how varying environmental factors drive the occurrence of TBEV within different European regions and identifies potential new risk areas for TBE. Importantly, we demonstrate the utility of ML models to generate reliable insights into TBE hazard risks when trained with sufficient explanatory variables and to provide high resolution and harmonized risk maps for public use.
Collapse
Affiliation(s)
- Patrick H Kelly
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, Pfizer, Inc., 66 Hudson Yards Blvd E, New York City, NY, USA.
| | | | | | | | - James H Stark
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, Cambridge, MA, USA
| | - Harish Madhava
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, London, UK
| | - Gerhard Dobler
- Bundeswehr Institute for Microbiology, National TBEV Consultant Laboratory, 80937, Munchen, Germany
| | - Jennifer C Moïsi
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, Paris, France
| |
Collapse
|
2
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Król N, Chitimia-Dobler L, Dobler G, Kiewra D, Czułowska A, Obiegala A, Zajkowska J, Juretzek T, Pfeffer M. Identification of New Microfoci and Genetic Characterization of Tick-Borne Encephalitis Virus Isolates from Eastern Germany and Western Poland. Viruses 2024; 16:637. [PMID: 38675977 PMCID: PMC11055073 DOI: 10.3390/v16040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus. TBEV circulates in natural foci, making it endemic to specific regions, such as southern Germany and northeastern Poland. Our study aimed to identify new TBEV natural foci and genetically characterize strains in ticks in previously nonendemic areas in Eastern Germany and Western Poland. (2) Methods: Ticks were collected from vegetation in areas reported by TBE patients. After identification, ticks were tested for TBEV in pools of a maximum of 10 specimens using real-time RT-PCR. From the positive TBEV samples, E genes were sequenced. (3) Results: Among 8400 ticks from 19 sites, I. ricinus (n = 4784; 56.9%) was predominant, followed by D. reticulatus (n = 3506; 41.7%), Haemaphysalis concinna (n = 108; 1.3%), and I. frontalis (n = 2; <0.1%). TBEV was detected in 19 pools originating in six sites. The phylogenetic analyses revealed that TBEV strains from Germany and Poland clustered with other German strains, as well as those from Finland and Estonia. (4) Conclusions: Although there are still only a few cases are reported from these areas, people spending much time outdoors should consider TBE vaccination.
Collapse
Affiliation(s)
- Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany (M.P.)
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Clinical Center for Emerging and Vector-Borne Infections, Odense University Hospital, 5000 Odense, Denmark
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Fraunhofer Institute of Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Department of Parasitology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
- Department of Infectious Diseases and Tropical Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland
| | - Aleksandra Czułowska
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany (M.P.)
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland;
| | - Thomas Juretzek
- Center for Laboratory Medicine, Microbiology and Hospital Hygiene, Carl-Thiem-Klinikum Cottbus gGmbH, 03048 Cottbus, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany (M.P.)
| |
Collapse
|
4
|
Schelling J, Einmahl S, Torgler R, Larsen CS. Evidence for a 10-year TBE vaccine booster interval: an evaluation of current data. Expert Rev Vaccines 2024; 23:226-236. [PMID: 38288983 DOI: 10.1080/14760584.2024.2311359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Tick-borne encephalitis (TBE) is rapidly spreading to new areas in many parts of Europe. While vaccination remains the most effective method of protection against the disease, vaccine uptake is low in many endemic countries. AREAS COVERED We conducted a literature search of the MEDLINE database to identify articles published from 2018 to 2023 that evaluated the immunogenicity and effectiveness of TBE vaccines, particularly Encepur, when booster doses were administered up to 10 years apart. We searched PubMed with the MeSH terms 'Encephalitis, Tick-Borne/prevention and control' and 'Vaccination' for articles published in the English language. EXPERT OPINION Long-term immunogenicity data for Encepur and real-world data on vaccine effectiveness and breakthrough infections following the two European TBE vaccines, Encepur and FSME-Immun, have shown that extending the booster interval from 3-5 years to 10 years does not negatively impact protection against TBE, regardless of age. Such extension not only streamlines the vaccination schedules but may also increase vaccine uptake and compliance among those living in endemic regions.
Collapse
Affiliation(s)
- Jörg Schelling
- Department of Medicine IV, LMU University Hospital, LMU Munich, University of Munich, Munich, Germany
| | - Suzanne Einmahl
- Department of Medical Strategy, Bavarian Nordic AG, Zug, Switzerland
| | - Ralph Torgler
- Department of Medical Strategy, Bavarian Nordic AG, Zug, Switzerland
| | | |
Collapse
|
5
|
Geißlreiter B, Kluger G, Eschermann K, Kiwull L, Staudt M, Dobler G, Wolf GK. High neutralizing antibody mismatch as a possible reason for vaccine failure in two children with severe tick-borne encephalitis. Ticks Tick Borne Dis 2023; 14:102158. [PMID: 36989602 DOI: 10.1016/j.ttbdis.2023.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
We describe two adolescents (13 and 16 years old) with severe tick-borne encephalitis (TBE) and vaccination breakthrough (VBT). Both suffer from severe persistent neurologic sequelae. Both patients had high TBE-IgG-titers after vaccination at the beginning of the infection and a low or missing TBE-IgM response (Type 2 vaccine failure). Neutralization tests show low titers against the respective infecting TBE virus strain and higher titers against the vaccine strain at the beginning of the infection implying an individual weak or impaired immune response to the respective virus as possible cause of TBE vaccine failure. We do not know of any similar observation or explanation for the phenomenon and at the moment can only speculate of a severe course correlated to highly mismatched IgG. This constellation of high TBE IgGs, the lack of immune response and a severe course strongly resembles the severe TBE courses that occurred in the past after TBE immunoglobulin administration. To our knowledge differentiation between structural and functional antibodies by neutralization tests with a) the affecting TBE virus strain and b) the vaccine virus strain in TBE vaccine failures has never been described before. We conclude (1) to consider a TBE virus infection also in vaccinated children presenting with meningoencephalitis, (2) to perform a broad immunological work-up in severe TBE especially after VBT, (3) to further study if high mismatch IgG's are a possible reason for vaccine failure.
Collapse
Affiliation(s)
- Bernd Geißlreiter
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Krankenhausstr. 20, Vogtareuth 83569, Germany.
| | - Gerhard Kluger
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Krankenhausstr. 20, Vogtareuth 83569, Germany; Paracelsus Privatuniversität Salzburg, Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Kirsten Eschermann
- Paracelsus Privatuniversität Salzburg, Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria; Berlin Centre for Travel & Tropical Medicine, Friedrichstr. 134, Berlin 10117, Germany
| | - Lorenz Kiwull
- Paracelsus Privatuniversität Salzburg, Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria; Berlin Centre for Travel & Tropical Medicine, Friedrichstr. 134, Berlin 10117, Germany; Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, Munich 80337, Germany; Institute of Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University, Lindwurmstr. 4, Munich 80337, Germany
| | - Martin Staudt
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Krankenhausstr. 20, Vogtareuth 83569, Germany; Department for Pediatric Neurology and Developmental Medicine, University Children's Hospital Hoppe-Seyler-Straße 1, Tübingen, Germany
| | - Gerhard Dobler
- Department of Virology and Rickettsiology, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, Munich 80937, Germany
| | - Gerhard K Wolf
- Department of Paediatrics, Kliniken Südostbayern AG, Cuno-Niggl-Straße 3, Traunstein 83278, Germany
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Tick-borne encephalitis continues to be one of the most significant causes of viral encephalitis in Europe and Asia. This review will focus on recent developments in the epidemiology, pathogenesis and therapeutic approaches related to infection with tick-borne encephalitis virus. RECENT FINDINGS There is a growing consensus that tick-borne encephalitis viruses are increasing in geographical range, with countries previously free of disease reporting detection of both human cases and presence of virus within indigenous tick populations. The drivers for this are multifactorial but underpinned by human-mediated climate change. Recent developments in pathogenesis have focussed on the intracellular response to infection, particularly in different cell types within the central nervous system (CNS) that are revealing the array of cellular networks triggered by infection. This in turn highlights the need for small molecule therapeutics, such as nucleoside analogues, that can enter the CNS, and the intracellular environment, to inhibit virus replication following neuroinvasion. SUMMARY Based on continued epidemiological surveillance, tick-borne encephalitis viruses will increasingly affect human populations in Europe and Asia. Much of the research highlighted in this review demonstrates incremental advances in our understanding of these viruses. However, more is required if effective prevention and treatment of this devastating encephalitic viruses are to be realized.
Collapse
Affiliation(s)
- Nicholas Johnson
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Camille V Migné
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, Maison-Alfort, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, Maison-Alfort, France
| |
Collapse
|
7
|
Bestehorn-Willmann M, Girl P, Greiner F, Mackenstedt U, Dobler G, Lang D. Increased Vaccination Diversity Leads to Higher and Less-Variable Neutralization of TBE Viruses of the European Subtype. Vaccines (Basel) 2023; 11:1044. [PMID: 37376433 DOI: 10.3390/vaccines11061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system. The causative agent is the tick-borne encephalitis virus (TBEV), which is most commonly transmitted by tick bites, but which may also be transmitted through the consumption of raw dairy products or, in rare instances, via infected transfusions, transplants, or the slaughter of infected animals. The only effective preventive option is active immunization. Currently, two vaccines are available in Europe-Encepur® and FSME-IMMUN®. In Central, Eastern, and Northern Europe, isolated TBEV genotypes belong mainly to the European subtype (TBEV-EU). In this study, we investigated the ability of these two vaccines to induce neutralizing antibodies against a panel of diverse natural TBEV-EU isolates from TBE-endemic areas in southern Germany and in regions of neighboring countries. Sera of 33 donors vaccinated with either FSME-IMMUN®, Encepur®, or a mixture of both were tested against 16 TBEV-EU strains. Phylogenetic analysis of the TBEV-EU genomes revealed substantial genetic diversity and ancestry of the identified 13 genotypic clades. Although all sera were able to neutralize the TBEV-EU strains, there were significant differences among the various vaccination groups. The neutralization assays revealed that the vaccination using the two different vaccine brands significantly increased neutralization titers, decreased intra-serum variance, and reduced the inter-virus variation.
Collapse
Affiliation(s)
- Malena Bestehorn-Willmann
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Franziska Greiner
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ute Mackenstedt
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gerhard Dobler
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Daniel Lang
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| |
Collapse
|