1
|
Motrenko M, Lange A, Kalińska A, Gołębiewski M, Kunowska-Slósarz M, Nasiłowska B, Czwartos J, Skrzeczanowski W, Orzeszko-Rywka A, Jagielski T, Hotowy A, Wierzbicki M, Jaworski S. Green Nanoparticle Synthesis in the Application of Non-Bacterial Mastitis in Cattle. Molecules 2025; 30:1369. [PMID: 40142144 PMCID: PMC11944971 DOI: 10.3390/molecules30061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
This study explores the potential of silver nanoparticles (AgNPs) synthesized through an eco-friendly method using coffee extract to combat non-bacterial mastitis in dairy cattle. Mastitis, often caused by pathogens such as yeasts and algae like Prototheca spp., poses a challenge due to the limited efficacy of traditional antibiotics. This research utilized strains isolated from mastitis milk and assessed the nanoparticles' physicochemical properties, antimicrobial efficacy, and impact on biofilm formation and microorganism invasion. AgNPs demonstrated a spherical shape with a mean hydrodynamic diameter of ~87 nm and moderate colloidal stability. Antimicrobial tests revealed significant growth inhibition of yeast and Prototheca spp., with minimal inhibitory concentrations (MICs) as low as 10 mg/L for certain strains. Biofilm formation was notably disrupted, and microorganism invasion in bioprinted gels was significantly reduced, indicating the broad-spectrum potential of AgNPs. The study highlights the nanoparticles' ability to damage cell membranes and inhibit metabolic activities, presenting a promising alternative for managing infections resistant to conventional treatments. These findings suggest that green-synthesized AgNPs could play a pivotal role in developing sustainable solutions for mastitis treatment, particularly for pathogens with limited treatment options.
Collapse
Affiliation(s)
- Michał Motrenko
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.M.); (A.H.); (M.W.); (S.J.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.M.); (A.H.); (M.W.); (S.J.)
| | - Aleksandra Kalińska
- Animal Breeding Department, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.K.); (M.G.); (M.K.-S.)
| | - Marcin Gołębiewski
- Animal Breeding Department, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.K.); (M.G.); (M.K.-S.)
| | - Małgorzata Kunowska-Slósarz
- Animal Breeding Department, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.K.); (M.G.); (M.K.-S.)
| | - Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (B.N.); (J.C.); (W.S.)
| | - Joanna Czwartos
- Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (B.N.); (J.C.); (W.S.)
| | - Wojciech Skrzeczanowski
- Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (B.N.); (J.C.); (W.S.)
| | | | - Tomasz Jagielski
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 00-927 Warsaw, Poland;
| | - Anna Hotowy
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.M.); (A.H.); (M.W.); (S.J.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.M.); (A.H.); (M.W.); (S.J.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.M.); (A.H.); (M.W.); (S.J.)
| |
Collapse
|
2
|
Maoloni A, Cirlini M, Del Vecchio L, Torrijos R, Carini E, Rampanti G, Cardinali F, Milanović V, Garofalo C, Osimani A, Aquilanti L. A Novel Non-Alcoholic Einkorn-Based Beverage Produced by Lactic Acid Fermentation: Microbiological, Chemical, and Sensory Assessment. Foods 2024; 13:3923. [PMID: 39682995 DOI: 10.3390/foods13233923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Einkorn (Triticum monococcum L. ssp. monococcum) is gaining renewed interest for its high nutritional value and digestibility. Lactic acid fermentation could enhance these properties by improving micronutrient bioavailability, sensory properties, and shelf life. This study aimed to develop a novel non-alcoholic einkorn-based beverage through lactic acid fermentation. A multiple-strain starter was selected based on acidifying properties and inoculated into an einkorn-based substrate to produce a yogurt-like beverage. Prototypes were evaluated through physico-chemical, chemical, and microbiological analyses and compared to uninoculated controls. A sensory analysis was also performed to assess flavor attributes before and after lactic acid fermentation. The inoculated starter culture reached a load of approximately 9 Log CFU g⁻¹ and remained viable throughout storage, leading to an increase in lactic acid concentration and high titratable acidity, corresponding to low pH values. Total polyphenol content increased during fermentation and remained stable during storage, whereas antioxidant activity did not show significant differences over time. An increase in monosaccharides, acids, and ketones was observed during fermentation and storage. The prototypes exhibited a distinctive proximate composition, along with yogurt and fruity aroma notes. These results suggest the feasibility of producing a safe and stable non-alcoholic einkorn-based fermented beverage with appealing sensory characteristics.
Collapse
Affiliation(s)
- Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Martina Cirlini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lorenzo Del Vecchio
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Raquel Torrijos
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Eleonora Carini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Rampanti G, Cardinali F, Bande De León CM, Ferrocino I, Franciosa I, Milanović V, Foligni R, Tejada Portero L, Garofalo C, Osimani A, Aquilanti L. Onopordum platylepis (Murb.) Murb. as a novel source of thistle rennet: First application to the manufacture of traditional Italian raw ewe's milk cheese. Food Res Int 2024; 192:114838. [PMID: 39147526 DOI: 10.1016/j.foodres.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
In this study, for the very first time, aqueous extracts obtained from flowers of spontaneously grown or cultivated Onopordum platylepis (Murb.) Murb. thistles were used as coagulating agents for the pilot-scale manufacture of Caciofiore, a traditional Italian raw ewe's milk cheese. Cheese prototypes were compared to control cheeses curdled with a commercial thistle rennet obtained from flowers of Cynara cardunculus L. After 45 days of ripening under controlled conditions, both the experimental and control cheese prototypes were analyzed for: cheese yield, physico-chemical (pH, titratable acidity, aw, proximate composition), morpho-textural (color and texture), and microbiological parameters (viable cell counts and species composition assessed by Illumina sequencing), as well as volatile profile by SPME-GC-MS. Slight variations in titratable acidity, color, and texture were observed among samples. Based on the results overall collected, neither the yield nor the proximate composition was apparently affected by the type of thistle coagulant. However, the experimental cheese prototypes curdled with extracts from flowers of both spontaneous or cultivated thistles showed 10 % higher values of water-soluble nitrogen compared to the control prototypes. On the other hand, these latter showed slightly higher loads of presumptive lactococci, thermophilic cocci, coliforms, and eumycetes, but lower counts of Escherichia coli. No statistically significant differences were revealed by the metataxonomic analysis of the bacterial and fungal biota. Though most volatile organic compounds (VOCs) were consistent among the prototypes, significant variability was observed in the abundance of some key aroma compounds, such as butanoic, hexanoic, and octanoic acids, ethanol, propan-2-ol, isobutyl acetate, 2-methyl butanoic acid, and 3-methyl butanal. However, further investigations are required to attribute these differences to either the type of coagulant or the metabolic activity of the microorganisms occurring in the analyzed cheese samples. The results overall collected support the potential exploitation of O. platylepis as a novel source of thistle coagulant to produce ewe's milk cheeses.
Collapse
Affiliation(s)
- Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cindy María Bande De León
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Luis Tejada Portero
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
4
|
Rampanti G, Cantarini A, Cardinali F, Milanović V, Garofalo C, Aquilanti L, Osimani A. Technological and Enzymatic Characterization of Autochthonous Lactic Acid Bacteria Isolated from Viili Natural Starters. Foods 2024; 13:1115. [PMID: 38611419 PMCID: PMC11011773 DOI: 10.3390/foods13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Viili, a Finnish ropy fermented milk, is traditionally manufactured through spontaneous fermentation, by mesophilic lactic acid bacteria and yeast-like fungi, or back-slopping. This study evaluated four natural viili starters as sources of lactic acid bacteria for dairy production. Back-slopping activation of the studied viili samples was monitored through pH and titratable acidity measurements and enumeration of mesophilic lactic acid bacteria. Sixty lactic acid bacteria isolates were collected, molecularly identified, and assayed for acidification performance, enzymatic activities, production of exopolysaccharides (EPSs), presence of the histidine decarboxylase (hdcA) gene of Gram-positive bacteria, and production of bacteriocins. A neat predominance of Lactococcus lactis emerged among the isolates, followed by Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Enterococcus lactis, and Lactococcus cremoris. Most isolates exhibited proteolytic activity, whereas only a few enterococci showed lipase activity. Five isolates identified as L. cremoris, L. lactis, and E. faecalis showed a good acidification performance. Most of the isolates tested positive for leucine arylamidase, whereas only one E. durans and two L. lactis isolates were positive for valine arylamidase. A few isolates also showed a positive reaction for beta-galactosidase and alpha- and beta-glucosidase. None of the isolates produced EPSs or bacteriocins. The hdcA gene was detected in five isolates identified as L. lactis and E. faecium. A few L. cremoris and L. lactis isolates for potential use as starter or adjunct cultures for dairy processing were finally identified.
Collapse
Affiliation(s)
| | | | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (A.C.); (V.M.); (C.G.); (L.A.); (A.O.)
| | | | | | | | | |
Collapse
|
5
|
Casavecchia S, Giannelli F, Giovannotti M, Trucchi E, Carducci F, Quattrini G, Lucchetti L, Barucca M, Canapa A, Biscotti MA, Aquilanti L, Pesaresi S. Morphological and Genomic Differences in the Italian Populations of Onopordum tauricum Willd.-A New Source of Vegetable Rennet. PLANTS (BASEL, SWITZERLAND) 2024; 13:654. [PMID: 38475500 DOI: 10.3390/plants13050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Onopordum tauricum Willd., a species distributed in Eastern Europe, has been the subject of various research endeavors aimed at assessing its suitability for extracting vegetable rennet for use in the production of local cheeses as a substitute for animal-derived rennet. In Italy, the species has an extremely fragmented and localized distribution in six locations scattered across the central-northern Apennines and some areas of southern Italy. In this study, both the morphology and genetic diversity of the six known Italian populations were investigated to detect putative ecotypes. To this end, 33 morphological traits were considered for morphometric measurements, while genetic analysis was conducted on the entire genome using the ddRAD-Seq method. Both analyses revealed significant differences among the Apennine populations (SOL, COL, and VIS) and those from southern Italy (ROT, PES, and LEC). Specifically, the southern Italian populations appear to deviate significantly in some characteristics from the typical form of the species. Therefore, its attribution to O. tauricum is currently uncertain, and further genetic and morphological analyses are underway to ascertain its systematic placement within the genus Onopordum.
Collapse
Affiliation(s)
- Simona Casavecchia
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Giannelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Massimo Giovannotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giacomo Quattrini
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Lara Lucchetti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Barucca
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Simone Pesaresi
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
6
|
Rampanti G, Raffo A, Melini V, Moneta E, Nardo N, Saggia Civitelli E, Bande-De León C, Tejada Portero L, Ferrocino I, Franciosa I, Cardinali F, Osimani A, Aquilanti L. Chemical, microbiological, textural, and sensory characteristics of pilot-scale Caciofiore cheese curdled with commercial Cynara cardunculus rennet and crude extracts from spontaneous and cultivated Onopordum tauricum. Food Res Int 2023; 173:113459. [PMID: 37803784 DOI: 10.1016/j.foodres.2023.113459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The aim of this study was the chemical, microbiological, textural, and sensory characterization of pilot-scale prototypes of an Italian ewe's raw milk cheese (Caciofiore) curdled with commercial Cynara cardunculus rennet, used as a control, and crude extracts obtained from flowers of either spontaneous or cultivated Onopordum tauricum. Hence, the control and experimental cheese prototypes produced in two rounds of cheesemaking trials were assayed, at the end of their 60-day maturation, for the following features: pH, titratable acidity, dry matter, fat, total and soluble nitrogen (TN and SN, respectively), ash, salt, protein, lactose, viable plate counts and composition of the bacterial and fungal populations, color, texture, volatile organic compounds (VOCs), and olfactory attributes by sensory analysis (the latter for the sole prototypes curdled with the commercial rennet and the extract obtained from cultivated O. tauricum). The data overall collected showed a very low impact of the type of thistle rennet on the analyzed cheese traits, with significant differences being exclusively found for SN/TN%, titratable acidity, color, and adhesiveness. By contrast, a higher impact of the cheesemaking round was seen, with significant differences being observed for salt content, load of presumptive lactobacilli, thermophilic cocci, and Escherichia coli, and levels of the following VOCs: 2,3-butanedione, 2-pentanone, 1-butanol, 2-heptanone, 3-methyl-1-butanol, 2-heptanol, 2-nonanone, dimethyl trisulfide, 2-methyl propanoic acid, butanoic acid, and 3-methyl butanoic acid. Sensory analysis revealed a strong ewe's cheese odor, accompanied by other olfactory notes, such as pungent, sour curd, sweet, and Parmesan cheese-like notes, in all the analysed cheese prototypes. Moreover, key odor active compounds, including butanoic acid, ethyl butanoate, 2,3-butanedione, 1-octen-3-one, and dimethyl trisulfide, were identified by GC-olfactometry analysis. Regarding the odor attributes as determined by sensory analysis, again the type of rennet had an almost negligible impact, with significant differences being only perceived for 1 or 2 out of 20 odor attributes, depending on the analytical conditions applied. Although some aspects deserve further investigation, the results herein collected confirm that O. tauricum can be regarded as an alternative source of thistle rennet for the manufacture of Caciofiore cheese, and more in general, Mediterranean ewe's milk cheeses.
Collapse
Affiliation(s)
- Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Antonio Raffo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy.
| | - Valentina Melini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Elisabetta Moneta
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Nicoletta Nardo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | | | - Cindy Bande-De León
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Luis Tejada Portero
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
7
|
Osimani A, Belleggia L, Botta C, Ferrocino I, Milanović V, Cardinali F, Haouet MN, Garofalo C, Mozzon M, Foligni R, Aquilanti L. Journey to the morpho-textural traits, microbiota, and volatilome of Ciauscolo PGI salami. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|