1
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
2
|
Morgado D, Fanesi A, Martin T, Tebbani S, Bernard O, Lopes F. Non-destructive monitoring of microalgae biofilms. BIORESOURCE TECHNOLOGY 2024; 398:130520. [PMID: 38432541 DOI: 10.1016/j.biortech.2024.130520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Biofilm-based cultivation systems are emerging as a promising technology for microalgae production. However, efficient and non-invasive monitoring routines are still lacking. Here, a protocol to monitor microalgae biofilms based on reflectance indices (RIs) is proposed. This framework was developed using a rotating biofilm system for astaxanthin production by cultivating Haematococcus pluvialis on cotton carriers. Biofilm traits such as biomass, astaxanthin, and chlorophyll were characterized under different light and nutrient regimes. Reflectance spectra were collected to identify the spectral bands and the RIs that correlated the most with those biofilm traits. Robust linear models built on more than 170 spectra were selected and validated on an independent dataset. Astaxanthin content could be precisely predicted over a dynamic range from 0 to 4% of dry weight, regardless of the cultivation conditions. This study demonstrates the strength of reflectance spectroscopy as a non-invasive tool to improve the operational efficiency of microalgae biofilm-based technology.
Collapse
Affiliation(s)
- David Morgado
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| | - Andrea Fanesi
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France.
| | - Thierry Martin
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| | - Sihem Tebbani
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire des Signaux et Systèmes (L2S), Gif sur Yvette, France
| | - Olivier Bernard
- INRIA, Centre d'Université Côte d'Azur, Biocore, Sorbonne Université, CNRS, Sophia-Antipolis, France
| | - Filipa Lopes
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| |
Collapse
|
3
|
Morgado D, Fanesi A, Martin T, Tebbani S, Bernard O, Lopes F. Exploring the dynamics of astaxanthin production in Haematococcus pluvialis biofilms using a rotating biofilm-based system. Biotechnol Bioeng 2024; 121:991-1004. [PMID: 38098364 DOI: 10.1002/bit.28624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024]
Abstract
Microalgae biofilm emerged as a solid alternative to conventional suspended cultures which present high operative costs and complex harvesting processes. Among several designs, rotating biofilm-based systems stand out for their scalability, although their primary applications have been in wastewater treatment and aquaculture. In this work, a rotating system was utilized to produce a high-value compound (astaxanthin) using Haematococcus pluvialis biofilms. The effect of nitrogen regime, light intensity, and light history on biofilm traits was assessed to better understand how to efficiently operate the system. Our results show that H. pluvialis biofilms follow the classical growth stages described for bacterial biofilms (from adhesion to maturation) and that a two-stage (green and red stages) allowed to reach astaxanthin productivities of 204 mg m-2 d-1 . The higher light intensity applied during the red stage (400 and 800 µmol m-2 s-1 ) combined with nitrogen depletion stimulated similar astaxanthin productivities. However, by training the biofilms during the green stage, using mild-light intensity (200 µmol m-2 s-1 ), a process known as priming, the final astaxanthin productivity was enhanced by 40% with respect to biofilms pre-exposed to 50 µmol m-2 s-1 . Overall, this study shows the possibility of utilizing rotating microalgae biofilms to produce high-value compounds laying the foundation for further biotechnological applications of these emerging systems.
Collapse
Affiliation(s)
- David Morgado
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Andrea Fanesi
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Martin
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sihem Tebbani
- CentraleSupélec, CNRS, Laboratoire des Signaux et Systèmes (L2S), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Bernard
- INRIA, Centre d'Université Côte d'Azur, Biocore, CNRS, Sorbonne Université, Sophia-Antipolis, France
| | - Filipa Lopes
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Mougin J, Pavaux AS, Fanesi A, Lopez J, Pruvost E, Guihéneuf F, Sciandra A, Briandet R, Lopes F. Bacterial adhesion inhibition by microalgal EPSs from Cylindrotheca closterium and Tetraselmis suecica biofilms. Appl Microbiol Biotechnol 2024; 108:168. [PMID: 38261095 DOI: 10.1007/s00253-023-12960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024]
Abstract
In the food industry, successful bacterial pathogen colonization and persistence begin with their adhesion to a surface, followed by the spatial development of mature biofilm of public health concerns. Compromising bacterial settlement with natural inhibitors is a promising alternative to conventional anti-fouling treatments typically based on chemical biocides that contribute to the growing burden of antimicrobial resistance. In this study, three extracellular polymeric substance (EPS) fractions extracted from microalgae biofilms of Cylindrotheca closterium (fraction C) and Tetraselmis suecica (fraction Ta rich in insoluble scale structure and fraction Tb rich in soluble EPS) were screened for their anti-adhesive properties, against eight human food-borne pathogens belonging to Escherichia coli, Staphylococcus aureus, Salmonella enterica subsp. enterica, and Listeria monocytogenes species. The results showed that the fraction Ta was the most effective inducing statistically significant reduction for three strains of E. coli, S. aureus, and L. monocytogenes. Overall, EPSs coating on polystyrene surfaces of the different fractions increased the hydrophilic character of the support. Differences in bacterial adhesion on the different coated surfaces could be explained by several dissimilarities in the structural and physicochemical EPS compositions, according to HPLC and ATR-FTIR analysis. Interestingly, while fractions Ta and Tb were extracted from the same microalgal culture, distinct adhesion patterns were observed, highlighting the importance of the extraction process. Overall, the findings showed that EPS extracted from microalgal photosynthetic biofilms can exhibit anti-adhesive effects against food-borne pathogens and could help develop sustainable and non-toxic anti-adhesive surfaces for the food industry. KEY POINTS: •EPSs from a biofilm-based culture of C. closterium/T. suecica were characterized. •Microalgal EPS extracted from T. suecica biofilms showed bacterial anti-adhesive effects. •The anti-adhesive effect is strain-specific and affects both Gram - and Gram + bacteria.
Collapse
Affiliation(s)
- Julia Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Anne-Sophie Pavaux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Andrea Fanesi
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Julien Lopez
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Eric Pruvost
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | | | - Antoine Sciandra
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Filipa Lopes
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
5
|
Gao Y, Bernard O, Fanesi A, Perré P, Lopes F. The effect of light intensity on microalgae biofilm structures and physiology under continuous illumination. Sci Rep 2024; 14:1151. [PMID: 38212356 PMCID: PMC10784318 DOI: 10.1038/s41598-023-50432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
The interest by biofilm-based microalgae technologies has increased lately due to productivity improvement, energy consumption reduction and easy harvesting. However, the effect of light, one key factor for system's operation, received less attention than for planktonic cultures. This work assessed the impact of Photon Flux Density (PFD) on Chlorella vulgaris biofilm dynamics (structure, physiology, activity). Microalgae biofilms were cultivated in a flow-cell system with PFD from 100 to 500 [Formula: see text]. In the first stage of biofilm development, uniform cell distribution was observed on the substratum exposed to 100 [Formula: see text] while cell clusters were formed under 500 [Formula: see text]. Though similar specific growth rate in exponential phase (ca. 0.3 [Formula: see text]) was obtained under all light intensities, biofilm cells at 500 [Formula: see text] seem to be ultimately photoinhibited (lower final cell density). Data confirm that Chlorella vulgaris showed a remarkable capability to cope with high light. This was marked for sessile cells at 300 [Formula: see text], which reduce very rapidly (in 2 days) their chlorophyll-a content, most probably to reduce photodamage, while maintaining a high final cell density. Besides cellular physiological adjustments, our data demonstrate that cellular spatial organization is light-dependent.
Collapse
Affiliation(s)
- Yan Gao
- CentraleSupélec, LGPM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- Inria Sophia Antipolis Méditerranée, Biocore, Université Nice Côte d'Azur, 06902, Valbonne, France
| | - Olivier Bernard
- Inria Sophia Antipolis Méditerranée, Biocore, Université Nice Côte d'Azur, 06902, Valbonne, France
| | - Andrea Fanesi
- CentraleSupélec, LGPM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patrick Perré
- CentraleSupélec, LGPM, CEBB, Université Paris-Saclay, 51110, Pomacle, France
| | - Filipa Lopes
- CentraleSupélec, LGPM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Tong CY, Lim SL, Chua MX, Derek CJC. Uncovering the role of algal organic matter biocoating on Navicula incerta cell deposition and biofilm formation. Bioengineered 2023; 14:2252213. [PMID: 37695682 PMCID: PMC10496527 DOI: 10.1080/21655979.2023.2252213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 09/13/2023] Open
Abstract
Spontaneous natural biofilm concentrates microalgal biomass on solid supports. However, the biofilm is frequently susceptible to exfoliation upon nutrient deficiency, particularly found in aged biofilm. Therefore, this study highlights a novel biofilm cultivation technique by pre-depositing the algal organic matters from marine diatom, Navicula incerta onto microporous polyvinylidene fluoride membrane to further strengthen the biofilm developed. Due to the improvement in membrane surface roughness and hydrophobicity, cells adhered most abundantly to soluble extrapolymeric substances-coated (sEPS) (76× 106± 16× 106 cells m-2), followed by bounded EPS-coated (57.67× 106± 0.33× 106 cells m-2), internally organic matter (IOM)-coated (39.00× 106± 5.19× 106 cells m-2), and pristine control the least (6.22× 106± 0.77× 106 cells m-2) at 24th h. Surprisingly, only bEPS-coated membrane demonstrated an increase in cell adhesion toward the end of the experiment at 72 h. The application of the bio-coating has successfully increased the rate of cell attachment by at least 45.3% upon inoculation and achieved as high as 89.9% faster attachment at 72 hours compared to the pristine control group. Soluble polysaccharides and proteins might be carried along by the cells adhering onto membranes hence resulting in a built up of EPS hydrophobicity (>70% in average on bio-coated membranes) over time as compared with pristine (control) that only recorded an average of approximately 50% hydrophobicity. Interestingly, cells grown on bio-coated membranes accumulated more internally bounded polysaccharides, though bio-coating had no discernible impact on the production of both externally and internally bounded protein. The collective findings of this study reveal the physiological alterations of microalgal biofilms cultured on bio-coated membranes.
Collapse
Affiliation(s)
- C. Y. Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Siew Li Lim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Mei Xia Chua
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - C. J. C. Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
7
|
Adamu Ugya Y, Chen H, Sheng Y, Ajibade FO, Wang Q. A review of microalgae biofilm as an eco-friendly approach to bioplastics, promoting environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 236:116833. [PMID: 37543134 DOI: 10.1016/j.envres.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
In this comprehensive review, we delve into the challenges hindering the large-scale production of microalgae-based bioplastics, primarily focusing on economic feasibility and bioplastic quality. To address these issues, we explore the potential of microalgae biofilm cultivation as a sustainable and highly viable approach for bioplastic production. We present a proposed method for producing bioplastics using microalgae biofilm and evaluate its environmental impact using various tools such as life cycle analysis (LCA), ecological footprint analysis, resource flow analysis, and resource accounting. While pilot-scale and large-scale LCA data are limited, we utilize alternative indicators such as energy efficiency, carbon footprint, materials management, and community acceptance to predict the environmental implications of commercializing microalgae biofilm-based bioplastics. The findings of this study indicate that utilizing microalgae biofilm for bioplastic production offers significant environmental sustainability benefits. The system exhibits low energy requirements and a minimal carbon footprint. Moreover, it has the potential to address the issue of wastewater by utilizing it as a carbon source, thereby mitigating associated problems. However, it is important to acknowledge certain limitations associated with the method proposed in this review. Further research is needed to explore and engineer precise techniques for manipulating microalgae biofilm structure to optimize the accumulation of desired metabolites. This could involve employing chemical triggers, metabolic engineering, and genetic engineering to achieve the intended goals. In conclusion, this review highlights the potential of microalgae biofilm as a viable and sustainable solution for bioplastic production. While acknowledging the advantages, it also emphasizes the need for continued synthetic studies to enhance the efficiency and reliability of this approach. By addressing the identified drawbacks and maximizing the utilization of advanced techniques, we can further harness the potential of microalgae biofilm in contributing to a more environmentally friendly and economically feasible bioplastic industry.
Collapse
Affiliation(s)
- Yunusa Adamu Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China.
| |
Collapse
|
8
|
Gao Y, Bernard O, Fanesi A, Perré P, Lopes F. The impact of light/dark regimes on structure and physiology of Chlorella vulgaris biofilms. Front Microbiol 2023; 14:1250866. [PMID: 37942075 PMCID: PMC10628651 DOI: 10.3389/fmicb.2023.1250866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Biofilm-based microalgae production technologies offer enormous potential for improving sustainability and productivity. However, the light pattern induced by these technologies is a key concern for optimization. Methods In this work, the effects of light/dark cycles on architecture, growth, and physiology of Chlorella vulgaris biofilms were assessed in a millifluidic flow-cell with different time cycles (15 s to 3 min) keeping the average light constant at 100 μmol·m-2·s-1. Results and discussion Results showed that photoinhibition can be mitigated by applying a light fraction of 1/3 and a cycle time of 15 s. By contrast, when the cycle time is extended to 90 s and 3 min, photoinhibition is high and photoefficiency dramatically decreases. To cope with light stress, cells acclimate and organize themselves differently in space. A high peak light (500 μmol·m-2·s-1) triggers a stress, reducing cell division and inducing clusters in the biofilm. This work provides guidelines for optimizing rotating microalgae production systems in biofilms and assesses the minimum rotating frequency required to maintain the net growth rate close to that of continuous light of the same average intensity, mitigating photo-inhibition. The overall gain in productivity is then provided by the total surface of the biofilm turning in the illuminated surface area.
Collapse
Affiliation(s)
- Yan Gao
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Bernard
- Biocore, Inria Sophia Antipolis Méditerranée, Université Nice Côte d'Azur, Valbonne, France
| | - Andrea Fanesi
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Perré
- Laboratoire Génie des Procédés et Matériaux (LGPM), Centre Européen de Biotechnologie et de Bioéconomie (CEBB), CentraleSupélec, Université Paris-Saclay, Pomacle, France
| | - Filipa Lopes
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Mousavian Z, Safavi M, Salehirad A, Azizmohseni F, Hadizadeh M, Mirdamadi S. Improving biomass and carbohydrate production of microalgae in the rotating cultivation system on natural carriers. AMB Express 2023; 13:39. [PMID: 37119344 PMCID: PMC10148935 DOI: 10.1186/s13568-023-01548-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Biofilm-based algal technologies have gained popularity due to higher biomass productivity, efficient harvesting, and water-saving over suspended growth systems. A rotating attached system was designed to assess the biofilm-forming capacity of different isolated microalgal strains from the Persian Gulf. Four microalgal strains, including two Chlorella sp., one Picochlorum sp. and one filamentous cyanobacterium Desmonostoc sp. were cultivated on four carriers: jute, cotton, yarn and nylon. The carriers' physicochemical surface characteristics and attachment effects, like contact angle, were investigated. The incorporated biomass and exopolysaccharides (EPS) content in the suspended and biofilm system was calculated and compared. The results showed that the cyanobacterium strain had the biofilm formation capability on both jute and cotton in the attached cultivation system. Under the same culture conditions, the biomass productivity on jute and cotton carriers was significantly higher (4.76 and 3.61 g m- 2 respectively) than the growth in aqueous suspension (1.19 g m- 2 d- 1). The greatest incorporated exopolysaccharides amount was observed on jute (43.62 ± 4.47%) and the lowest amount was obtained from the growth on positive charge yarn (18.62 ± 1.88%). This study showed that in comparison with planktonic growth, the colonization of cyanobacterial cells and subsequent production of extracellular matrix and biofilm formation can lead to increased biomass production.
Collapse
Affiliation(s)
- Zahra Mousavian
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Parsa Sq., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 3353-5111, Tehran, 3353136846, Iran.
| | - Alireza Salehirad
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Farzaneh Azizmohseni
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Mahnaz Hadizadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Parsa Sq., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 3353-5111, Tehran, 3353136846, Iran.
| |
Collapse
|
10
|
Tong CY, Chua MX, Tan WH, Derek CJC. Microalgal extract as bio-coating to enhance biofilm growth of marine microalgae on microporous membranes. CHEMOSPHERE 2023; 315:137712. [PMID: 36592830 DOI: 10.1016/j.chemosphere.2022.137712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Microalgal biofilm is a popular platform for algal production, nutrient removal and carbon capture; however, it suffers from significant biofilm exfoliation under shear force exposure. Hence, a biologically-safe coating made up of algal extracellular polymeric substances (EPS) was utilized to secure the biofilm cell retention and cell loading on commercial microporous membrane (polyvinylidene fluoride), making the surfaces more hydrophobic (contact angle increase up to 12°). Results demonstrated that initial cell adhesion of three marine microalgae (Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta) was enhanced by at least 1.3 times higher than that of pristine control within only seven days with minimized biofilm exfoliation issue due to uniform distribution of sticky transparent exopolymer particles. Bounded extracellular polysaccharide gathered was approximately 23% higher on EPS-coated membranes to improve the biofilm's hydraulic resistance, whereas bounded extracellular protein would only be substantially elevated after the attached cells re-accommodate themselves onto the EPS pre-coating of themselves. In accounting the rises of hydrophobic protein content, biofilm was believed to be more stabilized, presumably via hydrophobic interactions. EPS biocoating would generate a groundswell of interest for bioprocess intensifications though there are lots of inherent technical and molecular challenges to be further investigated in future.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - M X Chua
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Win Hung Tan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
11
|
Neu TR, Kuhlicke U. Matrix glycoconjugate characterization in multispecies biofilms and bioaggregates from the environment by means of fluorescently-labeled lectins. Front Microbiol 2022; 13:940280. [PMID: 36003926 PMCID: PMC9395170 DOI: 10.3389/fmicb.2022.940280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Environmental biofilms represent a complex mixture of different microorganisms. Their identity is usually analyzed by means of nucleic acid-based techniques. However, these biofilms are also composed of a highly complex extracellular matrix produced by the microbes within a particular biofilm system. The biochemical identity of this extracellular matrix remains in many cases an intractable part of biofilms and bioaggregates. Consequently, there is a need for an approach that will give access to the fully hydrated structure of the extracellular matrix or at least a major part of it. A crucial compound of the matrix identified as carbohydrate-based polymers represents major structural and functional constituents. These glycoconjugates can be characterized by using fluorescently-labeled lectins in combination with confocal laser scanning microscopy. The lectin approach is defined previously, as fluorescence lectin barcoding (FLBC) and fluorescence lectin-binding analysis (FLBA), where FLBC is equal to the screening of a particular sample with all the commercially available lectins and FLBA is the actual analysis of the matrix throughout an experiment with a selected panel of lectins. As the application of immune-based techniques in environmental biofilm systems is impossible, the lectin approach is currently the only option for probing lectin-specific glycoconjugates in complex biofilms and bioaggregates. From all the commercially available lectins tested, the lectins such as AAL, HAA, WGA, ConA, IAA, HPA, and LEA showed the highest binding efficiency. Furthermore, 20 of the overall lectins tested showed an intermediate signal intensity, nevertheless very useful for the assessment of matrix glycoconjugates. With the data compiled, we shall virtually shed more light on the dark matter of the extracellular matrix and their 3-dimensional distribution in environmental biofilm systems. The results will be helpful in future studies with a focus on the extracellular matrix glycoconjugates present in environmental microbial communities.
Collapse
|
12
|
Fanesi A, Martin T, Breton C, Bernard O, Briandet R, Lopes F. The architecture and metabolic traits of monospecific photosynthetic biofilms studied in a custom flow-through system. Biotechnol Bioeng 2022; 119:2459-2470. [PMID: 35643824 DOI: 10.1002/bit.28147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022]
Abstract
Microalgae biofilms have great ecological importance and high biotechnological potential. Nevertheless, an in-depth and combined structural (i.e., the architecture of the biofilm) and physiological characterization of microalgae biofilms is still missing. An approach able to provide the same time physiological and structural information during biofilm growth would be of paramount importance to understand these complex biological systems and to optimize their productivity. In this study, monospecific biofilms of a diatom and a green alga were grown under dynamic conditions in custom flow cells represented by UV/Vis spectroscopic cuvettes. Such flow cells were conceived to characterize the biofilms by several techniques mostly in situ and in a nondestructive way. Physiological traits were obtained by measuring variable chlorophyll a fluorescence by pulse amplitude modulated fluorometry and by scanning the biofilms in a spectrometer to obtain in vivo pigments spectral signatures. The architectural features were obtained by imaging the biofilms with a confocal laser scanning microscopy and an optical coherence tomography. Overall, this experimental setup allowed us to follow the growth of two biofilm-forming microalgae showing that cell physiology is more affected in complex biofilms likely as a consequence of alterations in local environmental conditions.
Collapse
Affiliation(s)
- Andrea Fanesi
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Martin
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Breton
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Bernard
- Biocore, INRIA, Université Côte d'Azur, Sophia Antipolis Cedex, France
| | - Romain Briandet
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Filipa Lopes
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Tong CY, Derek CJC. Membrane surface roughness promotes rapid initial cell adhesion and long term microalgal biofilm stability. ENVIRONMENTAL RESEARCH 2022; 206:112602. [PMID: 34968430 DOI: 10.1016/j.envres.2021.112602] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In biofilm membrane photobioreactors development, conscientious works revolving around the effect of external environment factors on microalgal biofilm growth were assessed but more comparative research about the role of carrier surfaces properties such as surface roughness is necessary. Thus, commercial polyethersulfone (PES) membranes with two different molecular-weight-cut-offs (1 kDa and 30 kDa) were selected as the main representatives of surface roughness in a 20 days long-term biofilm cultivation experiment under dynamic flow condition for the biofilm evolvement of three benthic diatoms (Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta). Results depicted that rougher 30 kDa PES enable higher cell attachment degree for C. fusiformis (25.85 ± 2.75 × 109 cells m-2), followed by A. coffeaeformis (11.86 ± 2.76 × 109 cells m-2) and N. incerta (10.10 ± 0.65 × 109 cells m-2). Bounded extracellular polymeric substances (bEPS) gathered were relatively higher than soluble EPS (sEPS) while bEPS accumulated at least 10% higher on smooth 1 kDa PES than rough 30 kDa PES for the purpose of enhancing the biofilm disruption resistivity under liquid flow. Moreover, cell adhesion mechanism was proposed via computational fluid dynamics in parallel with EPS analysis. Copious amount of asperities and stagnant zones present on rough 30 kDa surfaces accelerated biofilm development and the consistency of the results have a great valence for interpretation of microalgal biofilm lifestyle on porous surfaces.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
14
|
Understanding photosynthetic biofilm productivity and structure through 2D simulation. PLoS Comput Biol 2022; 18:e1009904. [PMID: 35377868 PMCID: PMC9037940 DOI: 10.1371/journal.pcbi.1009904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/25/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
We present a spatial model describing the growth of a photosynthetic microalgae biofilm. In this 2D-model we consider photosynthesis, cell carbon accumulation, extracellular matrix excretion, and mortality. The rate of each of these mechanisms is given by kinetic laws regulated by light, nitrate, oxygen and inorganic carbon. The model is based on mixture theory and the behaviour of each component is defined on one hand by mass conservation, which takes into account biological features of the system, and on the other hand by conservation of momentum, which expresses the physical properties of the components. The model simulates the biofilm structural dynamics following an initial colonization phase. It shows that a 75 μm thick active region drives the biofilm development. We then determine the optimal harvesting period and biofilm height which maximize productivity. Finally, different harvesting patterns are tested and their effect on biofilm structure are discussed. The optimal strategy differs whether the objective is to recover the total biofilm or just the algal biomass. Microalgae have many industrial applications, ranging from aquaculture, pharmaceutics, food industry to green energy. Planktonic cultivation of microalgae is energy-consuming. Growing them under a biofilm form is a new trend with attracting promises. Biofilms are complex heterogeneous ecosystems composed of microorganisms embedded within a self-produced extracellular matrix and stuck to a surface. Most of the studies have focused on bacterial biofilms and knowledge about microalgae biofilms is still very limited. In this paper, we propose a mathematical model describing microalgae biofilm development. We simulate in 1D and 2D the impact of harvesting conditions on biofilm productivity. In agreement with available experimental observations, we find that there exist optimal frequencies and patterns that optimize the productivity. We also show that the optimal conditions differ whether for maximizing the productivity of microalgae or of the whole biofilm.
Collapse
|
15
|
Tong CY, Derek CJC. A Methodological Review on the Characterization of Microalgal Biofilm and Its Extracellular Polymeric Substances. J Appl Microbiol 2022; 132:3490-3514. [DOI: 10.1111/jam.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- C. Y. Tong
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| | - C. J. C Derek
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| |
Collapse
|
16
|
Li SF, Fanesi A, Martin T, Lopes F. Biomass production and physiology of Chlorella vulgaris during the early stages of immobilized state are affected by light intensity and inoculum cell density. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Moreno Osorio JH, Pollio A, Frunzo L, Lens PNL, Esposito G. A Review of Microalgal Biofilm Technologies: Definition, Applications, Settings and Analysis. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biofilm-based algal cultivation has many advantages over the conventional suspended growth methods and has received increased attention as a potential platform for algal production, wastewater treatment (nutrient removal), and a potential pathway to supply feedstock for microalgae-based biorefinery attempts. However, the attached cultivation by definition and application is a result of a complex interaction between the biotic and abiotic components involved. Therefore, the entire understanding of the biofilm nature is still a research challenge due to the need for real-time analysis of the system. In this review, the state of the art of biofilm definition, its life cycle, the proposed designs of bioreactors, screening of carrier materials, and non-destructive techniques for the study of biofilm formation and performance are summarized. Perspectives for future research needs are also discussed to provide a primary reference for the further development of microalgal biofilm systems.
Collapse
|
18
|
Ugya AY, Ari HA, Hua X. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112468. [PMID: 34198191 DOI: 10.1016/j.ecoenv.2021.112468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The study shows how microalgae biofilm formation and antioxidant responses to the production of reactive oxygen species (ROS) is alter by the presences of Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. The study involves the cultivation of the biofilm of Chlorella vulgaris and Aphanizomenon flos-aquae in three bioreactors. The condition of growth for the biofilm formation was varied across the three bioreactors to enable the dominance Chlorella vulgaris and Aphanizomenon flos-aquae in one of the bioreactors. Lemna minor L. was also introduce into one of the bioreactors to determine its effect on the biofilm formation. The result obtained shows that C. vulgaris and A. flos-aquae dominate the biofilm, resulting in a high level of H2O2 and O2- (H2O2 was 0.122 ± 0.052 and 0.183 ± 0.108 mmol/L in C. vulgaris and A. flos-aquae, respectively, and O2- was 0.261 ± 0.039 and 0.251 ± 0.148 mmol/L in C. vulgaris and A. flos-aquae, respectively). The study also revealed that the presence of L. minor L. tend to reduce the oxidative stress to the biofilm leading to low production of ROS (H2O2 was 0.086 ± 0.027 and 0.089 ± 0.045 mmol/L in C. vulgaris and A. flos-aquae respectively, and O2- was 0.185 ± 0.044 and 0.161 ± 0.065 mmol/L in C. vulgaris and A. flos-aquae respectively). The variation in the ability of the biofilm of C. vulgaris and A. flos-aquae to respond via chlorophyll, carotenoid, flavonoid, anthocyanin, superoxide dismutase, peroxidase, catalase, glutathione reductase activities, antioxidant reducing power, phosphomolybdate activity, DPPH reduction activity, H2O2 scavenging activity, lipid content and organic carbon also supports the fact that the presence of biomass of microalgae and aquatic macrophytes tend to affect the process of microalgae biofilm formation and the ability of the biofilm to produce antioxidant. This high nutrient utilization leads to the production of biomass which can be used for biofuel production and other biotechnological products.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China; Department of Environmental Management, Kaduna State University, Kaduna, Nigeria
| | - Hadiza Abdullahi Ari
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China; Faculty of Sciences, National Open University of Nigeria, Lagos, Nigeria
| | - Xiuyi Hua
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
19
|
Tong C, Derek C. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Fanesi A, Lavayssière M, Breton C, Bernard O, Briandet R, Lopes F. Shear stress affects the architecture and cohesion of Chlorella vulgaris biofilms. Sci Rep 2021; 11:4002. [PMID: 33597585 PMCID: PMC7889892 DOI: 10.1038/s41598-021-83523-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
The architecture of microalgae biofilms has been poorly investigated, in particular with respect to shear stress, which is a crucial factor in biofilm-based reactor design and operation. To investigate how microalgae biofilms respond to different hydrodynamic regimes, the architecture and cohesion of Chlorella vulgaris biofilms were studied in flow-cells at three shear stress: 1.0, 6.5 and 11.0 mPa. Biofilm physical properties and architecture dynamics were monitored using a set of microscopic techniques such as, fluorescence recovery after photobleaching (FRAP) and particle tracking. At low shear, biofilms cohesion was heterogeneous resulting in a strong basal (close to the substrate) layer and in more loose superficial ones. Higher shear (11.0 mPa) significantly increased the cohesion of the biofilms allowing them to grow thicker and to produce more biomass, likely due to a biological response to resist the shear stress. Interestingly, an acclimation strategy seemed also to occur which allowed the biofilms to preserve their growth rate at the different hydrodynamic regimes. Our results are in accordance with those previously reported for bacteria biofilms, revealing some general physical/mechanical rules that govern microalgae life on substrates. These results may bring new insights about how to improve productivity and stability of microalgae biofilm-based systems.
Collapse
Affiliation(s)
- A. Fanesi
- grid.460789.40000 0004 4910 6535Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - M. Lavayssière
- grid.460789.40000 0004 4910 6535Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - C. Breton
- grid.460789.40000 0004 4910 6535Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - O. Bernard
- Biocore, INRIA, Université Côte d’Azur, 06902 Sophia Antipolis Cedex, France
| | - R. Briandet
- grid.507621.7Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - F. Lopes
- grid.460789.40000 0004 4910 6535Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Wang C, Chen P, Qiao Y, Kang Y, Yan C, Yu Z, Wang J, He X, Wu H. pH responsive superporogen combined with PDT based on poly Ce6 ionic liquid grafted on SiO 2 for combating MRSA biofilm infection. Theranostics 2020; 10:4795-4808. [PMID: 32308750 PMCID: PMC7163436 DOI: 10.7150/thno.42922] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Biofilm infection caused by multidrug-resistant bacteria is difficult to eradicate by conventional therapies. Photodynamic therapy (PDT) is an effective antibacterial method for fighting against biofilm infection. However, the blocked photosensitizers outside of biofilm greatly limit the efficacy of PDT. Methods: Herein, a novel acid-responsive superporogen and photosensitizer (SiO2-PCe6-IL) was developed. Because of the protonation of the photosensitizer and the high binding energy of the polyionic liquid, SiO2-PCe6-IL changed to positive SiO2-PIL+ in an acidic microenvironment of biofilm infection. SiO2-PIL+ could combine with negatively charged extracellular polymeric substances (EPS) and create holes to remove the biofilm barrier. To strengthen the interaction between SiO2-PIL+ and EPS, SiO2-PIL+ of high charge density was prepared by grafting the high-density initiation site of ATRP onto the surface of the SiO2 base. Results: Due to the rapid protonation rate of COO- and the strong binding energy of SiO2-PIL+ with EPS, SiO2-PCe6-IL could release 90% of Ce6 in 10 s. With the stronger electrostatic and hydrophobic interaction of SiO2-PIL+ with EPS, the surface potential, hydrophobicity, adhesion and mechanical strength of biofilm were changed, and holes in the biofilm were created in 10 min. Combining with the release of photosensitizers and the porous structure of the biofilm, Ce6 was efficiently concentrated in the biofilm. The in vitro and in vivo antibacterial experiments proved that SiO2-PCe6-IL dramatically improved the PDT efficacy against MRSA biofilm infection. Conclusion: These findings suggest that SiO2-PCe6-IL could rapidly increase the concentration of photosensitizer in biofilm and it is an effective therapy for combating biofilm infection.
Collapse
|